This file is indexed.

/usr/share/doc/libqhull-doc/html/rbox.htm is in libqhull-doc 2009.1-3ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML//EN">
<html>

<head>
<title>rbox -- generate point distributions</title>
</head>

<body>
<!-- Navigation links -->
<p><b><a name="TOP">Up:</a></b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#examples">ex</a>amples &#149; <a href="#notes">no</a>tes 
&#149; <a href="#options">op</a>tions
<hr>
<!-- Main text of document -->
<h1><a
href="http://www.geom.uiuc.edu/graphics/pix/Special_Topics/Computational_Geometry/cone.html"><img
src="qh--cone.gif" alt="[CONE]" align="middle" width="100"
height="100"></a>rbox -- generate point distributions</h1>

<blockquote>
       rbox  generates	random or regular points according to the
       options given, and  outputs  the  points  to  stdout.  The
       points  are  generated in a cube, unless 's', 'x', or 'y'
	   are given. 

</blockquote>
<h3><a href="#TOP">»</a><a name="synopsis">rbox synopsis</a></h3>
<pre>
rbox- generate various point distributions.  Default is random in cube.

args (any order, space separated):            
  3000    number of random points in cube, lens, spiral, sphere or grid
  D3      dimension 3-d
  c       add a unit cube to the output ('c G2.0' sets size)
  d       add a unit diamond to the output ('d G2.0' sets size)
  l       generate a regular 3-d spiral
  r       generate a regular polygon, ('r s Z1 G0.1' makes a cone)
  s       generate cospherical points
  x       generate random points in simplex, may use 'r' or 'Wn'
  y       same as 'x', plus simplex
  Pn,m,r  add point [n,m,r] first, pads with 0

  Ln      lens distribution of radius n.  Also 's', 'r', 'G', 'W'.
  Mn,m,r  lattice (Mesh) rotated by [n,-m,0], [m,n,0], [0,0,r], ...
          '27 M1,0,1' is {0,1,2} x {0,1,2} x {0,1,2}.  Try 'M3,4 z'.
  W0.1    random distribution within 0.1 of the cube's or sphere's surface
  Z0.5 s  random points in a 0.5 disk projected to a sphere
  Z0.5 s G0.6 same as Z0.5 within a 0.6 gap

  Bn      bounding box coordinates, default 0.5
  h       output as homogeneous coordinates for cdd
  n       remove command line from the first line of output
  On      offset coordinates by n
  t       use time as the random number seed (default is command line)
  tn      use n as the random number seed
  z       print integer coordinates, default 'Bn' is 1e+06
</pre>

<h3><a href="#TOP">»</a><a name="outputs">rbox outputs</a></h3>
<blockquote>

The format of the output is the following: first line contains
       the dimension and a comment, second line contains the 
	   number of points, and the following lines contain the points,
       one  point per line. Points are represented by their coordinate values.

<p>For example, <tt>rbox c 10 D2</tt> generates
<blockquote>
<pre>
2 RBOX c 10 D2
14
-0.4999921736307369 -0.3684622117955817
0.2556053225468894 -0.0413498678629751
0.0327672376602583 -0.2810408135699488
-0.452955383763607 0.17886471718444
0.1792964061529342 0.4346928963760779
-0.1164979223315585 0.01941637230982666
0.3309653464993139 -0.4654278894564396
-0.4465383649305798 0.02970019358182344
0.1711493843897706 -0.4923018137852678
-0.1165843490665633 -0.433157762450313
  -0.5   -0.5
  -0.5    0.5
   0.5   -0.5
   0.5    0.5
</pre>

</blockquote>

</blockquote>
<h3><a href="#TOP">»</a><a name="examples">rbox examples</a></h3>

<pre>
       rbox 10
	      10 random points in the unit cube centered  at  the
	      origin.

       rbox 10 s D2
	      10 random points on a 2-d circle.

       rbox 100 W0
	      100 random points on the surface of a cube.

       rbox 1000 s D4
	      1000 random points on a 4-d sphere.

       rbox c D5 O0.5
	      a 5-d hypercube with one corner at the origin.

       rbox d D10
	      a 10-d diamond.

       rbox x 1000 r W0
	      100 random points on the surface of a fixed simplex

       rbox y D12
	      a 12-d simplex.

       rbox l 10
	      10 random points along a spiral

       rbox l 10 r
	      10 regular points  along	a  spiral  plus  two  end
	      points

       rbox 1000 L10000 D4 s
	      1000 random points on the surface of a narrow lens.

	   rbox 1000 L100000 s G1e-6
		  1000 random points near the edge of a narrow lens

       rbox c G2 d G3
	      a cube with coordinates +2/-2 and  a  diamond  with
	      coordinates +3/-3.

       rbox 64 M3,4 z
	      a  rotated,  {0,1,2,3} x {0,1,2,3} x {0,1,2,3} lat-
	      tice (Mesh) of integer points.

       rbox P0 P0 P0 P0 P0
	      5 copies of the origin in 3-d.  Try 'rbox P0 P0  P0
	      P0 P0 | qhull QJ'.

       r 100 s Z1 G0.1
	      two  cospherical	100-gons plus another cospherical
	      point.

       100 s Z1
	      a cone of points.

       100 s Z1e-7
	      a narrow cone of points with many precision errors.
</pre>

<h3><a href="#TOP">»</a><a name="notes">rbox notes</a></h3>
<blockquote>
Some combinations of arguments generate odd results.

</blockquote>
<h3><a href="#TOP">»</a><a name="options">rbox options</a></h3>

<pre>
       n      number of points

       Dn     dimension n-d (default 3-d)

       Bn     bounding box coordinates (default 0.5)

       l      spiral distribution, available only in 3-d

       Ln     lens  distribution  of  radius n.  May be used with
	      's', 'r', 'G', and 'W'.

       Mn,m,r lattice  (Mesh)  rotated	by  {[n,-m,0],	 [m,n,0],
	      [0,0,r],	...}.	Use  'Mm,n'  for a rigid rotation
	      with r = sqrt(n^2+m^2).  'M1,0'  is  an  orthogonal
	      lattice.	 For  example,	'27  M1,0'  is	{0,1,2} x
	      {0,1,2} x {0,1,2}.

       s      cospherical points randomly generated in a cube and
	      projected to the unit sphere

       x      simplicial  distribution.   It  is fixed for option
	      'r'.  May be used with 'W'.

       y      simplicial distribution plus a simplex.	Both  'x'
	      and 'y' generate the same points.

       Wn     restrict	points	to distance n of the surface of a
	      sphere or a cube

       c      add a unit cube to the output

       c Gm   add a cube with all combinations of +m  and  -m  to
	      the output

       d      add a unit diamond to the output.

       d Gm   add a diamond made of 0, +m and -m to the output

       Pn,m,r add point [n,m,r] to the output first.  Pad coordi-
	      nates with 0.0.

       n      Remove the command line from the first line of out-
	      put.

       On     offset the data by adding n to each coordinate.

       t      use  time  in  seconds  as  the  random number seed
	      (default is command line).

       tn     set the random number seed to n.

       z      generate integer coordinates.  Use 'Bn'  to  change
	      the  range.   The  default  is 'B1e6' for six-digit
	      coordinates.  In R^4, seven-digit coordinates  will
	      overflow hyperplane normalization.

       Zn s   restrict points to a disk about the z+ axis and the
	      sphere (default Z1.0).  Includes the opposite pole.
	      'Z1e-6'  generates  degenerate  points under single
	      precision.

       Zn Gm s
	      same as Zn with an empty center (default G0.5).

       r s D2 generate a regular polygon

       r s Z1 G0.1
	      generate a regular cone
</pre>

<!-- Navigation links -->
<hr>

<p><b>Up:</b> <a href="http://www.qhull.org">Home page</a> for Qhull<br>
<b>Up:</b> <a href="index.htm#TOC">Qhull manual</a>: Table of Contents<br>
<b>To:</b> <a href="qh-quick.htm#programs">Programs</a>
&#149; <a href="qh-quick.htm#options">Options</a> 
&#149; <a href="qh-opto.htm#output">Output</a> 
&#149; <a href="qh-optf.htm#format">Formats</a> 
&#149; <a href="qh-optg.htm#geomview">Geomview</a> 
&#149; <a href="qh-optp.htm#print">Print</a>
&#149; <a href="qh-optq.htm#qhull">Qhull</a> 
&#149; <a href="qh-optc.htm#prec">Precision</a> 
&#149; <a href="qh-optt.htm#trace">Trace</a><br>
<b>To:</b> <a href="#synopsis">sy</a>nopsis &#149; <a href="#outputs">ou</a>tputs 
&#149; <a href="#examples">ex</a>amples &#149; <a href="#notes">no</a>tes 
&#149; <a href="#options">op</a>tions
<!-- GC common information -->
<hr>

<p><a href="http://www.geom.uiuc.edu/"><img src="qh--geom.gif"
align="middle" width="40" height="40"></a><i>The Geometry Center
Home Page </i></p>

<p>Comments to: <a href=mailto:qhull@qhull.org>qhull@qhull.org</a>
<br>
Created: Sept. 25, 1995 --- <!-- hhmts start --> Last modified: August 12, 1998 <!-- hhmts end --> </p>
</body>
</html>