This file is indexed.

/usr/include/opencascade/math_Crout.hxx is in libopencascade-foundation-dev 6.5.0.dfsg-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
// This file is generated by WOK (CPPExt).
// Please do not edit this file; modify original file instead.
// The copyright and license terms as defined for the original file apply to 
// this header file considered to be the "object code" form of the original source.

#ifndef _math_Crout_HeaderFile
#define _math_Crout_HeaderFile

#ifndef _Standard_HeaderFile
#include <Standard.hxx>
#endif
#ifndef _Standard_Macro_HeaderFile
#include <Standard_Macro.hxx>
#endif

#ifndef _math_Matrix_HeaderFile
#include <math_Matrix.hxx>
#endif
#ifndef _Standard_Boolean_HeaderFile
#include <Standard_Boolean.hxx>
#endif
#ifndef _Standard_Real_HeaderFile
#include <Standard_Real.hxx>
#endif
#ifndef _Standard_OStream_HeaderFile
#include <Standard_OStream.hxx>
#endif
class StdFail_NotDone;
class math_NotSquare;
class Standard_DimensionError;
class math_Matrix;
class math_Vector;


//! This class implements the Crout algorithm used to solve a <br>
//!          system A*X = B where A is a symmetric matrix. It can be used to <br>
//!          invert a symmetric matrix. <br>
//!          This algorithm is similar to Gauss but is faster than Gauss. <br>
//!          Only the inferior triangle of A and the diagonal can be given. <br>
class math_Crout  {
public:

  void* operator new(size_t,void* anAddress) 
  {
    return anAddress;
  }
  void* operator new(size_t size) 
  {
    return Standard::Allocate(size); 
  }
  void  operator delete(void *anAddress) 
  {
    if (anAddress) Standard::Free((Standard_Address&)anAddress); 
  }

  //! Given an input matrix A, this algorithm inverts A by the <br>
//!          Crout algorithm. The user can give only the inferior <br>
//!          triangle for the implementation. <br>
//!          A can be decomposed like this: <br>
//!          A = L * D * T(L) where L is triangular inferior and D is <br>
//!          diagonal. <br>
//!          If one element of A is less than MinPivot, A is <br>
//!          considered as singular. <br>
//!          Exception NotSquare is raised if A is not a square matrix. <br>
  Standard_EXPORT   math_Crout(const math_Matrix& A,const Standard_Real MinPivot = 1.0e-20);
  //! Returns True if all has been correctly done. <br>
        Standard_Boolean IsDone() const;
  //! Given an input vector <B>, this routine returns the <br>
//!          solution of the set of linear equations A . X = B. <br>
//!          Exception NotDone is raised if the decomposition was not <br>
//!          done successfully. <br>
//!          Exception DimensionError is raised if the range of B is <br>
//!          not equal to the rowrange of A. <br>
  Standard_EXPORT     void Solve(const math_Vector& B,math_Vector& X) const;
  //! returns the inverse matrix of A. Only the inferior <br>
//!          triangle is returned. <br>
//!          Exception NotDone is raised if NotDone. <br>
       const math_Matrix& Inverse() const;
  //! returns in Inv the inverse matrix of A. Only the inferior <br>
//!          triangle is returned. <br>
//!          Exception NotDone is raised if NotDone. <br>
        void Invert(math_Matrix& Inv) const;
  //! Returns the value of the determinant of the previously LU <br>
//! decomposed matrix A. Zero is returned if the matrix A is considered as singular. <br>
//! Exceptions <br>
//! StdFail_NotDone if the algorithm fails (and IsDone returns false). <br>
        Standard_Real Determinant() const;
  //! Prints on the stream o information on the current state <br>
//!          of the object. <br>
  Standard_EXPORT     void Dump(Standard_OStream& o) const;





protected:





private:



math_Matrix InvA;
Standard_Boolean Done;
Standard_Real Det;


};


#include <math_Crout.lxx>



// other Inline functions and methods (like "C++: function call" methods)


#endif