/usr/share/doc/libqhull-doc/html/index.htm is in libqhull-doc 2009.1-3ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 | <!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>
<head>
<meta http-equiv="Content-Type"
content="text/html; charset=iso-8859-1">
<meta name="GENERATOR" content="Microsoft FrontPage 2.0">
<title>Qhull manual</title>
<!-- Navigation links
NOTE -- verify all links by 'grep href=' 'grep name=' add # 'sort /+7'
index.htm
-->
</head>
<body>
<p><a name="TOP"><b>Up:</b></a> <a
href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b><a
href="http://www.qhull.org/news">News</a> about Qhull<br>
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
<b>To:</b> <a href="#TOC">Qhull manual: Table of Contents</a>
(please wait while loading) <br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
• <a href="qh-quick.htm#options">Options</a>
• <a href="qh-opto.htm#output">Output</a>
• <a href="qh-optf.htm#format">Formats</a>
• <a href="qh-optg.htm#geomview">Geomview</a>
• <a href="qh-optp.htm#print">Print</a>
• <a href="qh-optq.htm#qhull">Qhull</a>
• <a href="qh-optc.htm#prec">Precision</a>
• <a href="qh-optt.htm#trace">Trace</a><br>
<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/fixed.html"><img
src="qh--rand.gif" alt="[random-fixed]" align="middle"
width="100" height="100"></a> Qhull manual </h1>
<p>Qhull is a general dimension code for computing convex hulls,
Delaunay triangulations, halfspace intersections about a point, Voronoi
diagrams, furthest-site Delaunay triangulations, and
furthest-site Voronoi diagrams. These structures have
applications in science, engineering, statistics, and
mathematics. See <a
href="http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html">Fukuda's
introduction</a> to convex hulls, Delaunay triangulations,
Voronoi diagrams, and linear programming. For a detailed
introduction, see O'Rourke [<a href="#orou94">'94</a>], <i>Computational
Geometry in C</i>.
</p>
<p>There are six programs. Except for rbox, they use
the same code.
<blockquote>
<ul>
<li><a href="qconvex.htm">qconvex</a> -- convex hulls
<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
furthest-site Delaunay triangulations
<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
<li><a href="qhull.htm">qhull</a> -- all structures with additional options
<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and
furthest-site Voronoi diagrams
<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
</ul>
</blockquote>
<p>Qhull implements the Quickhull algorithm for computing the
convex hull. Qhull includes options
for hull volume, facet area, multiple output formats, and
graphical output. It can approximate a convex hull. </p>
<p>Qhull handles roundoff errors from floating point
arithmetic. It generates a convex hull with "thick" facets.
A facet's outer plane is clearly above all of the points;
its inner plane is clearly below the facet's vertices. Any
exact convex hull must lie between the inner and outer plane.
<p>Qhull uses merged facets, triangulated output, or joggled
input. Triangulated output triangulates non-simplicial, merged
facets. Joggled input also
guarantees simplicial output, but it
is less accurate than merged facets. For merged facets, Qhull
reports the maximum outer and inner plane.
<p><i>Brad Barber, Cambridge MA, 2003/12/30</i></p>
<p><b>Copyright © 1995-2003, 2009 The Geometry Center, Minneapolis MN</b></p>
<hr>
<h2><a href="#TOP">»</a><a name="TOC">Qhull manual: Table of
Contents </a></h2>
<ul>
<li><a href="#when">When</a> to use Qhull
<ul>
<li><a href="http://www.qhull.org/news">News</a> for Qhull
with new features and reported bugs.
<li><a href="http://www.qhull.org">Home</a> for Qhull with additional URLs
(<a href=index.htm>local copy</a>)
<li><a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> for Qhull (<a href="qh-faq.htm">local copy</a>)
<li><a href="http://www.qhull.org/download">Download</a> Qhull (<a href=qh-get.htm>local copy</a>)
<li><a href="qh-quick.htm#programs">Quick</a> reference for Qhull and its <a href="qh-quick.htm#options">options</a>
<p>
<li><a href="COPYING.txt">COPYING.txt</a> - copyright notice<br>
<li><a href="REGISTER.txt">REGISTER.txt</a> - registration<br>
<li><a href="README.txt">README.txt</a> - installation
instructions<br>
<li><a href="src/Changes.txt">Changes.txt</a> - change history <br>
<li><a href="qhull.txt">qhull.txt</a> - Unix manual page
</ul>
<p>
<li><a href="#description">Description</a> of Qhull
<ul>
<li><a href="#definition">de</a>finition • <a
href="#input">in</a>put • <a href="#output">ou</a>tput
• <a href="#algorithm">al</a>gorithm • <a
href="#structure">da</a>ta structure </li>
<li><a href="qh-impre.htm">Imprecision</a> in Qhull</li>
<LI><a href="qh-impre.htm#joggle">Merged facets</a> or joggled input
<li><a href="#geomview">Geomview</a>, Qhull's graphical
viewer</li>
<li><a href="qh-eg.htm">Examples</a> of Qhull using Geomview</li>
</ul>
<p>
<li><a href=qh-quick.htm#programs>Qhull programs</a>
<ul>
<li><a href="qconvex.htm">qconvex</a> -- convex hulls
<li><a href="qdelaun.htm">qdelaunay</a> -- Delaunay triangulations and
furthest-site Delaunay triangulations
<li><a href="qhalf.htm">qhalf</a> -- halfspace intersections about a point
<li><a href="qhull.htm">qhull</a> -- all structures with additional options
<li><a href="qvoronoi.htm">qvoronoi</a> -- Voronoi diagrams and
furthest-site Voronoi diagrams
<li><a href="rbox.htm">rbox</a> -- generate point distributions for qhull
</ul>
<p>
<li>Related URLs
<ul>
<li><a href="news:comp.graphics.algorithms">Newsgroup</a>:
comp.graphics.algorithms
<li><a
href="http://exaflop.org/docs/cgafaq/">FAQ</a> for computer graphics algorithms and
<a href="http://exaflop.org/docs/cgafaq/cga6.html">geometric</a> structures.
<li>Amenta's <a href="http://www.geom.uiuc.edu/software/cglist">Directory
of Computational Geometry Software </a></li>
<li>Erickson's <a
href="http://compgeom.cs.uiuc.edu/~jeffe/compgeom/code.html">Computational
Geometry Software</a> </li>
<li>Fukuda's <a
href="http://www.ifor.math.ethz.ch/staff/fukuda/polyfaq/polyfaq.html">
introduction</a> to convex hulls, Delaunay triangulations,
Voronoi diagrams, and linear programming.
<li>Stony Brook's <a
href="http://www.cs.sunysb.edu/~algorith/major_section/1.6.shtml">Algorithm Repository</a> on computational geometry.
</li>
</ul>
<p>
<li><a href="qh-quick.htm#options">Qhull options</a><ul>
<li><a href="qh-opto.htm#output">Output</a> formats</li>
<li><a href="qh-optf.htm#format">Additional</a> I/O
formats</li>
<li><a href="qh-optg.htm#geomview">Geomview</a>
output options</li>
<li><a href="qh-optp.htm#print">Print</a> options</li>
<li><a href="qh-optq.htm#qhull">Qhull</a> control
options</li>
<li><a href="qh-optc.htm#prec">Precision</a> options</li>
<li><a href="qh-optt.htm#trace">Trace</a> options</li>
</ul>
</li>
<p>
<li><a href="qh-in.htm">Qhull internals</a><ul>
<li><a href="qh-in.htm#performance">Performance</a>
of Qhull</li>
<li><a href="qh-in.htm#library">Calling</a> Qhull
from your program</li>
<li><a href="qh-in.htm#enhance">Enhancements</a> to
Qhull</li>
<li><a href="src/index.htm">Qhull functions, macros, and
data structures</a> </li>
</ul>
</li>
<p>
<li><a href="#bugs">What to do</a> if something goes wrong</li>
<li><a href="#email">Email</a></li>
<li><a href="#authors">Authors</a></li>
<li><a href="#ref">References</a></li>
<li><a href="#acknowledge">Acknowledgments</a></li>
</ul>
<h2><a href="#TOC">»</a><a name="when">When to use Qhull</a></h2>
<blockquote>
<p>Qhull constructs convex hulls, Delaunay triangulations,
halfspace intersections about a point, Voronoi diagrams, furthest-site Delaunay
triangulations, and furthest-site Voronoi diagrams.</p>
<p>For convex hulls and halfspace intersections, Qhull may be used
for 2-d upto 8-d. For Voronoi diagrams and Delaunay triangulations, Qhull may be
used for 2-d upto 7-d. In higher dimensions, the size of the output
grows rapidly and Qhull does not work well with virtual memory.
If <i>n</i> is the size of
the input and <i>d</i> is the dimension (d>=3), the size of the output
and execution time
grows by <i>n^(floor(d/2)</i>
[see <a href=qh-in.htm#performance>Performance</a>]. For example, do
not try to build a 16-d convex hull of 1000 points. It will
have on the order of 1,000,000,000,000,000,000,000,000 facets.
<p>On a 600 MHz Pentium 3, Qhull computes the 2-d convex hull of
300,000 cocircular points in 11 seconds. It computes the
2-d Delaunay triangulation and 3-d convex hull of 120,000 points
in 12 seconds. It computes the
3-d Delaunay triangulation and 4-d convex hull of 40,000 points
in 18 seconds. It computes the
4-d Delaunay triangulation and 5-d convex hull of 6,000 points
in 12 seconds. It computes the
5-d Delaunay triangulation and 6-d convex hull of 1,000 points
in 12 seconds. It computes the
6-d Delaunay triangulation and 7-d convex hull of 300 points
in 15 seconds. It computes the
7-d Delaunay triangulation and 8-d convex hull of 120 points
in 15 seconds. It computes the
8-d Delaunay triangulation and 9-d convex hull of 70 points
in 15 seconds. It computes the
9-d Delaunay triangulation and 10-d convex hull of 50 points
in 17 seconds. The 10-d convex hull of 50 points has about 90,000 facets.
<!-- duplicated in index.htm and html/index.htm -->
<p>Qhull does <i>not</i> support constrained Delaunay
triangulations, triangulation of non-convex surfaces, mesh
generation of non-convex objects, or medium-sized inputs in 9-D
and higher. </p>
<p>This is a big package with many options. It is one of the
fastest available. It is the only 3-d code that handles precision
problems due to floating point arithmetic. For example, it
implements the identity function for extreme points (see <a
href="qh-impre.htm">Imprecision in Qhull</a>). </p>
<p>If you need a short code for convex hull, Delaunay
triangulation, or Voronoi volumes consider Clarkson's <a
href="http://netlib.bell-labs.com/netlib/voronoi/hull.html">hull
program</a>. If you need 2-d Delaunay triangulations consider
Shewchuk's <a href="http://www.cs.cmu.edu/~quake/triangle.html">triangle
program</a>. It is much faster than Qhull and it allows
constraints. Both programs use exact arithmetic. They are in <a
href="ftp://netlib.bell-labs.com/netlib/voronoi">ftp://netlib.bell-labs.com/netlib/voronoi</a>.
Qhull <a
href="http://www.qhull.org/download">version
1.0</a> may also meet your needs. It detects precision problems,
but does not handle them.</p>
<p><a href=http://www.algorithmic-solutions.com/enleda.htm>Leda</a> is a
library for writing computational
geometry programs and other combinatorial algorithms. It
includes routines for computing 3-d convex
hulls, 2-d Delaunay triangulations, and 3-d Delaunay triangulations.
It provides rational arithmetic and graphical output. It runs on most
platforms.
<p>If your problem is in high dimensions with a few,
non-simplicial facets, try Fukuda's <a
href="http://www.cs.mcgill.ca/~fukuda/soft/cdd_home/cdd.html">cdd</a>.
It is much faster than Qhull for these distributions. </p>
<p>Custom software for 2-d and 3-d convex hulls may be faster
than Qhull. Custom software should use less memory. Qhull uses
general-dimension data structures and code. The data structures
support non-simplicial facets.</p>
<p>Qhull is not suitable for mesh generation or triangulation of
arbitrary surfaces. You may use Qhull if the surface is convex or
completely visible from an interior point (e.g., a star-shaped
polyhedron). First, project each site to a sphere that is
centered at the interior point. Then, compute the convex hull of
the projected sites. The facets of the convex hull correspond to
a triangulation of the surface. For mesh generation of arbitrary
surfaces, see <a
href="http://www-users.informatik.rwth-aachen.de/~roberts/meshgeneration.html">Schneiders'
Finite Element Mesh Generation</a>.</p>
<p>Qhull is not suitable for constrained Delaunay triangulations.
With a lot of work, you can write a program that uses Qhull to
add constraints by adding additional points to the triangulation.</p>
<p>Qhull is not suitable for the subdivision of arbitrary
objects. Use <tt>qdelaunay</tt> to subdivide a convex object.</p>
</blockquote>
<h2><a href="#TOC">»</a><a name="description">Description of
Qhull </a></h2>
<blockquote>
<h3><a href="#TOC">»</a><a name="definition">definition</a></h3>
<blockquote>
<p>The <i>convex hull</i> of a point set <i>P</i> is the smallest
convex set that contains <i>P</i>. If <i>P</i> is finite, the
convex hull defines a matrix <i>A</i> and a vector <i>b</i> such
that for all <i>x</i> in <i>P</i>, <i>Ax+b <= [0,...]</i>. </p>
<p>Qhull computes the convex hull in 2-d, 3-d, 4-d, and higher
dimensions. Qhull represents a convex hull as a list of facets.
Each facet has a set of vertices, a set of neighboring facets,
and a halfspace. A halfspace is defined by a unit normal and an
offset (i.e., a row of <i>A</i> and an element of <i>b</i>). </p>
<p>Qhull accounts for round-off error. It returns
"thick" facets defined by two parallel hyperplanes. The
outer planes contain all input points. The inner planes exclude
all output vertices. See <a href="qh-impre.htm#imprecise">Imprecise
convex hulls</a>.</p>
<p>Qhull may be used for the Delaunay triangulation or the
Voronoi diagram of a set of points. It may be used for the
intersection of halfspaces. </p>
</blockquote>
<h3><a href="#TOC">»</a><a name="input">input format</a></h3>
<blockquote>
<p>The input data on <tt>stdin</tt> consists of:</p>
<ul>
<li>first line contains the dimension</li>
<li>second line contains the number of input points</li>
<li>remaining lines contain point coordinates</li>
</ul>
<p>For example: </p>
<pre>
3 #sample 3-d input
5
0.4 -0.5 1.0
1000 -1e-5 -100
0.3 0.2 0.1
1.0 1.0 1.0
0 0 0
</pre>
<p>Input may be entered by hand. End the input with a control-D
(^D) character. </p>
<p>To input data from a file, use I/O redirection or '<a
href="qh-optt.htm#TI">TI file</a>'. The filename may not
include spaces or quotes.</p>
<p>A comment starts with a non-numeric character and continues to
the end of line. The first comment is reported in summaries and
statistics. With multiple <tt>qhull</tt> commands, use option '<a
href="qh-optf.htm#FQ">FQ</a>' to place a comment in the output.</p>
<p>The dimension and number of points can be reversed. Comments
and line breaks are ignored. Error reporting is better if there
is one point per line.</p>
</blockquote>
<h3><a href="#TOC">»</a><a name="option">option format</a></h3>
<blockquote>
<p>Use options to specify the output formats and control
Qhull. The <tt>qhull</tt> program takes all options. The
other programs use a subset of the options. They disallow
experimental and inappropriate options.
<blockquote>
<ul>
<li>
qconvex == qhull
<li>
qdelaunay == qhull d Qbb
<li>
qhalf == qhull H
<li>
qvoronoi == qhull v Qbb
</ul>
</blockquote>
<p>Single letters are used for output formats and precision
constants. The other options are grouped into menus for formats
('<a href="qh-optf.htm#format">F</a>'), Geomview ('<a
href="qh-optg.htm#geomview">G </a>'), printing ('<a
href="qh-optp.htm#print">P</a>'), Qhull control ('<a
href="qh-optq.htm#qhull">Q </a>'), and tracing ('<a
href="qh-optt.htm#trace">T</a>'). The menu options may be listed
together (e.g., 'GrD3' for 'Gr' and 'GD3'). Options may be in any
order. Capitalized options take a numeric argument (except for '<a
href="qh-optp.htm#PG">PG</a>' and '<a href="qh-optf.htm#format">F</a>'
options). Use option '<a href="qh-optf.htm#FO">FO</a>' to print
the selected options.</p>
<p>Qhull uses zero-relative indexing. If there are <i>n</i>
points, the index of the first point is <i>0</i> and the index of
the last point is <i>n-1</i>.</p>
<p>The default options are:</p>
<ul>
<li>summary output ('<a href="qh-opto.htm#s">s</a>') </li>
<li>merged facets ('<a href="qh-optc.htm#C0">C-0</a>' in 2-d,
3-d, 4-d; '<a href="qh-optq.htm#Qx">Qx</a>' in 5-d and
up)</li>
</ul>
<p>Except for bounding box
('<a href="qh-optq.htm#Qbk">Qbk:n</a>', etc.), drop facets
('<a href="qh-optp.htm#Pdk">Pdk:n</a>', etc.), and
Qhull command ('<a href="qh-optf.htm#FQ">FQ</a>'), only the last
occurence of an option counts.
Bounding box and drop facets may be repeated for each dimension.
Option 'FQ' may be repeated any number of times.
<p>The Unix <tt>tcsh</tt> and <tt>ksh </tt>shells make it easy to
try out different options. In Windows 95, use a DOS window with <tt>doskey</tt>
and a window scroller (e.g., <tt>peruse</tt>). </p>
</blockquote>
<h3><a href="#TOC">»</a><a name="output">output format</a></h3>
<blockquote>
<p>To write the results to a file, use I/O redirection or '<a
href="qh-optt.htm#TO">TO file</a>'. Windows 95 users should use
'TO file' or the console. If a filename is surrounded by single quotes,
it may include spaces.
</p>
<p>The default output option is a short summary ('<a
href="qh-opto.htm#s">s</a>') to <tt>stdout</tt>. There are many
others (see <a href="qh-opto.htm">output</a> and <a
href="qh-optf.htm">formats</a>). You can list vertex incidences,
vertices and facets, vertex coordinates, or facet normals. You
can view Qhull objects with Geomview, Mathematica, or Maple. You can
print the internal data structures. You can call Qhull from your
application (see <a href="qh-in.htm#library">Qhull library</a>).</p>
<p>For example, 'qhull <a href="qh-opto.htm#o">o</a>' lists the
vertices and facets of the convex hull. </p>
<p>Error messages and additional summaries ('<a
href="qh-opto.htm#s">s</a>') go to <tt>stderr</tt>. Unless
redirected, <tt>stderr</tt> is the console.</p>
</blockquote>
<h3><a href="#TOC">»</a><a name="algorithm">algorithm</a></h3>
<blockquote>
<p>Qhull implements the Quickhull algorithm for convex hull
[Barber et al. <a href="#bar-dob96">'96</a>]. This algorithm
combines the 2-d Quickhull algorithm with the <em>n</em>-d
beneath-beyond algorithm [c.f., Preparata & Shamos <a
href="#pre-sha85">'85</a>]. It is similar to the randomized
algorithms of Clarkson and others [Clarkson & Shor <a
href="#cla-sho89">'89</a>; Clarkson et al. <a href="#cla-meh93">'93</a>;
Mulmuley <a href="#mulm94">'94</a>]. For a demonstration, see <a
href="qh-eg.htm#how">How Qhull adds a point</a>. The main
advantages of Quickhull are output sensitive performance (in
terms of the number of extreme points), reduced space
requirements, and floating-point error handling. </p>
</blockquote>
<h3><a href="#TOC">»</a><a name="structure">data structures</a></h3>
<blockquote>
<p>Qhull produces the following data structures for dimension <i>d</i>:
</p>
<ul>
<li>A <em>coordinate</em> is a real number in floating point
format. </li>
<li>A <em>point</em> is an array of <i>d</i> coordinates.
With option '<a href="qh-optq.htm#QJn">QJ</a>', the
coordinates are joggled by a small amount. </li>
<li>A <em>vertex</em> is an input point. </li>
<li>A <em>hyperplane</em> is <i>d</i> normal coefficients and
an offset. The length of the normal is one. The
hyperplane defines a halfspace. If <i>V</i> is a normal, <i>b</i>
is an offset, and <i>x</i> is a point inside the convex
hull, then <i>Vx+b <0</i>.</li>
<li>An <em>outer plane</em> is a positive
offset from a hyperplane. When Qhull is done, all points
will be below all outer planes.</li>
<li>An <em>inner plane</em> is a negative
offset from a hyperplane. When Qhull is done, all
vertices will be above the corresponding inner planes.</li>
<li>An <em>orientation</em> is either 'top' or 'bottom'. It is the
topological equivalent of a hyperplane's geometric
orientation. </li>
<li>A <em>simplicial facet</em> is a set of
<i>d</i> neighboring facets, a set of <i>d</i> vertices, a
hyperplane equation, an inner plane, an outer plane, and
an orientation. For example in 3-d, a simplicial facet is
a triangle. </li>
<li>A <em>centrum</em> is a point on a facet's hyperplane. A
centrum is the average of a facet's vertices. Neighboring
facets are <em>convex</em> if each centrum is below the
neighbor facet's hyperplane. </li>
<li>A <em>ridge</em> is a set of <i>d-1</i> vertices, two
neighboring facets, and an orientation. For example in
3-d, a ridge is a line segment. </li>
<li>A <em>non-simplicial facet</em> is a set of ridges, a
hyperplane equation, a centrum, an outer plane, and an
inner plane. The ridges determine a set of neighboring
facets, a set of vertices, and an orientation. Qhull
produces a non-simplicial facet when it merges two facets
together. For example, a cube has six non-simplicial
facets. </li>
</ul>
<p>For examples, use option '<a href="qh-opto.htm#f">f</a>'. See <a
href="src/qh-poly.htm">polyhedron operations</a> for further
design documentation. </p>
</blockquote>
<h3><a href="#TOC">»</a>Imprecision in Qhull</h3>
<blockquote>
<p>See <a href="qh-impre.htm">Imprecision in Qhull</a>.</p>
</blockquote>
<h3><a href="#TOC">»</a><a name="geomview">Geomview, Qhull's
graphical viewer</a></h3>
<blockquote>
<p><a href="http://www.geomview.org">Geomview</a>
is an interactive geometry viewing program for Linux, SGI workstations,
Sun workstations, AIX workstations, NeXT workstations, and X-windows.
It is an
<a href=http://sourceforge.net/projects/geomview>open source project</a>
under SourceForge.
Besides a 3-d viewer, it includes a 4-d viewer, an n-d viewer and
many features for viewing mathematical objects. You may need to
ftp <tt>ndview</tt> from the <tt>newpieces</tt> directory. </p>
</blockquote>
<h3><a href="#TOC">»</a>Description of Qhull examples</h3>
<blockquote>
<p>See <a href="qh-eg.htm">Examples</a>. Some of the examples
have <a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/welcome.html">pictures
</a>.</p>
</blockquote>
</blockquote>
<h2><a href="#TOC">»</a>Options for using Qhull </h2>
<blockquote>
<p>See <a href="qh-quick.htm#options">Options</a>.</p>
</blockquote>
<h2><a href="#TOC">»</a>Qhull internals </h2>
<blockquote>
<p>See <a href="qh-in.htm">Internals</a>.</p>
</blockquote>
<h2><a href="#TOC">»</a><a name="bugs">What to do if something
goes wrong</a></h2>
<blockquote>
<p>Please report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
</a>. Please report if Qhull crashes. Please report if Qhull
generates an "internal error". Please report if Qhull
produces a poor approximate hull in 2-d, 3-d or 4-d. Please
report documentation errors. Please report missing or incorrect
links.</p>
<p>If you do not understand something, try a small example. The <a
href="rbox.htm">rbox</a> program is an easy way to generate
test cases. The <a href="#geomview">Geomview</a> program helps to
visualize the output from Qhull.</p>
<p>If Qhull does not compile, it is due to an incompatibility
between your system and ours. The first thing to check is that
your compiler is ANSI standard. Qhull produces a compiler error
if __STDC__ is not defined. You may need to set a flag (e.g.,
'-A' or '-ansi').</p>
<p>If Qhull compiles but crashes on the test case (rbox D4),
there's still incompatibility between your system and ours.
Sometimes it is due to memory management. This can be turned off
with qh_NOmem in mem.h. Please let us know if you figure out how
to fix these problems. </p>
<p>If you doubt the output from Qhull, add option '<a
href="qh-optt.htm#Tv">Tv</a>'. It checks that every point is
inside the outer planes of the convex hull. It checks that every
facet is convex with its neighbors. It checks the topology of the
convex hull.</p>
<p>Qhull should work on all inputs. It may report precision
errors if you turn off merged facets with option '<a
href="qh-optq.htm#Q0">Q0</a>'. This can get as bad as facets with
flipped orientation or two facets with the same vertices. You'll
get a long help message if you run into such a case. They are
easy to generate with <tt>rbox</tt>.</p>
<p>If you do find a problem, try to simplify it before reporting
the error. Try different size inputs to locate the smallest one
that causes an error. You're welcome to hunt through the code
using the execution trace ('<a href="qh-optt.htm#Tn">T4</a>') as
a guide. This is especially true if you're incorporating Qhull
into your own program. </p>
<p>When you report an error, please attach a data set to the end
of your message. Include the options that you used with Qhull,
the results of option '<a href="qh-optf.htm#FO">FO</a>', and any
messages generated by Qhull. This allows me to see the error for
myself. Qhull is maintained part-time. </p>
</blockquote>
<h2><a href="#TOC">»</a><a name="email">Email</a></h2>
<blockquote>
<p>Please send correspondence to Brad Barber at <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
and report bugs to <a href=mailto:qhull_bug@qhull.org>qhull_bug@qhull.org</a>
</a>. Let me know how you use Qhull. If you mention it in a
paper, please send a reference and abstract.</p>
<p>If you would like to get Qhull announcements (e.g., a new
version) and news (any bugs that get fixed, etc.), let us know
and we will add you to our mailing list. If you would like to
communicate with other Qhull users, I will add you to the
qhull_users alias. For Internet news about geometric algorithms
and convex hulls, look at comp.graphics.algorithms and
sci.math.num-analysis. For Qhull news look at <a
href="http://www.qhull.org/news">qhull-news.html</a>.</p>
</blockquote>
<h2><a href="#TOC">»</a><a name="authors">Authors</a></h2>
<blockquote>
<pre> C. Bradford Barber Hannu Huhdanpaa
bradb@qhull.org hannu@qhull.org
c/o The Geometry Center
University of Minnesota
400 Lind Hall
207 Church Street S.E.
Minneapolis, MN 55455
</pre>
</blockquote>
<h2><a href="#TOC">»</a><a name="acknowledge">Acknowledgments</a></h2>
<blockquote>
<p>A special thanks to David Dobkin for his guidance. A special
thanks to Albert Marden, Victor Milenkovic, the Geometry Center,
and Harvard University for supporting this work.</p>
<p>A special thanks to Mark Phillips, Robert Miner, and Stuart Levy for running the Geometry
Center web site long after the Geometry Center closed.
Stuart moved the web site to the University of Illinois at Champaign-Urbana.
Mark and Robert are founders of <a href=http://www.geomtech.com>Geometry Technologies</a>.
Mark, Stuart, and Tamara Munzner are the original authors of <a href=http://www.geomview.org>Geomview</a>.
<p>A special thanks to <a href="http://www.endocardial.com/">Endocardial
Solutions, Inc.</a> of St. Paul, Minnesota for their support of the
internal documentation (<a href=../src/index.htm>src/index.htm</a>). They use Qhull to build 3-d models of
heart chambers.</p>
<p>Qhull 1.0 and 2.0 were developed under National Science Foundation
grants NSF/DMS-8920161 and NSF-CCR-91-15793 750-7504. If you find
it useful, please let us know.</p>
<p>The Geometry Center was supported by grant DMS-8920161 from the
National Science Foundation, by grant DOE/DE-FG02-92ER25137 from
the Department of Energy, by the University of Minnesota, and by
Minnesota Technology, Inc.</p>
</blockquote>
<h2><a href="#TOC">»</a><a name="ref">References</a></h2>
<blockquote>
<p><a name="aure91">Aurenhammer</a>, F., "Voronoi diagrams
-- A survey of a fundamental geometric data structure," <i>ACM
Computing Surveys</i>, 1991, 23:345-405. </p>
<p><a name="bar-dob96">Barber</a>, C. B., D.P. Dobkin, and H.T.
Huhdanpaa, "The Quickhull Algorithm for Convex Hulls," <i>ACM
Transactions on Mathematical Software</i>, 22(4):469-483, www.qhull.org
[<a
href="http://www.acm.org/pubs/citations/journals/toms/1996-22-4/p469-barber/">http://www.acm.org</a>;
<a href="http://citeseer.nj.nec.com/83502.html">http://citeseer.nj.nec.com</a>].
</p>
<p><a name="cla-sho89">Clarkson</a>, K.L. and P.W. Shor,
"Applications of random sampling in computational geometry,
II", <i>Discrete Computational Geometry</i>, 4:387-421, 1989</p>
<p><a name="cla-meh93">Clarkson</a>, K.L., K. Mehlhorn, and R.
Seidel, "Four results on randomized incremental
construction," <em>Computational Geometry: Theory and
Applications</em>, vol. 3, p. 185-211, 1993.</p>
<p><a name="devi01">Devillers</a>, et. al.,
"Walking in a triangulation," <i>ACM Symposium on
Computational Geometry</i>, June 3-5,2001, Medford MA.
<p><a name="dob-kir90">Dobkin</a>, D.P. and D.G. Kirkpatrick,
"Determining the separation of preprocessed polyhedra--a
unified approach," in <i>Proc. 17th Inter. Colloq. Automata
Lang. Program.</i>, in <i>Lecture Notes in Computer Science</i>,
Springer-Verlag, 443:400-413, 1990. </p>
<p><a name="edel01">Edelsbrunner</a>, H, <i>Geometry and Topology for Mesh Generation</i>,
Cambridge University Press, 2001.
<p><a name=gart99>Gartner, B.</a>, "Fast and robust smallest enclosing balls", <i>Algorithms - ESA '99</i>, LNCS 1643.
<p><a name="fort93">Fortune, S.</a>, "Computational
geometry," in R. Martin, editor, <i>Directions in Geometric
Computation</i>, Information Geometers, 47 Stockers Avenue,
Winchester, SO22 5LB, UK, ISBN 1-874728-02-X, 1993.</p>
<p><a name="mile93">Milenkovic, V.</a>, "Robust polygon
modeling," Computer-Aided Design, vol. 25, p. 546-566,
September 1993. </p>
<p><a name="muck96">Mucke</a>, E.P., I. Saias, B. Zhu, <i>Fast
randomized point location without preprocessing in Two- and
Three-dimensional Delaunay Triangulations</i>, ACM Symposium on
Computational Geometry, p. 274-283, 1996 [<a
href="http://www.geom.uiuc.edu/software/cglist/GeomDir/">GeomDir</a>].
</p>
<p><a name="mulm94">Mulmuley</a>, K., <i>Computational Geometry,
An Introduction Through Randomized Algorithms</i>, Prentice-Hall,
NJ, 1994.</p>
<p><a name="orou94">O'Rourke</a>, J., <i>Computational Geometry
in C</i>, Cambridge University Press, 1994.</p>
<p><a name="pre-sha85">Preparata</a>, F. and M. Shamos, <i>Computational
Geometry</i>, Springer-Verlag, New York, 1985.</p>
</blockquote>
<!-- Navigation links -->
<hr>
<p><b>Up:</b> <a
href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b><a
href="http://www.qhull.org/news">News</a> about Qhull<br>
<b>Up:</b> <a href="http://www.qhull.org/html/qh-faq.htm">FAQ</a> about Qhull<br>
<b>To:</b> <a href="#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
• <a href="qh-quick.htm#options">Options</a>
• <a href="qh-opto.htm#output">Output</a>
• <a href="qh-optf.htm#format">Formats</a>
• <a href="qh-optg.htm#geomview">Geomview</a>
• <a href="qh-optp.htm#print">Print</a>
• <a href="qh-optq.htm#qhull">Qhull</a>
• <a href="qh-optc.htm#prec">Precision</a>
• <a href="qh-optt.htm#trace">Trace</a><br>
<b>Dn:</b> <a href="qh-impre.htm">Imprecision in Qhull</a><br>
<b>Dn:</b> <a href="qh-eg.htm">Description of Qhull examples</a><br>
<b>Dn:</b> <a href="qh-in.htm">Qhull internals</a><br>
<b>Dn:</b> <a href="src/index.htm">Qhull functions, macros, and data
structures</a>
<!-- GC common information -->
<hr>
<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
align="middle" width="40" height="40"></a><i>The Geometry Center
Home Page </i></p>
<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
</a><br>
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: see top <!-- hhmts end --> </p>
</body>
</html>
|