This file is indexed.

/usr/share/doc/libqhull-doc/html/index.htm is in libqhull-doc 2009.1-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 2.0">
<title>Qhull manual</title>
<!-- Navigation links 
NOTE -- verify all links by 'grep href=' 'grep name=' add # 'sort /+7'
        index.htm
-->
</head>

<body>

<p><a name="TOP"><b>Up:</b></a> <a
href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b><a
href="http://www.qhull.org/news">News</a> about Qhull<br>
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
<b>To:</b> <a href="#TOC">Qhull manual: Table of Contents</a>
(please wait while loading) <br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>

<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/fixed.html"><img
src="qh--rand.gif" alt="[random-fixed]" align="middle"
width="100" height="100"></a> Qhull manual </h1>

<p>Qhull is a general dimension code for computing convex hulls,
Delaunay triangulations, halfspace intersections about a point, Voronoi
diagrams, furthest-site Delaunay triangulations, and
furthest-site Voronoi diagrams.  These structures have
applications in science, engineering, statistics, and
mathematics. See <a
href="http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html">Fukuda's
introduction</a> to convex hulls, Delaunay triangulations,
Voronoi diagrams, and linear programming. For a detailed
introduction, see O'Rourke [<a href="#orou94">'94</a>], <i>Computational
Geometry in C</i>.  
</p>

<p>There are six programs.  Except for rbox, they use
the same code.
<blockquote>
<ul>
<li><a href="qconvex.htm">qconvex</a> -- convex hulls
<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
 furthest-site Delaunay triangulations
<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
<li><a href="qhull.htm">qhull</a> -- all structures with additional options
<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and 
  furthest-site Voronoi diagrams
<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
</ul>
</blockquote>

<p>Qhull implements the Quickhull algorithm for computing the
convex hull. Qhull includes options
for hull volume, facet area, multiple output formats, and
graphical output. It can approximate a convex hull. </p>

<p>Qhull handles roundoff errors from floating point
arithmetic.  It generates a convex hull with "thick" facets.  
A facet's outer plane is clearly above all of the points;
its inner plane is clearly below the facet's vertices.  Any
exact convex hull must lie between the inner and outer plane.

<p>Qhull uses merged facets, triangulated output, or joggled
input.  Triangulated output triangulates non-simplicial, merged
facets.  Joggled input also 
guarantees simplicial output, but it
is less accurate than merged facets.  For merged facets, Qhull
reports the maximum outer and inner plane. 

<p><i>Brad Barber, Cambridge MA, 2003/12/30</i></p>

<p><b>Copyright &copy; 1995-2003, 2009 The Geometry Center, Minneapolis MN</b></p>

<hr>

<h2><a href="#TOP">»</a><a name="TOC">Qhull manual: Table of
Contents </a></h2>

<ul>
    <li><a href="#when">When</a> to use Qhull
	     <ul>
	 <li><a href="http://www.qhull.org/news">News</a> for Qhull
	 with new features and reported bugs.
        <li><a href="http://www.qhull.org">Home</a> for Qhull with additional URLs
		(<a href=index.htm>local copy</a>)
		<li><a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> for Qhull (<a href="qh-faq.htm">local copy</a>)
		<li><a href="http://www.qhull.org/download">Download</a> Qhull (<a href=qh-get.htm>local copy</a>)
		<li><a href="qh-quick.htm#programs">Quick</a> reference for Qhull and its <a href="qh-quick.htm#options">options</a>
      <p>
        <li><a href="COPYING.txt">COPYING.txt</a> - copyright notice<br>
        <li><a href="REGISTER.txt">REGISTER.txt</a> - registration<br>
        <li><a href="README.txt">README.txt</a> - installation
        instructions<br>
        <li><a href="src/Changes.txt">Changes.txt</a> - change history <br>
        <li><a href="qhull.txt">qhull.txt</a> - Unix manual page
	     </ul>
	<p>
    <li><a href="#description">Description</a> of Qhull
	     <ul>
            <li><a href="#definition">de</a>finition &#149; <a
                href="#input">in</a>put &#149; <a href="#output">ou</a>tput
                &#149; <a href="#algorithm">al</a>gorithm &#149; <a
                href="#structure">da</a>ta structure </li>
    <li><a href="qh-impre.htm">Imprecision</a> in Qhull</li>
    <LI><a href="qh-impre.htm#joggle">Merged facets</a> or joggled input
		<li><a href="#geomview">Geomview</a>, Qhull's graphical
			viewer</li>
		<li><a href="qh-eg.htm">Examples</a> of Qhull using Geomview</li>
        </ul>
	<p>
  <li><a href=qh-quick.htm#programs>Qhull programs</a>
	<ul>
	<li><a href="qconvex.htm">qconvex</a> -- convex hulls
	<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
	 furthest-site Delaunay triangulations
	<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
	<li><a href="qhull.htm">qhull</a> -- all structures with additional options
	<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and 
	  furthest-site Voronoi diagrams
	<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
	</ul>
	<p>
    <li>Related URLs
	 <ul>
	 
	<li><a href="news:comp.graphics.algorithms">Newsgroup</a>:
        comp.graphics.algorithms
	<li><a 
        href="http://exaflop.org/docs/cgafaq/">FAQ</a> for computer graphics algorithms and
		<a href="http://exaflop.org/docs/cgafaq/cga6.html">geometric</a> structures.
    <li>Amenta's <a href="http://www.geom.uiuc.edu/software/cglist">Directory
        of Computational Geometry Software </a></li>
    <li>Erickson's <a
        href="http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html">Computational
        Geometry Software</a> </li>
	<li>Fukuda's <a 
		href="http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html">
		introduction</a> to convex hulls, Delaunay triangulations,
		Voronoi diagrams, and linear programming. 
    <li>Stony Brook's <a
        href="http://www.cs.sunysb.edu/~algorith/major_section/1.6.shtml">Algorithm Repository</a> on computational geometry.
    </li>
     </ul>
	<p>
    <li><a href="qh-quick.htm#options">Qhull options</a><ul>
            <li><a href="qh-opto.htm#output">Output</a> formats</li>
            <li><a href="qh-optf.htm#format">Additional</a> I/O
                formats</li>
            <li><a href="qh-optg.htm#geomview">Geomview</a>
                output options</li>
            <li><a href="qh-optp.htm#print">Print</a> options</li>
            <li><a href="qh-optq.htm#qhull">Qhull</a> control
                options</li>
            <li><a href="qh-optc.htm#prec">Precision</a> options</li>
            <li><a href="qh-optt.htm#trace">Trace</a> options</li>
        </ul>
    </li>
	<p>
    <li><a href="qh-in.htm">Qhull internals</a><ul>
            <li><a href="qh-in.htm#performance">Performance</a>
                of Qhull</li>
            <li><a href="qh-in.htm#library">Calling</a> Qhull
                from your program</li>
            <li><a href="qh-in.htm#enhance">Enhancements</a> to
                Qhull</li>
            <li><a href="src/index.htm">Qhull functions, macros, and
                data structures</a> </li>
        </ul>
    </li>
	<p>
    <li><a href="#bugs">What to do</a> if something goes wrong</li>
    <li><a href="#email">Email</a></li>
    <li><a href="#authors">Authors</a></li>
    <li><a href="#ref">References</a></li>
    <li><a href="#acknowledge">Acknowledgments</a></li>
</ul>
<h2><a href="#TOC">»</a><a name="when">When to use Qhull</a></h2>
<blockquote>

<p>Qhull constructs convex hulls, Delaunay triangulations,
halfspace intersections about a point, Voronoi diagrams, furthest-site Delaunay
triangulations, and furthest-site Voronoi diagrams.</p>

<p>For convex hulls and halfspace intersections, Qhull may be used 
for 2-d upto 8-d.  For Voronoi diagrams and Delaunay triangulations, Qhull may be
used for 2-d upto 7-d.  In higher dimensions, the size of the output
grows rapidly and Qhull does not work well with virtual memory. 
If <i>n</i> is the size of
the input and <i>d</i> is the dimension (d>=3), the size of the output 
and execution time
grows by <i>n^(floor(d/2)</i> 
[see <a href=qh-in.htm#performance>Performance</a>].  For example, do
not try to build a 16-d convex hull of 1000 points.  It will
have on the order of 1,000,000,000,000,000,000,000,000 facets.

<p>On a 600 MHz Pentium 3, Qhull computes the 2-d convex hull of
300,000 cocircular points in 11 seconds.  It computes the
2-d Delaunay triangulation and 3-d convex hull of 120,000 points
in 12 seconds.  It computes the
3-d Delaunay triangulation and 4-d convex hull of 40,000 points
in 18 seconds.  It computes the
4-d Delaunay triangulation and 5-d convex hull of 6,000 points
in 12 seconds.  It computes the
5-d Delaunay triangulation and 6-d convex hull of 1,000 points
in 12 seconds.  It computes the
6-d Delaunay triangulation and 7-d convex hull of 300 points
in 15 seconds.  It computes the
7-d Delaunay triangulation and 8-d convex hull of 120 points
in 15 seconds.  It computes the
8-d Delaunay triangulation and 9-d convex hull of 70 points
in 15 seconds.  It computes the
9-d Delaunay triangulation and 10-d convex hull of 50 points
in 17 seconds.  The 10-d convex hull of 50 points has about 90,000 facets.

<!-- duplicated in index.htm and html/index.htm -->
<p>Qhull does <i>not</i> support constrained Delaunay
triangulations, triangulation of non-convex surfaces, mesh
generation of non-convex objects, or medium-sized inputs in 9-D
and higher. </p>

<p>This is a big package with many options. It is one of the
fastest available. It is the only 3-d code that handles precision
problems due to floating point arithmetic. For example, it
implements the identity function for extreme points (see <a
href="qh-impre.htm">Imprecision in Qhull</a>). </p>

<p>If you need a short code for convex hull, Delaunay
triangulation, or Voronoi volumes consider Clarkson's <a
href="http://netlib.bell-labs.com/netlib/voronoi/hull.html">hull
program</a>. If you need 2-d Delaunay triangulations consider
Shewchuk's <a href="http://www.cs.cmu.edu/~quake/triangle.html">triangle
program</a>. It is much faster than Qhull and it allows
constraints. Both programs use exact arithmetic. They are in <a
href="ftp://netlib.bell-labs.com/netlib/voronoi">ftp://netlib.bell-labs.com/netlib/voronoi</a>.
Qhull <a
href="http://www.qhull.org/download">version
1.0</a> may also meet your needs. It detects precision problems,
but does not handle them.</p>

<p><a href=http://www.algorithmic-solutions.com/enleda.htm>Leda</a> is a 
library for writing computational
geometry programs and other combinatorial algorithms.  It 
includes routines for computing 3-d convex
hulls, 2-d Delaunay triangulations, and 3-d Delaunay triangulations.  
It provides rational arithmetic and graphical output.  It runs on most 
platforms.

<p>If your problem is in high dimensions with a few,
non-simplicial facets, try Fukuda's <a
href="http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html">cdd</a>.
It is much faster than Qhull for these distributions. </p>

<p>Custom software for 2-d and 3-d convex hulls may be faster
than Qhull.  Custom software should use less memory.  Qhull uses 
general-dimension data structures and code.   The data structures
support non-simplicial facets.</p>

<p>Qhull is not suitable for mesh generation or triangulation of
arbitrary surfaces. You may use Qhull if the surface is convex or
completely visible from an interior point (e.g., a star-shaped
polyhedron). First, project each site to a sphere that is
centered at the interior point. Then, compute the convex hull of
the projected sites. The facets of the convex hull correspond to
a triangulation of the surface. For mesh generation of arbitrary
surfaces, see <a
href="http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html">Schneiders'
Finite Element Mesh Generation</a>.</p>

<p>Qhull is not suitable for constrained Delaunay triangulations.
With a lot of work, you can write a program that uses Qhull to
add constraints by adding additional points to the triangulation.</p>

<p>Qhull is not suitable for the subdivision of arbitrary
objects. Use <tt>qdelaunay</tt> to subdivide a convex object.</p>

</blockquote>
<h2><a href="#TOC">»</a><a name="description">Description of
Qhull </a></h2>
<blockquote>

<h3><a href="#TOC">»</a><a name="definition">definition</a></h3>
<blockquote>

<p>The <i>convex hull</i> of a point set <i>P</i> is the smallest
convex set that contains <i>P</i>. If <i>P</i> is finite, the
convex hull defines a matrix <i>A</i> and a vector <i>b</i> such
that for all <i>x</i> in <i>P</i>, <i>Ax+b &lt;= [0,...]</i>. </p>

<p>Qhull computes the convex hull in 2-d, 3-d, 4-d, and higher
dimensions. Qhull represents a convex hull as a list of facets.
Each facet has a set of vertices, a set of neighboring facets,
and a halfspace. A halfspace is defined by a unit normal and an
offset (i.e., a row of <i>A</i> and an element of <i>b</i>). </p>

<p>Qhull accounts for round-off error. It returns
&quot;thick&quot; facets defined by two parallel hyperplanes. The
outer planes contain all input points. The inner planes exclude
all output vertices. See <a href="qh-impre.htm#imprecise">Imprecise
convex hulls</a>.</p>

<p>Qhull may be used for the Delaunay triangulation or the
Voronoi diagram of a set of points. It may be used for the
intersection of halfspaces. </p>

</blockquote>
<h3><a href="#TOC">»</a><a name="input">input format</a></h3>
<blockquote>

<p>The input data on <tt>stdin</tt> consists of:</p>

<ul>
    <li>first line contains the dimension</li>
    <li>second line contains the number of input points</li>
    <li>remaining lines contain point coordinates</li>
</ul>

<p>For example: </p>

<pre>
    3  #sample 3-d input
    5
    0.4 -0.5 1.0
    1000 -1e-5 -100
    0.3 0.2 0.1
    1.0 1.0 1.0
    0 0 0
</pre>

<p>Input may be entered by hand. End the input with a control-D
(^D) character. </p>

<p>To input data from a file, use I/O redirection or '<a
href="qh-optt.htm#TI">TI file</a>'.  The filename may not
include spaces or quotes.</p>

<p>A comment starts with a non-numeric character and continues to
the end of line. The first comment is reported in summaries and
statistics. With multiple <tt>qhull</tt> commands, use option '<a
href="qh-optf.htm#FQ">FQ</a>' to place a comment in the output.</p>

<p>The dimension and number of points can be reversed. Comments
and line breaks are ignored. Error reporting is better if there
is one point per line.</p>

</blockquote>
<h3><a href="#TOC">»</a><a name="option">option format</a></h3>
<blockquote>

<p>Use options to specify the output formats and control
Qhull.  The <tt>qhull</tt> program takes all options.  The
other programs use a subset of the options.  They disallow
experimental and inappropriate options.

<blockquote>
<ul>
<li>
qconvex == qhull
<li>
qdelaunay == qhull d Qbb
<li>
qhalf == qhull H
<li>
qvoronoi == qhull v Qbb
</ul>
</blockquote>

<p>Single letters are used for output formats and precision
constants. The other options are grouped into menus for formats
('<a href="qh-optf.htm#format">F</a>'), Geomview ('<a
href="qh-optg.htm#geomview">G </a>'), printing ('<a
href="qh-optp.htm#print">P</a>'), Qhull control ('<a
href="qh-optq.htm#qhull">Q </a>'), and tracing ('<a
href="qh-optt.htm#trace">T</a>'). The menu options may be listed
together (e.g., 'GrD3' for 'Gr' and 'GD3'). Options may be in any
order. Capitalized options take a numeric argument (except for '<a
href="qh-optp.htm#PG">PG</a>' and '<a href="qh-optf.htm#format">F</a>'
options). Use option '<a href="qh-optf.htm#FO">FO</a>' to print
the selected options.</p>

<p>Qhull uses zero-relative indexing. If there are <i>n</i>
points, the index of the first point is <i>0</i> and the index of
the last point is <i>n-1</i>.</p>

<p>The default options are:</p>

<ul>
    <li>summary output ('<a href="qh-opto.htm#s">s</a>') </li>
    <li>merged facets ('<a href="qh-optc.htm#C0">C-0</a>' in 2-d,
        3-d, 4-d; '<a href="qh-optq.htm#Qx">Qx</a>' in 5-d and
        up)</li>
</ul>

<p>Except for bounding box
('<a href="qh-optq.htm#Qbk">Qbk:n</a>', etc.), drop facets 
('<a href="qh-optp.htm#Pdk">Pdk:n</a>', etc.), and
Qhull command ('<a href="qh-optf.htm#FQ">FQ</a>'), only the last
occurence of an option counts.  
Bounding box and drop facets may be repeated for each dimension.
Option 'FQ' may be repeated any number of times.

<p>The Unix <tt>tcsh</tt> and <tt>ksh </tt>shells make it easy to
try out different options. In Windows 95, use a DOS window with <tt>doskey</tt>
and a window scroller (e.g., <tt>peruse</tt>). </p>

</blockquote>
<h3><a href="#TOC">»</a><a name="output">output format</a></h3>
<blockquote>

<p>To write the results to a file, use I/O redirection or '<a
href="qh-optt.htm#TO">TO file</a>'. Windows 95 users should use
'TO file' or the console.  If a filename is surrounded by single quotes, 
it may include spaces.
</p>

<p>The default output option is a short summary ('<a
href="qh-opto.htm#s">s</a>') to <tt>stdout</tt>. There are many
others (see <a href="qh-opto.htm">output</a> and <a
href="qh-optf.htm">formats</a>). You can list vertex incidences,
vertices and facets, vertex coordinates, or facet normals. You
can view Qhull objects with Geomview, Mathematica, or Maple. You can
print the internal data structures. You can call Qhull from your
application (see <a href="qh-in.htm#library">Qhull library</a>).</p>

<p>For example, 'qhull <a href="qh-opto.htm#o">o</a>' lists the
vertices and facets of the convex hull. </p>

<p>Error messages and additional summaries ('<a
href="qh-opto.htm#s">s</a>') go to <tt>stderr</tt>. Unless
redirected, <tt>stderr</tt> is the console.</p>

</blockquote>
<h3><a href="#TOC">»</a><a name="algorithm">algorithm</a></h3>
<blockquote>

<p>Qhull implements the Quickhull algorithm for convex hull
[Barber et al. <a href="#bar-dob96">'96</a>]. This algorithm
combines the 2-d Quickhull algorithm with the <em>n</em>-d
beneath-beyond algorithm [c.f., Preparata &amp; Shamos <a
href="#pre-sha85">'85</a>]. It is similar to the randomized
algorithms of Clarkson and others [Clarkson &amp; Shor <a
href="#cla-sho89">'89</a>; Clarkson et al. <a href="#cla-meh93">'93</a>;
Mulmuley <a href="#mulm94">'94</a>]. For a demonstration, see <a
href="qh-eg.htm#how">How Qhull adds a point</a>. The main
advantages of Quickhull are output sensitive performance (in
terms of the number of extreme points), reduced space
requirements, and floating-point error handling. </p>

</blockquote>
<h3><a href="#TOC">»</a><a name="structure">data structures</a></h3>
<blockquote>

<p>Qhull produces the following data structures for dimension <i>d</i>:
</p>

<ul>
    <li>A <em>coordinate</em> is a real number in floating point
        format. </li>
    <li>A <em>point</em> is an array of <i>d</i> coordinates.
        With option '<a href="qh-optq.htm#QJn">QJ</a>', the
        coordinates are joggled by a small amount. </li>
    <li>A <em>vertex</em> is an input point. </li>
    <li>A <em>hyperplane</em> is <i>d</i> normal coefficients and
        an offset. The length of the normal is one. The
        hyperplane defines a halfspace. If <i>V</i> is a normal, <i>b</i>
        is an offset, and <i>x</i> is a point inside the convex
        hull, then <i>Vx+b &lt;0</i>.</li>
    <li>An <em>outer plane</em> is a positive
        offset from a hyperplane. When Qhull is done, all points
        will be below all outer planes.</li>
    <li>An <em>inner plane</em> is a negative
        offset from a hyperplane. When Qhull is done, all
        vertices will be above the corresponding inner planes.</li>
    <li>An <em>orientation</em> is either 'top' or 'bottom'. It is the
        topological equivalent of a hyperplane's geometric
        orientation. </li>
    <li>A <em>simplicial facet</em> is a set of
        <i>d</i> neighboring facets, a set of <i>d</i> vertices, a
        hyperplane equation, an inner plane, an outer plane, and
        an orientation. For example in 3-d, a simplicial facet is
        a triangle. </li>
    <li>A <em>centrum</em> is a point on a facet's hyperplane. A
        centrum is the average of a facet's vertices. Neighboring
        facets are <em>convex</em> if each centrum is below the
        neighbor facet's hyperplane. </li>
    <li>A <em>ridge</em> is a set of <i>d-1</i> vertices, two
        neighboring facets, and an orientation. For example in
        3-d, a ridge is a line segment. </li>
    <li>A <em>non-simplicial facet</em> is a set of ridges, a
        hyperplane equation, a centrum, an outer plane, and an
        inner plane. The ridges determine a set of neighboring
        facets, a set of vertices, and an orientation. Qhull
        produces a non-simplicial facet when it merges two facets
        together. For example, a cube has six non-simplicial
        facets. </li>
</ul>

<p>For examples, use option '<a href="qh-opto.htm#f">f</a>'. See <a
href="src/qh-poly.htm">polyhedron operations</a> for further
design documentation. </p>

</blockquote>
<h3><a href="#TOC">»</a>Imprecision in Qhull</h3>
<blockquote>

<p>See <a href="qh-impre.htm">Imprecision in Qhull</a>.</p>

</blockquote>
<h3><a href="#TOC">»</a><a name="geomview">Geomview, Qhull's
graphical viewer</a></h3>
<blockquote>

<p><a href="http://www.geomview.org">Geomview</a>
is an interactive geometry viewing program for Linux, SGI workstations,
Sun workstations, AIX workstations, NeXT workstations, and X-windows.
It is an 
<a href=http://sourceforge.net/projects/geomview>open source project</a>
under SourceForge.  
Besides a 3-d viewer, it includes a 4-d viewer, an n-d viewer and
many features for viewing mathematical objects. You may need to
ftp <tt>ndview</tt> from the <tt>newpieces</tt> directory. </p>

</blockquote>
<h3><a href="#TOC">»</a>Description of Qhull examples</h3>
<blockquote>

<p>See <a href="qh-eg.htm">Examples</a>. Some of the examples
have <a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/welcome.html">pictures
</a>.</p>

</blockquote>
</blockquote>
<h2><a href="#TOC">»</a>Options for using Qhull </h2>
<blockquote>

<p>See <a href="qh-quick.htm#options">Options</a>.</p>

</blockquote>
<h2><a href="#TOC">»</a>Qhull internals </h2>
<blockquote>

<p>See <a href="qh-in.htm">Internals</a>.</p>

</blockquote>
<h2><a href="#TOC">»</a><a name="bugs">What to do if something
goes wrong</a></h2>
<blockquote>

<p>Please report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
</a>. Please report if Qhull crashes. Please report if Qhull
generates an &quot;internal error&quot;. Please report if Qhull
produces a poor approximate hull in 2-d, 3-d or 4-d. Please
report documentation errors. Please report missing or incorrect
links.</p>

<p>If you do not understand something, try a small example. The <a
href="rbox.htm">rbox</a> program is an easy way to generate
test cases. The <a href="#geomview">Geomview</a> program helps to
visualize the output from Qhull.</p>

<p>If Qhull does not compile, it is due to an incompatibility
between your system and ours. The first thing to check is that
your compiler is ANSI standard. Qhull produces a compiler error
if __STDC__ is not defined. You may need to set a flag (e.g.,
'-A' or '-ansi').</p>

<p>If Qhull compiles but crashes on the test case (rbox D4),
there's still incompatibility between your system and ours.
Sometimes it is due to memory management. This can be turned off
with qh_NOmem in mem.h. Please let us know if you figure out how
to fix these problems. </p>

<p>If you doubt the output from Qhull, add option '<a
href="qh-optt.htm#Tv">Tv</a>'. It checks that every point is
inside the outer planes of the convex hull. It checks that every
facet is convex with its neighbors. It checks the topology of the
convex hull.</p>

<p>Qhull should work on all inputs. It may report precision
errors if you turn off merged facets with option '<a
href="qh-optq.htm#Q0">Q0</a>'. This can get as bad as facets with
flipped orientation or two facets with the same vertices. You'll
get a long help message if you run into such a case. They are
easy to generate with <tt>rbox</tt>.</p>

<p>If you do find a problem, try to simplify it before reporting
the error. Try different size inputs to locate the smallest one
that causes an error. You're welcome to hunt through the code
using the execution trace ('<a href="qh-optt.htm#Tn">T4</a>') as
a guide. This is especially true if you're incorporating Qhull
into your own program. </p>

<p>When you report an error, please attach a data set to the end
of your message. Include the options that you used with Qhull,
the results of option '<a href="qh-optf.htm#FO">FO</a>', and any
messages generated by Qhull. This allows me to see the error for
myself. Qhull is maintained part-time. </p>

</blockquote>
<h2><a href="#TOC">»</a><a name="email">Email</a></h2>
<blockquote>

<p>Please send correspondence to Brad Barber at <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
and report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
</a>. Let me know how you use Qhull. If you mention it in a
paper, please send a reference and abstract.</p>

<p>If you would like to get Qhull announcements (e.g., a new
version) and news (any bugs that get fixed, etc.), let us know
and we will add you to our mailing list. If you would like to
communicate with other Qhull users, I will add you to the
qhull_users alias. For Internet news about geometric algorithms
and convex hulls, look at comp.graphics.algorithms and
sci.math.num-analysis. For Qhull news look at <a
href="http://www.qhull.org/news">qhull-news.html</a>.</p>

</blockquote>
<h2><a href="#TOC">»</a><a name="authors">Authors</a></h2>
<blockquote>

<pre>  C. Bradford Barber                    Hannu Huhdanpaa
  bradb@qhull.org                    hannu@qhull.org
  
                    c/o The Geometry Center
                    University of Minnesota
                    400 Lind Hall
                    207 Church Street S.E.
                    Minneapolis, MN 55455
</pre>

</blockquote>
<h2><a href="#TOC">»</a><a name="acknowledge">Acknowledgments</a></h2>
<blockquote>

<p>A special thanks to David Dobkin for his guidance. A special
thanks to Albert Marden, Victor Milenkovic, the Geometry Center,
and Harvard University for supporting this work.</p>

<p>A special thanks to Mark Phillips, Robert Miner, and Stuart Levy for running the Geometry
 Center web site long after the Geometry Center closed.  
 Stuart moved the web site to the University of Illinois at Champaign-Urbana.
Mark and Robert are founders of <a href=http://www.geomtech.com>Geometry Technologies</a>.
Mark, Stuart, and Tamara Munzner are the original authors of <a href=http://www.geomview.org>Geomview</a>.

<p>A special thanks to <a href="http://www.endocardial.com/">Endocardial
Solutions, Inc.</a> of St. Paul, Minnesota for their support of the
internal documentation (<a href=../src/index.htm>src/index.htm</a>). They use Qhull to build 3-d models of
heart chambers.</p>

<p>Qhull 1.0 and 2.0 were developed under National Science Foundation
grants NSF/DMS-8920161 and NSF-CCR-91-15793 750-7504. If you find
it useful, please let us know.</p>

<p>The Geometry Center was supported by grant DMS-8920161 from the
National Science Foundation, by grant DOE/DE-FG02-92ER25137 from
the Department of Energy, by the University of Minnesota, and by
Minnesota Technology, Inc.</p>

</blockquote>
<h2><a href="#TOC">»</a><a name="ref">References</a></h2>
<blockquote>

<p><a name="aure91">Aurenhammer</a>, F., &quot;Voronoi diagrams
-- A survey of a fundamental geometric data structure,&quot; <i>ACM
Computing Surveys</i>, 1991, 23:345-405. </p>

<p><a name="bar-dob96">Barber</a>, C. B., D.P. Dobkin, and H.T.
Huhdanpaa, &quot;The Quickhull Algorithm for Convex Hulls,&quot; <i>ACM
Transactions on Mathematical Software</i>, 22(4):469-483, www.qhull.org
[<a
href="http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/">http://www.acm.org</a>;
<a href="http://citeseer.nj.nec.com/83502.html">http://citeseer.nj.nec.com</a>].
</p>

<p><a name="cla-sho89">Clarkson</a>, K.L. and P.W. Shor,
&quot;Applications of random sampling in computational geometry,
II&quot;, <i>Discrete Computational Geometry</i>, 4:387-421, 1989</p>

<p><a name="cla-meh93">Clarkson</a>, K.L., K. Mehlhorn, and R.
Seidel, &quot;Four results on randomized incremental
construction,&quot; <em>Computational Geometry: Theory and
Applications</em>, vol. 3, p. 185-211, 1993.</p>

<p><a name="devi01">Devillers</a>, et. al., 
"Walking in a triangulation," <i>ACM Symposium on
Computational Geometry</i>, June 3-5,2001, Medford MA.

<p><a name="dob-kir90">Dobkin</a>, D.P. and D.G. Kirkpatrick,
&quot;Determining the separation of preprocessed polyhedra--a
unified approach,&quot; in <i>Proc. 17th Inter. Colloq. Automata
Lang. Program.</i>, in <i>Lecture Notes in Computer Science</i>,
Springer-Verlag, 443:400-413, 1990. </p>

<p><a name="edel01">Edelsbrunner</a>, H, <i>Geometry and Topology for Mesh Generation</i>, 
Cambridge University Press, 2001.

<p><a name=gart99>Gartner, B.</a>, "Fast and robust smallest enclosing balls", <i>Algorithms - ESA '99</i>, LNCS 1643.

<p><a name="fort93">Fortune, S.</a>, &quot;Computational
geometry,&quot; in R. Martin, editor, <i>Directions in Geometric
Computation</i>, Information Geometers, 47 Stockers Avenue,
Winchester, SO22 5LB, UK, ISBN 1-874728-02-X, 1993.</p>

<p><a name="mile93">Milenkovic, V.</a>, &quot;Robust polygon
modeling,&quot; Computer-Aided Design, vol. 25, p. 546-566,
September 1993. </p>

<p><a name="muck96">Mucke</a>, E.P., I. Saias, B. Zhu, <i>Fast
randomized point location without preprocessing in Two- and
Three-dimensional Delaunay Triangulations</i>, ACM Symposium on
Computational Geometry, p. 274-283, 1996 [<a
href="http://www.geom.uiuc.edu/software/cglist/GeomDir/">GeomDir</a>].
</p>

<p><a name="mulm94">Mulmuley</a>, K., <i>Computational Geometry,
An Introduction Through Randomized Algorithms</i>, Prentice-Hall,
NJ, 1994.</p>

<p><a name="orou94">O'Rourke</a>, J., <i>Computational Geometry
in C</i>, Cambridge University Press, 1994.</p>

<p><a name="pre-sha85">Preparata</a>, F. and M. Shamos, <i>Computational
Geometry</i>, Springer-Verlag, New York, 1985.</p>

</blockquote>
<!-- Navigation links -->
<hr>

<p><b>Up:</b> <a
href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b><a
href="http://www.qhull.org/news">News</a> about Qhull<br>
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
<b>To:</b> <a href="#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>Dn:</b> <a href="qh-impre.htm">Imprecision in Qhull</a><br>
<b>Dn:</b> <a href="qh-eg.htm">Description of Qhull examples</a><br>
<b>Dn:</b> <a href="qh-in.htm">Qhull internals</a><br>
<b>Dn:</b> <a href="src/index.htm">Qhull functions, macros, and data
structures</a>
<!-- GC common information -->
<hr>

<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
align="middle" width="40" height="40"></a><i>The Geometry Center
Home Page </i></p>

<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
</a><br>
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
</body>
</html>