/usr/include/opencascade/math_Crout.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 | // This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to
// this header file considered to be the "object code" form of the original source.
#ifndef _math_Crout_HeaderFile
#define _math_Crout_HeaderFile
#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif
#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_NotSquare;
class Standard_DimensionError;
class math_Matrix;
class math_Vector;
//! This class implements the Crout algorithm used to solve a <br>
//! system A*X = B where A is a symmetric matrix. It can be used to <br>
//! invert a symmetric matrix. <br>
//! This algorithm is similar to Gauss but is faster than Gauss. <br>
//! Only the inferior triangle of A and the diagonal can be given. <br>
class math_Crout {
public:
void* operator new(size_t,void* anAddress)
{
return anAddress;
}
void* operator new(size_t size)
{
return Standard::Allocate(size);
}
void operator delete(void *anAddress)
{
if (anAddress) Standard::Free((Standard_Address&)anAddress);
}
//! Given an input matrix A, this algorithm inverts A by the <br>
//! Crout algorithm. The user can give only the inferior <br>
//! triangle for the implementation. <br>
//! A can be decomposed like this: <br>
//! A = L * D * T(L) where L is triangular inferior and D is <br>
//! diagonal. <br>
//! If one element of A is less than MinPivot, A is <br>
//! considered as singular. <br>
//! Exception NotSquare is raised if A is not a square matrix. <br>
Standard_EXPORT math_Crout(const math_Matrix& A,const Standard_Real MinPivot = 1.0e-20);
//! Returns True if all has been correctly done. <br>
Standard_Boolean IsDone() const;
//! Given an input vector <B>, this routine returns the <br>
//! solution of the set of linear equations A . X = B. <br>
//! Exception NotDone is raised if the decomposition was not <br>
//! done successfully. <br>
//! Exception DimensionError is raised if the range of B is <br>
//! not equal to the rowrange of A. <br>
Standard_EXPORT void Solve(const math_Vector& B,math_Vector& X) const;
//! returns the inverse matrix of A. Only the inferior <br>
//! triangle is returned. <br>
//! Exception NotDone is raised if NotDone. <br>
const math_Matrix& Inverse() const;
//! returns in Inv the inverse matrix of A. Only the inferior <br>
//! triangle is returned. <br>
//! Exception NotDone is raised if NotDone. <br>
void Invert(math_Matrix& Inv) const;
//! Returns the value of the determinant of the previously LU <br>
//! decomposed matrix A. Zero is returned if the matrix A is considered as singular. <br>
//! Exceptions <br>
//! StdFail_NotDone if the algorithm fails (and IsDone returns false). <br>
Standard_Real Determinant() const;
//! Prints on the stream o information on the current state <br>
//! of the object. <br>
Standard_EXPORT void Dump(Standard_OStream& o) const;
protected:
private:
math_Matrix InvA;
Standard_Boolean Done;
Standard_Real Det;
};
#include <math_Crout.lxx>
// other Inline functions and methods (like "C++: function call" methods)
#endif
|