This file is indexed.

/usr/share/doc/libsnack2-doc/html/python-man.html is in libsnack2-doc 2.2.10-dfsg1-12build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
<!DOCTYPE doctype PUBLIC "-//w3c//dtd html 4.0 transitional//en">
<html>
<head>
    
  <meta http-equiv="Content-Type"
 content="text/html; charset=iso-8859-1">
    
  <meta name="GENERATOR"
 content="Mozilla/4.72 [en] (X11; U; Linux 2.2.14-5.0 i686) [Netscape]">
  <title>tkSnack manual v2.2</title>
</head>
  <body>
  
<h1> Snack manual, version 2.2</h1>
  
<h2> Installing Snack</h2>
 First you need to install Snack according to its installation instruction. 
In order to use Snack you need to put the file tkSnack.py somewhere in your
Python path. 
<h2> Using Snack: an overview</h2>
  
<h3> Initializing</h3>
 You need to use Tkinter in order to use Snack. Even if you don't use any 
GUI elements that Tkinter offers, you will still need an active Tk object 
in your program. In order for Snack to identify the Tk object it should use,
you will need to run the <tt>initializeSnack</tt> procedure. 
<p>The beginning of a program that uses Snack might look like: </p>
<blockquote> 
  <pre>from Tkinter import *<br>root = Tk()<br><br>import tkSnack<br>tkSnack.initializeSnack(root)<br><br># Now you can use tkSnack commands and objects<br># ...</pre>
 </blockquote>
  
<h3> Using Sound objects</h3>
 You create sound objects the same way you create any Python objects. 
<blockquote> 
  <pre>mysound = tkSnack.Sound()</pre>
 </blockquote>
 Since we gave no additional arguments, the sound object created by this will
contain no sound data. We can give it some data in a number of ways -- by
recording from the current input channel, by reading from a file, and so
on. 
<p>Let's try reading from a file. If you're using Windows, you have at least
a few WAV files sitting conveniently on your hard drive. (If you're using
another operating system, you'll have to locate your own sound files to read
from :-).) </p>
<blockquote> 
  <pre>mysound.read('c:/windows/media/chord.wav')</pre>
 </blockquote>
 Now for the moment of truth. Try playing your sound with: 
<blockquote> 
  <pre>mysound.play()</pre>
 </blockquote>
 You can create a new sound object and load a file in the same step using 
the "load" option: 
<blockquote> 
  <pre>tada = tkSnack.Sound(load='c:/windows/media/tada.wav')<br>tada.play()</pre>
 </blockquote>
 (Note: Another possibility is to use <tt>tkSnack.Sound(file='filename')</tt>
. Using <tt>file</tt> instead of <tt>load</tt> will "link" the disk file to
the sound object instead of immediately loading it into memory. This will
limit what you can do to the object, since a number of Snack's usual sound
methods are only available to "in-memory" sounds.) 
<p>You can perform a number of manipulations on the sounds objects. For example,
let's tack a couple of copies of the Windows chord sound onto the end of
the ta-da sound. Then we'll delete a few thousand samples from the middle
of the sound (those between sample 10,000 and 40,000), and finally reverse
the sound. </p>
<blockquote> 
  <pre>tada.concatenate(mysound)<br>tada.concatenate(mysound)<br>tada.play()<br>tada.cut(start=10000, end=40000)<br>tada.play()<br>tada.reverse()<br>tada.play()</pre>
 </blockquote>
 We can write the sound back to a disk file, and even magically switch the 
format. 
<blockquote> 
  <pre>tada.write('mangled-tada.au')</pre>
 </blockquote>
  
<h3> Audio and mixer controls</h3>
 Snack has two objects that control aspects of your computer's sound system. 
The <tt>audio</tt> object gets and sets properties of the sound devices. To
find out what the available input devices on your computer are and what sample
rates the current input device can record at, try: 
<blockquote> 
  <pre>tkSnack.audio.inputDevices()<br>tkSnack.audio.rates()</pre>
 </blockquote>
 To turn the output volume up or down to 30%, try: 
<blockquote> 
  <pre>tkSnack.audio.play_gain(30)</pre>
 </blockquote>
 The <tt>mixer</tt> object controls various aspects of your computer's sound 
mixers, such as which input jack is currently being used and whether it's 
recording in stereo or mono. 
<h3> New canvas objects</h3>
 Snack provides three new kinds of items that can be drawn on Tkinter Canvases: 
<ul>
 <li> <b>waveform</b>: a raw graph of the sound data, i.e., time on the x-axis 
and sample amplitude on the y-axis.</li>
  <li> <b>section</b>: a power spectrum of the sound (at a given time), as
calculated by Fast Fourier Transform, i.e., frequency on the x-axis and amplitude 
on the y-axis.</li>
  <li> <b>spectrogram</b>: a spectrogram of the sound, i.e., time on the
x-axis, frequency on the y-axis, and amplitude represented by the darkness
of the pixel.</li>
 
</ul>
 These items have the same options as regular Tkinter Canvas items like lines,
arcs, etc., and some of their own. Try: 
<blockquote> 
  <pre>c = tkSnack.SnackCanvas(root, height=400)<br>c.pack()<br>c.create_waveform(0, 0, sound=mysound, height=100, zerolevel=1)<br>c.create_spectrogram(0, 150, sound=mysound, height=200)</pre>
 </blockquote>
  
<h2> The Sound class</h2>
  
<h3> <a name="soundoptions"></a>Options</h3>
 The following attributes may be specified using optional arguments in the 
intialization of the sound object. They may be read or set after initialization 
by using the methods <b>cget</b> and <b>config</b>/<b>configure</b>. They 
may also be read or set by treating the sound object as a dictionary, e.g., 
<blockquote> 
  <pre>mysound["encoding"] = "Lin32"</pre>
 </blockquote>
 The options: 
<dl>
  <dt> <b>name</b> =<i>identifier</i></dt>
  <dd> what name Tcl knows your sound under. Not terribly useful inside Python.</dd>
  <dt> <b>load</b> =<i>filename</i></dt>
  <dd> specifies that the file named by <i>filename</i> should be read into
memory after creating the sound. (Using this option allows you to use the
in-memory manipulation methods of the Sound object.)</dd>
  <dt> <b>file</b> =<i>filename</i></dt>
  <dd> specifies the filename of an on-disk file that should be linked to
the sound. (Using this option means that many of the in-memory manipulation 
methods of a Sound object will not be useable.)</dd>
  <dt> <b>channel</b> =<i>channel-name</i></dt>
  <dd> specifies that audio data resides on a channel which should be linked
to the sound. In these cases the audio data is not loaded into memory, which 
is useful when playing large files or when using streaming audio. However, 
the Snack canvas types, e.g., waveforms, cannot be linked to sounds of these
types.</dd>
  <dt> <b>frequency</b> =<i>integer</i></dt>
  <dd> The sampling rate of the sound in samples per second.</dd>
  <dt> <b>channels</b> =<i>x</i></dt>
  <dd> how many channels the sound uses. Values should be an integer greater
than or equal to 1, or <tt>"Mono"</tt> or <tt>"Stereo"</tt>.</dd>
  <dt> <b>encoding</b> =<i>encoding-name</i></dt>
  <dd> Possible values for the encoding format of the sound are:</dd>
  <ul type="">
 <li> "Lin16"</li>
  <li> "Lin8"</li>
  <li> "Lin8offset"</li>
  <li> "Lin24"</li>
  <li> "Lin32"</li>
  <li> "Float"</li>
  <li> "Alaw"</li>
  <li> "Mulaw"</li>
 
  </ul>
  <dt> <b>fileformat</b> =<i>format-name</i></dt>
  <dd> Current supported file formats are the following. (These formats can
be read -- not all of them can be&nbsp;<emph>written</emph>.)</dd>
  <ul type="">
 <li> "WAV"</li>
  <li> "MP3"</li>
  <li> "AU"</li>
  <li> "SND"</li>
  <li> "AIFF"</li>
  <li> "SD"</li>
  <li> "SMP"</li>
  <li> "CSL" (will usually have the extension .nsp)</li>
  <li> "RAW" binary</li>
 
  </ul>
  <dt> <b>skiphead</b> =<i>n</i></dt>
  <dd> is used to skip an unknown file header of length <i>n</i> bytes.</dd>
  <dt> <b>byteorder</b> =<i>string</i></dt>
  <dd> <tt>"littleEndian"</tt> or <tt>"bigEndian"</tt></dd>
  <dt> <b>guessproperties</b> =<i>boolean</i></dt>
  <dd> specifies that Snack should try to infer properties such as byte order, 
sample encoding format, and sample rate for raw files by analyzing the contents
of the files. Byte order is almost always detected correctly.</dd>
  <dt> <b>buffersize</b> =<i>integer</i></dt>
  <dd> specifies the size of the internal buffer in samples, for channel-based 
sounds.</dd>
  <dt> <b>precision</b></dt>
  <dd> specifies whether sound data should be handled using single or double
precision internally.</dd>
</dl>
  
<h3> Methods</h3>
  
<h4> append (<i>binary-string</i>)</h4>
Appends binary string data to the end of this sound. The same
options apply as for the <i>read()</i> command.
<h4> cget (<i>option</i>)</h4>
 Retrieves the value of an option for the sound. The possible options are 
listed <a href="#soundoptions">above</a>. It is also possible to access the
options by treating the sound object as a dictionary, i.e., the following 
two expressions are equivalent: 
<blockquote> 
  <pre>mysound["encoding"]<br>mysound.cget("encoding")</pre>
 </blockquote>
  
<h4> concatenate (<i>othersound</i>)</h4>
 Concatenates the sample data from <i>othersound</i> to the end of this sound.
The sounds must be of the same type, i.e., have the same sample rate, sample
encoding format, and number of channels. This command applies to in-memory
sounds only. 
<h4> configure (<i>option=value</i> ...)</h4>
 Sets the options for the sound. The possible options are listed <a
 href="#soundoptions">above</a>. It is also possible to access the options
by treating the sound object as a dictionary, i.e., the following two expressions
are equivalent: 
<blockquote> 
  <pre>mysound["byteorder"] = "littleEndian"<br>mysound.configure(byteorder="littleEndian")</pre>
 </blockquote>
 <b>configure</b> may be abbreviated as <b>config</b>. 
<h4> convert (<i>option=value</i>)</h4>
 Converts a sound to a different sample encoding, sample rate, or number
of channels. Options can be any of the following: -rate, -channels, or
-encoding.
<h4> copy (<i>othersound</i>)</h4>
 Copies sample data from <i>othersound</i>. Optionally a range of samples 
to copy can be specified using the <b>start</b> and <b>end</b> options. Any
active play operation is stopped before the command is executed if the format
of the new sound differs from the current. This command applies to in-memory
sounds only. 
<h4> crop (<i>start=n, end=n</i>)</h4>
 Crops the sound to the given range [start..end], i.e., all samples before 
and after these limits will be removed. This command applies to in-memory 
sounds only. 
<h4> data (<i>variable</i>)</h4>
 Loads sound data from a binary string. The same options apply as for the <i>read()</i> command.
<h4> destroy( )</h4>
 Removes the Tcl command associated with this sound and frees its storage. 
<h4> dBPowerSpectrum ( )</h4>
 Computes the log FFT power spectrum of the sound (at the sample number given
in the <b>start</b> option) and returns a list of dB values. See the section
item for a description of the rest of the options. Optionally an ending point
can be given, using the <b>end</b> option. In this case the result is the
average of consecutive FFTs in the specified range. Their default spacing
is taken from the <b>fftlength</b> but this can be changed using the <b>skip</b>
 option, which tells how many points to move the FFT window each step. Options: 
<center>
<table border="1">
 <tbody>
    <tr>
 <td><b>start</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>end</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>fftlength</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>windowlength</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>windowtype</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>skip</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>channel</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>preemphasisfactor</b></td>
  <td><br>
      </td>
 </tr>
 
  </tbody>
</table>
</center>
  
<h4> filter (<i>filter=filterobject</i>)</h4>
 Applies the filter to the sound. This command applies to in-memory sounds 
only. 
<h4> flush ( )</h4>
 Removes all audio data from the sound. This command applies to in-memory 
sounds only. 
<h4> info ( )</h4>
 Returns a string with information about the sound. The elements of the string
are [<i>length, rate, max, min, encoding, channels, fileFormat, headerSize</i>
]. 
<h4> insert (<i>sound=othersound, position=sample</i> ...)</h4>
 Inserts <i>othersound</i> at position <i>sample</i>. Optionally a range of
samples to copy can be specified, using the <b>start</b> and <b>end</b> options.
This command applies to in-memory sounds only. 
<h4> length ( )</h4>
 Gets the length of the sound. With an additional numeric argument, it will 
set the length of the sound. The <b>unit</b> option specifies whether the
sound should be measured in "SAMPLES" (the default) or "SECONDS". If the
new length is larger than the current length, the sound is padded with additional
silence. 
<h4> max ( )</h4>
 Returns the largest positive sample value of the sound. A range of samples 
to be examined can be specified with the <b>start</b> and <b>end</b> options. 
The channel to be examined can be specified with the <b>channel</b> option. 
The default is to check all channels and return the maximum value. 
<h4> min ( )</h4>
 Returns the largest negative sample value of the sound. A range of samples 
to be examined can be specified with the <b>start</b> and <b>end</b> options. 
The channel to be examined can be specified with the <b>channel</b> option. 
The default is to check all channels and return the minimum value. 
<h4> mix (<i>othersound</i>)</h4>
 Mixes sample data from <i>othersound</i>. Optionally a range of samples, 
 where the mix operation will be applied, can be specified using the <b>start</b> and <b>end</b> options. The <b>mixscaling</b> option controls how much to scale <i>othersound</i> before mixing. The option <b>prescaling</b> controls how much to scale the original sound before mixing. This command applies to in-memory sounds only. 
<h4> pause ( )</h4>
 Pauses the current play/record operation. The next <i>pause()</i> invocation 
resumes play/record. If there is a number of instances playing of a sound 
object, all of them are paused. 
<h4> pitch ( )</h4>
 Returns a list of pitch values computed using the AMDF method. The values 
are spaced 10 ms. A range of samples can be given using the <b>start</b> and
<b>end</b> options. If a frequency range of valid pitch values is known, this
can be specified using the <b>maxpitch</b> and <b>minpitch</b> options. 
<h4> play ( )</h4>
 Plays the sound. All options are ignored if <i>play()</i> is used to resume 
a paused play options. If a <i>play()</i> command is issued while another 
one is in progress, the latter one is queued up and starts to play as soon 
as possible. The lag before this new sound is audible can be controlled using
the <i>audio.latency()</i> command. 
<p>For in-memory sounds, a number of options are available. </p>
<center>
<table border="1">
 <tbody>
    <tr>
 <td><b>start</b></td>
  <td>specifies a start position in samples</td>
 </tr>
    <tr>
 <td><b>end</b></td>
  <td>specifies an end position in samples (-1 can be used to specify the end of the sound)</td>
 </tr>
  <tr>
 <td><b>output</b></td>
  <td>can specify any of the possible output ports returned by the <i>audio.outputs()</i>
 command&nbsp;</td>
 </tr>
  <tr>
 <td><b>blocking</b></td>
  <td>specifies whether playback should be asynchronous or not, i.e., if it
is to be played in the background or it the <i>play()</i> command should return
only after the sound has been played.&nbsp;</td>
 </tr>
  <tr>
 <td><b>command</b></td>
  <td>specifies a command to be executed when the end of the sound is reached&nbsp;</td>
 </tr>
  <tr>
 <td><b>device</b></td>
  <td>selects which audio device to use</td>
 </tr>
  <tr>
 <td><b>filter</b></td>
  <td>specifies a filter which is to be applied during output&nbsp;</td>
 </tr>
  <tr>
 <td><b>starttime</b></td>
  <td>schedules the start of playback (in ms) relative to a previous play 
operation</td>
 </tr>
 
  </tbody>
</table>
</center>
  
<h4> read (<i>filename</i>)</h4>
 Reads new sound data from a file. Current supported file formats are WAV, 
MP3, AU, SND, AIFF, SD, SMP, CSL, and RAW binary. The command returns the 
file format detected. It is possible to force a file to be read as RAW using
by setting the option <b>fileformat=RAW</b>. In this case, properties of
the sound data can be specified by hand, using the <b>rate, channels, encoding,
skiphead, byteorder</b>, and <b>guessproperties</b> options, as described
<a href="#soundoptions">above</a>. 
<h4> record ( )</h4>
 Starts recording data from the audio device into the sound object. You may
use the <b>input</b> option to specify one of the available input ports (as
returned by the <i>audio.inputs()</i> command) and the <b>device</b> option
to select which audio input device to use. 
<p>For in-memory sounds, the <b>append=1</b> option specifies that the new
audio data should be appended to the end of the existing sound instead of
replacing it. </p>
<p>For channel-based sounds, the <b>fileformat</b> option can be used to specify
the file format to be used when writing data, since there is no filename
to infer the format from. </p>
<h4> reverse ( )</h4>
 Reverses the sound. A range of samples can be specified with the <b>start</b>
 and <b>end</b> options. This command applies to in-memory sounds only. 
<h4> sample (<i>sample</i>)</h4>
 Gets the value of the specified sample number. Sets the value with an additional 
numeric argument. When setting samples, one value should be specified for 
each channel you want to change. Some examples of setting: 
<blockquote> 
  <pre># Sets the 1000th sample to 0 (of a mono sound)<br>mysound.sample(1000, 0)<br><br># Sets both channels of a stero sound<br>mysound.sample(1000, 0, 0)<br><br># Sets only the left channel, leaves right channel unchanged<br>mysound.sample(1000, left=0)<br><br># Sets only the right channel, leaves left channel unchaged<br>mysound.sample(1000, right=0)</pre>
 </blockquote>
  
<h4> stop ( )</h4>
 Stops the current play or record operation. If there is a queue of sounds 
to play, each of them can stop playback using <i>stop()</i>. If a callback 
was registered using the <i>command</i> option to <i>play()</i>, it is not
executed. 
<h4> write (<i>filename</i>)</h4>
 Writes sound data to a file. A range of samples to save can be specified 
using the <b>start</b> and <b>end</b> options. The file format is guessed 
from the filename extension, but the guess can be overridden with the <b>
fileformat</b> option. If you specify RAW file format, the sound will be
saved to file without a header and using the natural byte order of the machine
(overrideable with the <b>byteorder</b> option). 
<h2> The audio object</h2>
 The <tt>audio</tt> object gives access to various properties of the available 
audio devices. It is created automatically by <i>initializeSnack</i>. 
<h3> Methods</h3>
  
<h4> elapsedTime ( )</h4>
 Returns the time elapsed since the start of the last playback operation. 
<h4> encodings ( )</h4>
 Returns a list of supported sample encoding formats for the currently selected device. 
<h4> rates ( )</h4>
 Returns a list of supported sample rates for the currently selected device. 
<h4> inputDevices ( )</h4>
 Returns a list of available audio input devices. 
<h4> playLatency ( )</h4>
 Sets/queries (in ms) how much sound will be queued up at any time to the 
audio device for playback. A low value makes new sound reach the loudspeakers 
quickly at the risk of gaps in the output stream. An appropriate value should
be chosen with regard to processor speed and load. 
<h4> pause ( )</h4>
 Toggles between pause/play for all playback on the audio device. 
<h4> play ( )</h4>
 Resumes paused playback on the audio device. 
<h4> play_gain ( )</h4>
 Returns the current play gain value if invoked without a parameter. If an
integer value is given, play gain is set to the given value. Valid values 
are in the range 0 to 100. 
<h4> outputDevices ( )</h4>
 Returns a list of available audio output devices. 
<h4> record_gain ( )</h4>
 Returns the current record gain value if invoked without a parameter. If 
an integer value is given, record gain is set to the given value. Valid values
are in the range 0 to 100. 
<h4> selectOutput (<i>device</i>)</h4>
 Selects an audio output device to be used as default. 
<h4> selectInput (<i>device</i>)</h4>
 Selects an audio input device to be used as default. 
<h4> stop ( )</h4>
 Stops all playback on the audio device. 
<h2> The mixer object</h2>
 The <tt>mixer</tt> object gives access to various properties of mixer devices, 
such as input/output jack, supported ports, mixer lines, and gain. It is created
automatically by <i>initializeSnack</i>. 
<h3> Methods</h3>
  
<h4> channels (<i>line</i>)</h4>
 Returns a list with the names of the channels for the specified <i>line</i>
. 
<h4> devices ( )</h4>
 Returns a list of available mixer devices. 
<h4> input ( )</h4>
 Gets/sets the current input jack. You can optionally give a boolean Tcl variable
as an argument. 
<h4> inputs ( )</h4>
 Returns a list of available input ports. 
<h4> lines ( )</h4>
 Returns a list with the names of the lines of the mixer device. 
<h4> output ( )</h4>
 Gets/sets the current output jack. You can optionally give a boolean Tcl 
variable as an argument. 
<h4> outputs ( )</h4>
 Returns a list of available output ports. 
<h4> update ( )</h4>
 Updates all linked variables to reflect the status of the mixer device. 
<h4> volume (<i>line</i>)</h4>
 Return the current volume setting for <i>mixer</i>. You can optionally link
a Tcl variable to the value by including it as an argument. If you link two
Tcl variables, they are used for the left and right channels respectively. 
<h4> select (<i>device</i>)</h4>
 Selects a mixer device to be used as the default. 
<h2> The Filter class</h2>
 Filter objects can interact with sound objects either during playback or 
by using the <i>filter()</i> command of the sound object. 
<p>Filters in Snack are still in an early stage of development. Consult the
Snack documentation for further details. </p>
<h2> The SnackCanvas class</h2>
 SnackCanvas is a subclass of Tkinter.Canvas that has three additional kinds 
of canvas items: waveforms, spectrograms, and sections (power spectra). 
<h3> Waveforms</h3>
 Draw waveform items on the canvas using the <b>create_waveform</b> method. 
Obligatory arguments are the <b>x</b> and <b>y</b> coordinates of the waveform's 
top-right corner. Options are: 
<table border="1">
 <tbody>
    <tr>
 <td><b>anchor</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>channel</b></td>
  <td>selects which channel to show for multi-channel sounds. Use "left", 
"right", "both", "all", -1 (all), or a channel number counting from 0 (left).</td>
 </tr>
  <tr>
 <td><b>end</b></td>
  <td>select the end-point of the time-range to draw</td>
 </tr>
  <tr>
 <td><b>fill</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>frame</b></td>
  <td>boolean value controlling whether a frame will be drawn</td>
 </tr>
  <tr>
 <td><b>height</b></td>
  <td>the height of the waveform</td>
 </tr>
  <tr>
 <td><b>limit</b></td>
  <td>specifies the maximum shown value for the sound amplitude</td>
 </tr>
  <tr>
 <td><b>pixelspersecond</b></td>
  <td>determines the scaling factor in the x direction, which also gives the
width. If both <b>width</b> and <b>pixelspersecond</b> are specified, the
waveform will be cut at one end depending on if a <b>start</b> or <b>end</b>
 option was also given.</td>
 </tr>
  <tr>
 <td><b>shapefile</b></td>
  <td>specifies a file for storing/retrieving precomputed waveform shape information</td>
 </tr>
  <tr>
 <td><b>sound</b></td>
  <td>specifies which sound object to link to</td>
 </tr>
  <tr>
 <td><b>start</b></td>
  <td>selects the starting point of the time-range to draw</td>
 </tr>
  <tr>
 <td><b>stipple</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>subsample</b></td>
  <td>useful for large sounds to specify how precisely they should be analyzed 
for the shape calculation. The default value 1 uses every sample in the sound
to draw the waveform envelope, which can be slow for large sounds. A value
of 10 uses every tenth. Care should be used when specifying values. Using
large values may lead to incorrect envelope shapes.</td>
 </tr>
  <tr>
 <td><b>tags</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>width</b></td>
  <td>width of the waveform. See the entry for <b>pixelspersecond</b> for 
what happens if you specify both options.</td>
 </tr>
  <tr>
 <td><b>zerolevel</b></td>
  <td>specifies whether a line will be drawn for the zero amplitude level.</td>
 </tr>
 
  </tbody>
</table>
  
<h3> Spectrograms</h3>
 Draw a spectrogram of a sound on the canvas with the <b>create_spectrogram</b>
 method. Obligatory arguments are the <b>x</b> and <b>y</b> positions of the
top-right corner of the spectrogram. Options are: 
<table border="1">
 <tbody>
    <tr>
 <td><b>anchor</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>brightness</b></td>
  <td>takes a value between -100.0 and 100.0</td>
 </tr>
  <tr>
 <td><b>channel</b></td>
  <td>selects which channel to show for multi-channel sounds. Use "left", 
"right", "both", "all", -1 (all), or a channel number counting from 0 (left).</td>
 </tr>
  <tr>
 <td><b>colormap</b></td>
  <td>takes a list of colours as parameter. At least two must be specified. 
The first colour is used for the lowest intensity in the spectrogram. An empty
list ives the default 32-level grey scale.</td>
 </tr>
  <tr>
 <td><b>contrast</b></td>
  <td>takes a value between -100.0 and 100.0</td>
 </tr>
  <tr>
 <td><b>end</b></td>
  <td>gives the end-point of the time-range to be drawn.</td>
 </tr>
  <tr>
 <td><b>fftlength</b></td>
  <td>specifies the number of FFT points (8, 16, 32, 64, 128, 256, 512, 1024, 
2048, 4096).</td>
 </tr>
  <tr>
 <td><b>gridcolor</b></td>
  <td>specifies the colour of the grid.</td>
 </tr>
  <tr>
 <td><b>gridfspacing</b></td>
  <td>the spacing between frequency markers on the y-axis in Hertz. The default 
value of 0 means no grid.</td>
 </tr>
  <tr>
 <td><b>gridtspacing</b></td>
  <td>the spacing between the time markers on the x-axis in seconds. The default
value of 0 means no grid.</td>
 </tr>
  <tr>
 <td><b>height</b></td>
  <td>height of the spectrogram.</td>
 </tr>
  <tr>
 <td><b>pixelspersecond</b></td>
  <td>determines the scaling factor in the x direction, which also gives the
width. If both <b>width</b> and <b>pixelspersecond</b> are specified, the
spectrogram will be cut at one end depending on if a <b>start</b> or <b>end</b>
 option was also given.</td>
 </tr>
  <tr>
 <td><b>preemphasisfactor</b></td>
  <td>specifies the amount of preemphasis to be applied to the signal prior 
to the FFT analysis.</td>
 </tr>
  <tr>
 <td><b>sound</b></td>
  <td>specifies which sound to link to.</td>
 </tr>
  <tr>
 <td><b>start</b></td>
  <td>the starting-point of the time-range to be drawn.</td>
 </tr>
  <tr>
 <td><b>tags</b></td>
  <td>works as for ordinary Tk canvas items.</td>
 </tr>
  <tr>
 <td><b>topfrequency</b></td>
  <td>the frequency value at the top of the spectrogram.</td>
 </tr>
  <tr>
 <td><b>width</b></td>
  <td>width of the spectrogram. See the entry for <b>pixelspersecond</b> for
what happens if you specify both options.</td>
 </tr>
  <tr>
 <td><b>windowtype</b></td>
  <td>"hanning", "hamming", "bartlett", "blackman", or "rectangle"</td>
 </tr>
  <tr>
 <td><b>winlength</b></td>
  <td>specifies the size of the hamming window, which should be equal to or
less than the number of FFT points.</td>
 </tr>
 
  </tbody>
</table>
  
<p>Currently spectrograms have a limit of 32767 pixels. </p>
<h3> Sections (power spectra)</h3>
 Draw an FFT log power spectrum section of a sound on a canvas with the <b>
create_section</b> method. Obligatory arguments are the <b>x</b> and <b>y</b>
 coordinates of the top-right corner of the section. Options are: 
<table border="1">
 <tbody>
    <tr>
 <td><b>anchor</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>channel</b></td>
  <td>selects which channel to show for multi-channel sounds. Use "left", 
"right", "both", "all", -1 (all), or a channel number counting from 0 (left).</td>
 </tr>
  <tr>
 <td><b>end</b></td>
  <td>gives the end-point of the time-range to be drawn.</td>
 </tr>
  <tr>
 <td><b>fftlength</b></td>
  <td>specifies the number of FFT points (8, 16, 32, 64, 128, 256, 512, 1024, 
2048, 4096).</td>
 </tr>
  <tr>
 <td><b>fill</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>frame</b></td>
  <td>specifies whether a frame will be drawn</td>
 </tr>
  <tr>
 <td><b>height</b></td>
  <td>height of the spectrogram.</td>
 </tr>
  <tr>
 <td><b>maxvalue</b></td>
  <td>specifies the top of the range (in dB) which will be shown. The default 
range is 0.0 to -80.0 dB.</td>
 </tr>
  <tr>
 <td><b>minvalue</b></td>
  <td>specifies the bottom of the range (in dB) which will be shown. The default
range is 0.0 to -80.0 dB.</td>
 </tr>
  <tr>
 <td><b>preemphasisfactor</b></td>
  <td>specifies the amount of preemphasis to be applied to the signal prior 
to the FFT analysis.</td>
 </tr>
  <tr>
 <td><b>skip</b></td>
  <td><br>
      </td>
 </tr>
  <tr>
 <td><b>sound</b></td>
  <td>specifies which sound to link to.</td>
 </tr>
  <tr>
 <td><b>start</b></td>
  <td>the starting-point of the time-range to be drawn.</td>
 </tr>
  <tr>
 <td><b>stipple</b></td>
  <td>works as for ordinary Tk canvas items</td>
 </tr>
  <tr>
 <td><b>tags</b></td>
  <td>works as for ordinary Tk canvas items.</td>
 </tr>
  <tr>
 <td><b>topfrequency</b></td>
  <td>the highest frequency value shown for the section.</td>
 </tr>
  <tr>
 <td><b>width</b></td>
  <td>width of the spectrogram. See the entry for <b>pixelspersecond</b> for
what happens if you specify both options.</td>
 </tr>
  <tr>
 <td><b>windowtype</b></td>
  <td>"Hamming", "Hanning", "Bartlett", "Blackman", or "Rectangle"</td>
 </tr>
  <tr>
 <td><b>winlength</b></td>
  <td>specifies the size of the hamming window, which should be equal to or
less than the number of FFT points.</td>
 </tr>
 
  </tbody>
</table>
  
<h3> Putting SnackCanvas items on regular Canvases</h3>
 It's possible to draw these new canvas items onto any canvas in your program, 
not just those that are instances of SnackCanvas. You might need to do this
if you're using elaborations or subclasses of Canvas that have been written
by other people, for example, if you want to draw a waveform on a ScrolledCanvas
from the Python Megawidget collection. 
<p>To accomplish this, tkSnack provides module-level versions of <tt>create_waveform</tt>
, <tt>create_section</tt>, and <tt>create_spectrogram</tt>. Simply use the 
non-Snack canvas as the first argument. Instead of: </p>
<blockquote> 
  <pre>NonSnackCanvas.create_waveform(sound=tada)</pre>
 </blockquote>
 use: 
<blockquote> 
  <pre><font color="#cc0000">tkSnack.createWaveform(NonSnackCanvas, sound=tada)<br><br></font></pre>
</blockquote>
<font color="#cc0000">If you're using Pmw Scrolled Canvas, remember that
you're drawing onto the ScrolledCanvas's Canvas object. In that case, you'll
need to do:<br>
</font>
<blockquote>
  <pre><font color="#cc0000">tkSnack.createWaveform(myScrolledCanvas._canvas, sound=tada)</font><br></pre>
</blockquote>
   
<p> </p>
<hr> <br>
 
<pre><font face="Arial, Helvetica"><font color="#ff6600"><font size="-1">Last updated </font></font></font><!--#config timefmt="%B %d, %Y" --><!--#flastmod file="python-man.html"-->
</pre>
 
</body>
</html>