This file is indexed.

/usr/include/google/sparsetable is in libsparsehash-dev 1.10-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
// Copyright (c) 2005, Google Inc.
// All rights reserved.
// 
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
// 
//     * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
//     * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
//     * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
// 
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

// ---
// Author: Craig Silverstein
//
// A sparsetable is a random container that implements a sparse array,
// that is, an array that uses very little memory to store unassigned
// indices (in this case, between 1-2 bits per unassigned index).  For
// instance, if you allocate an array of size 5 and assign a[2] = <big
// struct>, then a[2] will take up a lot of memory but a[0], a[1],
// a[3], and a[4] will not.  Array elements that have a value are
// called "assigned".  Array elements that have no value yet, or have
// had their value cleared using erase() or clear(), are called
// "unassigned".
//
// Unassigned values seem to have the default value of T (see below).
// Nevertheless, there is a difference between an unassigned index and
// one explicitly assigned the value of T().  The latter is considered
// assigned.
//
// Access to an array element is constant time, as is insertion and
// deletion.  Insertion and deletion may be fairly slow, however:
// because of this container's memory economy, each insert and delete
// causes a memory reallocation.
//
// See doc/sparsetable.html for information about how to use this class.

#ifndef _SPARSETABLE_H_
#define _SPARSETABLE_H_

#include <google/sparsehash/sparseconfig.h>
#include <stdlib.h>             // for malloc/free
#include <stdio.h>              // to read/write tables
#ifdef HAVE_STDINT_H
#include <stdint.h>             // the normal place uint16_t is defined
#endif
#ifdef HAVE_SYS_TYPES_H
#include <sys/types.h>          // the normal place u_int16_t is defined
#endif
#ifdef HAVE_INTTYPES_H
#include <inttypes.h>           // a third place for uint16_t or u_int16_t
#endif
#include <assert.h>             // for bounds checking
#include <iterator>             // to define reverse_iterator for me
#include <algorithm>            // equal, lexicographical_compare, swap,...
#include <memory>               // uninitialized_copy
#include <vector>               // a sparsetable is a vector of groups
#include <google/sparsehash/libc_allocator_with_realloc.h>
#include <google/type_traits.h> // for true_type, integral_constant, etc.

#if STDC_HEADERS
#include <string.h>             // for memcpy
#else
#if !HAVE_MEMCPY
#define memcpy(d, s, n)   bcopy ((s), (d), (n))
#endif
#endif

#ifndef HAVE_U_INT16_T
# if defined HAVE_UINT16_T
    typedef uint16_t u_int16_t;    // true on solaris, possibly other C99 libc's
# elif defined HAVE___UINT16
    typedef __int16 int16_t;       // true on vc++7
    typedef unsigned __int16 u_int16_t;
# else
    // Cannot find a 16-bit integer type.  Hoping for the best with "short"...
    typedef short int int16_t;
    typedef unsigned short int u_int16_t;
# endif
#endif

_START_GOOGLE_NAMESPACE_

using STL_NAMESPACE::vector;
using STL_NAMESPACE::uninitialized_copy;

// The smaller this is, the faster lookup is (because the group bitmap is
// smaller) and the faster insert is, because there's less to move.
// On the other hand, there are more groups.  Since group::size_type is
// a short, this number should be of the form 32*x + 16 to avoid waste.
static const u_int16_t DEFAULT_SPARSEGROUP_SIZE = 48;   // fits in 1.5 words


// A NOTE ON ASSIGNING:
// A sparse table does not actually allocate memory for entries
// that are not filled.  Because of this, it becomes complicated
// to have a non-const iterator: we don't know, if the iterator points
// to a not-filled bucket, whether you plan to fill it with something
// or whether you plan to read its value (in which case you'll get
// the default bucket value).  Therefore, while we can define const
// operations in a pretty 'normal' way, for non-const operations, we
// define something that returns a helper object with operator= and
// operator& that allocate a bucket lazily.  We use this for table[]
// and also for regular table iterators.

template <class tabletype>
class table_element_adaptor {
 public:
  typedef typename tabletype::value_type value_type;
  typedef typename tabletype::size_type size_type;
  typedef typename tabletype::reference reference;
  typedef typename tabletype::pointer pointer;

  table_element_adaptor(tabletype *tbl, size_type p)
    : table(tbl), pos(p) { }
  table_element_adaptor& operator= (const value_type &val) {
    table->set(pos, val);
    return *this;
  }
  operator value_type() { return table->get(pos); }   // we look like a value
  pointer operator& () { return &table->mutating_get(pos); }

 private:
  tabletype* table;
  size_type pos;
};

// Our iterator as simple as iterators can be: basically it's just
// the index into our table.  Dereference, the only complicated
// thing, we punt to the table class.  This just goes to show how
// much machinery STL requires to do even the most trivial tasks.
//
// By templatizing over tabletype, we have one iterator type which
// we can use for both sparsetables and sparsebins.  In fact it
// works on any class that allows size() and operator[] (eg vector),
// as long as it does the standard STL typedefs too (eg value_type).

template <class tabletype>
class table_iterator {
 public:
  typedef table_iterator iterator;

  typedef STL_NAMESPACE::random_access_iterator_tag iterator_category;
  typedef typename tabletype::value_type value_type;
  typedef typename tabletype::difference_type difference_type;
  typedef typename tabletype::size_type size_type;
  typedef table_element_adaptor<tabletype> reference;
  typedef table_element_adaptor<tabletype>* pointer;

  // The "real" constructor
  table_iterator(tabletype *tbl, size_type p)
    : table(tbl), pos(p) { }
  // The default constructor, used when I define vars of type table::iterator
  table_iterator() : table(NULL), pos(0) { }
  // The copy constructor, for when I say table::iterator foo = tbl.begin()
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // The main thing our iterator does is dereference.  If the table entry
  // we point to is empty, we return the default value type.
  // This is the big different function from the const iterator.
  reference operator*()              {
    return table_element_adaptor<tabletype>(table, pos);
  }
  pointer operator->()               { return &(operator*()); }

  // Helper function to assert things are ok; eg pos is still in range
  void check() const {
    assert(table);
    assert(pos <= table->size());
  }

  // Arithmetic: we just do arithmetic on pos.  We don't even need to
  // do bounds checking, since STL doesn't consider that its job.  :-)
  iterator& operator+=(size_type t) { pos += t; check(); return *this; }
  iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
  iterator& operator++()            { ++pos; check(); return *this; }
  iterator& operator--()            { --pos; check(); return *this; }
  iterator operator++(int)          { iterator tmp(*this);     // for x++
                                      ++pos; check(); return tmp; }
  iterator operator--(int)          { iterator tmp(*this);     // for x--
                                      --pos; check(); return tmp; }
  iterator operator+(difference_type i) const  { iterator tmp(*this);
                                                 tmp += i; return tmp; }
  iterator operator-(difference_type i) const  { iterator tmp(*this);
                                                 tmp -= i; return tmp; }
  difference_type operator-(iterator it) const {      // for "x = it2 - it"
    assert(table == it.table);
    return pos - it.pos;
  }
  reference operator[](difference_type n) const {
    return *(*this + n);            // simple though not totally efficient
  }

  // Comparisons.
  bool operator==(const iterator& it) const {
    return table == it.table && pos == it.pos;
  }
  bool operator<(const iterator& it) const {
    assert(table == it.table);              // life is bad bad bad otherwise
    return pos < it.pos;
  }
  bool operator!=(const iterator& it) const { return !(*this == it); }
  bool operator<=(const iterator& it) const { return !(it < *this); }
  bool operator>(const iterator& it) const { return it < *this; }
  bool operator>=(const iterator& it) const { return !(*this < it); }

  // Here's the info we actually need to be an iterator
  tabletype *table;              // so we can dereference and bounds-check
  size_type pos;                 // index into the table
};

// support for "3 + iterator" has to be defined outside the class, alas
template<class T>
table_iterator<T> operator+(typename table_iterator<T>::difference_type i,
                            table_iterator<T> it) {
  return it + i;               // so people can say it2 = 3 + it
}

template <class tabletype>
class const_table_iterator {
 public:
  typedef table_iterator<tabletype> iterator;
  typedef const_table_iterator const_iterator;

  typedef STL_NAMESPACE::random_access_iterator_tag iterator_category;
  typedef typename tabletype::value_type value_type;
  typedef typename tabletype::difference_type difference_type;
  typedef typename tabletype::size_type size_type;
  typedef typename tabletype::const_reference reference;  // we're const-only
  typedef typename tabletype::const_pointer pointer;

  // The "real" constructor
  const_table_iterator(const tabletype *tbl, size_type p)
    : table(tbl), pos(p) { }
  // The default constructor, used when I define vars of type table::iterator
  const_table_iterator() : table(NULL), pos(0) { }
  // The copy constructor, for when I say table::iterator foo = tbl.begin()
  // Also converts normal iterators to const iterators
  const_table_iterator(const iterator &from)
    : table(from.table), pos(from.pos) { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // The main thing our iterator does is dereference.  If the table entry
  // we point to is empty, we return the default value type.
  reference operator*() const       { return (*table)[pos]; }
  pointer operator->() const        { return &(operator*()); }

  // Helper function to assert things are ok; eg pos is still in range
  void check() const {
    assert(table);
    assert(pos <= table->size());
  }

  // Arithmetic: we just do arithmetic on pos.  We don't even need to
  // do bounds checking, since STL doesn't consider that its job.  :-)
  const_iterator& operator+=(size_type t) { pos += t; check(); return *this; }
  const_iterator& operator-=(size_type t) { pos -= t; check(); return *this; }
  const_iterator& operator++()            { ++pos; check(); return *this; }
  const_iterator& operator--()            { --pos; check(); return *this; }
  const_iterator operator++(int)          { const_iterator tmp(*this); // for x++
                                            ++pos; check(); return tmp; }
  const_iterator operator--(int)          { const_iterator tmp(*this); // for x--
                                            --pos; check(); return tmp; }
  const_iterator operator+(difference_type i) const  { const_iterator tmp(*this);
                                                       tmp += i; return tmp; }
  const_iterator operator-(difference_type i) const  { const_iterator tmp(*this);
                                                       tmp -= i; return tmp; }
  difference_type operator-(const_iterator it) const {   // for "x = it2 - it"
    assert(table == it.table);
    return pos - it.pos;
  }
  reference operator[](difference_type n) const {
    return *(*this + n);            // simple though not totally efficient
  }

  // Comparisons.
  bool operator==(const const_iterator& it) const {
    return table == it.table && pos == it.pos;
  }
  bool operator<(const const_iterator& it) const {
    assert(table == it.table);              // life is bad bad bad otherwise
    return pos < it.pos;
  }
  bool operator!=(const const_iterator& it) const { return !(*this == it); }
  bool operator<=(const const_iterator& it) const { return !(it < *this); }
  bool operator>(const const_iterator& it) const { return it < *this; }
  bool operator>=(const const_iterator& it) const { return !(*this < it); }

  // Here's the info we actually need to be an iterator
  const tabletype *table;        // so we can dereference and bounds-check
  size_type pos;                 // index into the table
};

// support for "3 + iterator" has to be defined outside the class, alas
template<class T>
const_table_iterator<T> operator+(typename
                                  const_table_iterator<T>::difference_type i,
                                  const_table_iterator<T> it) {
  return it + i;               // so people can say it2 = 3 + it
}


// ---------------------------------------------------------------------------


/*
// This is a 2-D iterator.  You specify a begin and end over a list
// of *containers*.  We iterate over each container by iterating over
// it.  It's actually simple:
// VECTOR.begin() VECTOR[0].begin()  --------> VECTOR[0].end() ---,
//     |          ________________________________________________/
//     |          \_> VECTOR[1].begin()  -------->  VECTOR[1].end() -,
//     |          ___________________________________________________/
//     v          \_> ......
// VECTOR.end()
//
// It's impossible to do random access on one of these things in constant
// time, so it's just a bidirectional iterator.
//
// Unfortunately, because we need to use this for a non-empty iterator,
// we use nonempty_begin() and nonempty_end() instead of begin() and end()
// (though only going across, not down).
*/

#define TWOD_BEGIN_      nonempty_begin
#define TWOD_END_        nonempty_end
#define TWOD_ITER_       nonempty_iterator
#define TWOD_CONST_ITER_ const_nonempty_iterator

template <class containertype>
class two_d_iterator {
 public:
  typedef two_d_iterator iterator;

  typedef STL_NAMESPACE::bidirectional_iterator_tag iterator_category;
  // apparently some versions of VC++ have trouble with two ::'s in a typename
  typedef typename containertype::value_type _tmp_vt;
  typedef typename _tmp_vt::value_type value_type;
  typedef typename _tmp_vt::difference_type difference_type;
  typedef typename _tmp_vt::reference reference;
  typedef typename _tmp_vt::pointer pointer;

  // The "real" constructor.  begin and end specify how many rows we have
  // (in the diagram above); we always iterate over each row completely.
  two_d_iterator(typename containertype::iterator begin,
                 typename containertype::iterator end,
                 typename containertype::iterator curr)
    : row_begin(begin), row_end(end), row_current(curr), col_current() {
    if ( row_current != row_end ) {
      col_current = row_current->TWOD_BEGIN_();
      advance_past_end();                 // in case cur->begin() == cur->end()
    }
  }
  // If you want to start at an arbitrary place, you can, I guess
  two_d_iterator(typename containertype::iterator begin,
                 typename containertype::iterator end,
                 typename containertype::iterator curr,
                 typename containertype::value_type::TWOD_ITER_ col)
    : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
    advance_past_end();                 // in case cur->begin() == cur->end()
  }
  // The default constructor, used when I define vars of type table::iterator
  two_d_iterator() : row_begin(), row_end(), row_current(), col_current() { }
  // The default destructor is fine; we don't define one
  // The default operator= is fine; we don't define one

  // Happy dereferencer
  reference operator*() const    { return *col_current; }
  pointer operator->() const     { return &(operator*()); }

  // Arithmetic: we just do arithmetic on pos.  We don't even need to
  // do bounds checking, since STL doesn't consider that its job.  :-)
  // NOTE: this is not amortized constant time!  What do we do about it?
  void advance_past_end() {          // used when col_current points to end()
    while ( col_current == row_current->TWOD_END_() ) {  // end of current row
      ++row_current;                                // go to beginning of next
      if ( row_current != row_end )                 // col is irrelevant at end
        col_current = row_current->TWOD_BEGIN_();
      else
        break;                                      // don't go past row_end
    }
  }

  iterator& operator++() {
    assert(row_current != row_end);                 // how to ++ from there?
    ++col_current;
    advance_past_end();                 // in case col_current is at end()
    return *this;
  }
  iterator& operator--() {
    while ( row_current == row_end ||
            col_current == row_current->TWOD_BEGIN_() ) {
      assert(row_current != row_begin);
      --row_current;
      col_current = row_current->TWOD_END_();             // this is 1 too far
    }
    --col_current;
    return *this;
  }
  iterator operator++(int)       { iterator tmp(*this); ++*this; return tmp; }
  iterator operator--(int)       { iterator tmp(*this); --*this; return tmp; }


  // Comparisons.
  bool operator==(const iterator& it) const {
    return ( row_begin == it.row_begin &&
             row_end == it.row_end &&
             row_current == it.row_current &&
             (row_current == row_end || col_current == it.col_current) );
  }
  bool operator!=(const iterator& it) const { return !(*this == it); }


  // Here's the info we actually need to be an iterator
  // These need to be public so we convert from iterator to const_iterator
  typename containertype::iterator row_begin, row_end, row_current;
  typename containertype::value_type::TWOD_ITER_ col_current;
};

// The same thing again, but this time const.  :-(
template <class containertype>
class const_two_d_iterator {
 public:
  typedef const_two_d_iterator iterator;

  typedef STL_NAMESPACE::bidirectional_iterator_tag iterator_category;
  // apparently some versions of VC++ have trouble with two ::'s in a typename
  typedef typename containertype::value_type _tmp_vt;
  typedef typename _tmp_vt::value_type value_type;
  typedef typename _tmp_vt::difference_type difference_type;
  typedef typename _tmp_vt::const_reference reference;
  typedef typename _tmp_vt::const_pointer pointer;

  const_two_d_iterator(typename containertype::const_iterator begin,
                       typename containertype::const_iterator end,
                       typename containertype::const_iterator curr)
    : row_begin(begin), row_end(end), row_current(curr), col_current() {
    if ( curr != end ) {
      col_current = curr->TWOD_BEGIN_();
      advance_past_end();                 // in case cur->begin() == cur->end()
    }
  }
  const_two_d_iterator(typename containertype::const_iterator begin,
                       typename containertype::const_iterator end,
                       typename containertype::const_iterator curr,
                       typename containertype::value_type::TWOD_CONST_ITER_ col)
    : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
    advance_past_end();                 // in case cur->begin() == cur->end()
  }
  const_two_d_iterator()
    : row_begin(), row_end(), row_current(), col_current() {
  }
  // Need this explicitly so we can convert normal iterators to const iterators
  const_two_d_iterator(const two_d_iterator<containertype>& it) :
    row_begin(it.row_begin), row_end(it.row_end), row_current(it.row_current),
    col_current(it.col_current) { }

  typename containertype::const_iterator row_begin, row_end, row_current;
  typename containertype::value_type::TWOD_CONST_ITER_ col_current;


  // EVERYTHING FROM HERE DOWN IS THE SAME AS THE NON-CONST ITERATOR
  reference operator*() const    { return *col_current; }
  pointer operator->() const     { return &(operator*()); }

  void advance_past_end() {          // used when col_current points to end()
    while ( col_current == row_current->TWOD_END_() ) {  // end of current row
      ++row_current;                                // go to beginning of next
      if ( row_current != row_end )                 // col is irrelevant at end
        col_current = row_current->TWOD_BEGIN_();
      else
        break;                                      // don't go past row_end
    }
  }
  iterator& operator++() {
    assert(row_current != row_end);                 // how to ++ from there?
    ++col_current;
    advance_past_end();                 // in case col_current is at end()
    return *this;
  }
  iterator& operator--() {
    while ( row_current == row_end ||
            col_current == row_current->TWOD_BEGIN_() ) {
      assert(row_current != row_begin);
      --row_current;
      col_current = row_current->TWOD_END_();             // this is 1 too far
    }
    --col_current;
    return *this;
  }
  iterator operator++(int)       { iterator tmp(*this); ++*this; return tmp; }
  iterator operator--(int)       { iterator tmp(*this); --*this; return tmp; }

  bool operator==(const iterator& it) const {
    return ( row_begin == it.row_begin &&
             row_end == it.row_end &&
             row_current == it.row_current &&
             (row_current == row_end || col_current == it.col_current) );
  }
  bool operator!=(const iterator& it) const { return !(*this == it); }
};

// We provide yet another version, to be as frugal with memory as
// possible.  This one frees each block of memory as it finishes
// iterating over it.  By the end, the entire table is freed.
// For understandable reasons, you can only iterate over it once,
// which is why it's an input iterator
template <class containertype>
class destructive_two_d_iterator {
 public:
  typedef destructive_two_d_iterator iterator;

  typedef STL_NAMESPACE::input_iterator_tag iterator_category;
  // apparently some versions of VC++ have trouble with two ::'s in a typename
  typedef typename containertype::value_type _tmp_vt;
  typedef typename _tmp_vt::value_type value_type;
  typedef typename _tmp_vt::difference_type difference_type;
  typedef typename _tmp_vt::reference reference;
  typedef typename _tmp_vt::pointer pointer;

  destructive_two_d_iterator(typename containertype::iterator begin,
                             typename containertype::iterator end,
                             typename containertype::iterator curr)
    : row_begin(begin), row_end(end), row_current(curr), col_current() {
    if ( curr != end ) {
      col_current = curr->TWOD_BEGIN_();
      advance_past_end();                 // in case cur->begin() == cur->end()
    }
  }
  destructive_two_d_iterator(typename containertype::iterator begin,
                             typename containertype::iterator end,
                             typename containertype::iterator curr,
                             typename containertype::value_type::TWOD_ITER_ col)
    : row_begin(begin), row_end(end), row_current(curr), col_current(col) {
    advance_past_end();                 // in case cur->begin() == cur->end()
  }
  destructive_two_d_iterator()
    : row_begin(), row_end(), row_current(), col_current() {
  }

  typename containertype::iterator row_begin, row_end, row_current;
  typename containertype::value_type::TWOD_ITER_ col_current;

  // This is the part that destroys
  void advance_past_end() {          // used when col_current points to end()
    while ( col_current == row_current->TWOD_END_() ) {  // end of current row
      row_current->clear();                         // the destructive part
      // It would be nice if we could decrement sparsetable->num_buckets here
      ++row_current;                                // go to beginning of next
      if ( row_current != row_end )                 // col is irrelevant at end
        col_current = row_current->TWOD_BEGIN_();
      else
        break;                                      // don't go past row_end
    }
  }

  // EVERYTHING FROM HERE DOWN IS THE SAME AS THE REGULAR ITERATOR
  reference operator*() const    { return *col_current; }
  pointer operator->() const     { return &(operator*()); }

  iterator& operator++() {
    assert(row_current != row_end);                 // how to ++ from there?
    ++col_current;
    advance_past_end();                 // in case col_current is at end()
    return *this;
  }
  iterator operator++(int)       { iterator tmp(*this); ++*this; return tmp; }

  bool operator==(const iterator& it) const {
    return ( row_begin == it.row_begin &&
             row_end == it.row_end &&
             row_current == it.row_current &&
             (row_current == row_end || col_current == it.col_current) );
  }
  bool operator!=(const iterator& it) const { return !(*this == it); }
};

#undef TWOD_BEGIN_
#undef TWOD_END_
#undef TWOD_ITER_
#undef TWOD_CONST_ITER_




// SPARSE-TABLE
// ------------
// The idea is that a table with (logically) t buckets is divided
// into t/M *groups* of M buckets each.  (M is a constant set in
// GROUP_SIZE for efficiency.)  Each group is stored sparsely.
// Thus, inserting into the table causes some array to grow, which is
// slow but still constant time.  Lookup involves doing a
// logical-position-to-sparse-position lookup, which is also slow but
// constant time.  The larger M is, the slower these operations are
// but the less overhead (slightly).
//
// To store the sparse array, we store a bitmap B, where B[i] = 1 iff
// bucket i is non-empty.  Then to look up bucket i we really look up
// array[# of 1s before i in B].  This is constant time for fixed M.
//
// Terminology: the position of an item in the overall table (from
// 1 .. t) is called its "location."  The logical position in a group
// (from 1 .. M ) is called its "position."  The actual location in
// the array (from 1 .. # of non-empty buckets in the group) is
// called its "offset."

// The weird mod in the offset is entirely to quiet compiler warnings
// as is the cast to int after doing the "x mod 256"
#define PUT_(take_from, offset)  do {                                          \
  if (putc(static_cast<int>(((take_from) >> ((offset) % (sizeof(take_from)*8)))\
                             % 256), fp)                                       \
      == EOF)                                                                  \
    return false;                                                              \
} while (0)

#define GET_(add_to, offset)  do {                                            \
  if ((x=getc(fp)) == EOF)                                                    \
    return false;                                                             \
  else                                                                        \
    add_to |= (static_cast<size_type>(x) << ((offset) % (sizeof(add_to)*8))); \
} while (0)

template <class T, u_int16_t GROUP_SIZE, class Alloc>
class sparsegroup {
 private:
  typedef typename Alloc::template rebind<T>::other value_alloc_type;

 public:
  // Basic types
  typedef T value_type;
  typedef Alloc allocator_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::const_reference const_reference;
  typedef typename value_alloc_type::pointer pointer;
  typedef typename value_alloc_type::const_pointer const_pointer;

  typedef table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> > iterator;
  typedef const_table_iterator<sparsegroup<T, GROUP_SIZE, Alloc> >
      const_iterator;
  typedef table_element_adaptor<sparsegroup<T, GROUP_SIZE, Alloc> >
      element_adaptor;
  typedef u_int16_t size_type;                  // max # of buckets
  typedef int16_t difference_type;
  typedef STL_NAMESPACE::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef STL_NAMESPACE::reverse_iterator<iterator> reverse_iterator;

  // These are our special iterators, that go over non-empty buckets in a
  // group.  These aren't const-only because you can change non-empty bcks.
  typedef pointer nonempty_iterator;
  typedef const_pointer const_nonempty_iterator;
  typedef STL_NAMESPACE::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
  typedef STL_NAMESPACE::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;

  // Iterator functions
  iterator begin()                      { return iterator(this, 0); }
  const_iterator begin() const          { return const_iterator(this, 0); }
  iterator end()                        { return iterator(this, size()); }
  const_iterator end() const            { return const_iterator(this, size()); }
  reverse_iterator rbegin()             { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
  reverse_iterator rend()               { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }

  // We'll have versions for our special non-empty iterator too
  nonempty_iterator nonempty_begin()             { return group; }
  const_nonempty_iterator nonempty_begin() const { return group; }
  nonempty_iterator nonempty_end() {
    return group + settings.num_buckets;
  }
  const_nonempty_iterator nonempty_end() const {
    return group + settings.num_buckets;
  }
  reverse_nonempty_iterator nonempty_rbegin() {
    return reverse_nonempty_iterator(nonempty_end());
  }
  const_reverse_nonempty_iterator nonempty_rbegin() const {
    return const_reverse_nonempty_iterator(nonempty_end());
  }
  reverse_nonempty_iterator nonempty_rend() {
    return reverse_nonempty_iterator(nonempty_begin());
  }
  const_reverse_nonempty_iterator nonempty_rend() const {
    return const_reverse_nonempty_iterator(nonempty_begin());
  }


  // This gives us the "default" value to return for an empty bucket.
  // We just use the default constructor on T, the template type
  const_reference default_value() const {
    static value_type defaultval = value_type();
    return defaultval;
  }


 private:
  // We need to do all this bit manipulation, of course.  ick
  static size_type charbit(size_type i)  { return i >> 3; }
  static size_type modbit(size_type i)   { return 1 << (i&7); }
  int bmtest(size_type i) const    { return bitmap[charbit(i)] & modbit(i); }
  void bmset(size_type i)          { bitmap[charbit(i)] |= modbit(i); }
  void bmclear(size_type i)        { bitmap[charbit(i)] &= ~modbit(i); }

  pointer allocate_group(size_type n) {
    pointer retval = settings.allocate(n);
    if (retval == NULL) {
      // We really should use PRIuS here, but I don't want to have to add
      // a whole new configure option, with concomitant macro namespace
      // pollution, just to print this (unlikely) error message.  So I cast.
      fprintf(stderr, "sparsehash: FATAL ERROR: "
              "failed to allocate %lu groups\n",
              static_cast<unsigned long>(n));
      exit(1);
    }
    return retval;
  }

  void free_group() {
    if (!group)  return;
    pointer end_it = group + settings.num_buckets;
    for (pointer p = group; p != end_it; ++p)
      p->~value_type();
    settings.deallocate(group, settings.num_buckets);
    group = NULL;
  }

 public:                         // get_iter() in sparsetable needs it
  // We need a small function that tells us how many set bits there are
  // in positions 0..i-1 of the bitmap.  It uses a big table.
  // We make it static so templates don't allocate lots of these tables.
  // There are lots of ways to do this calculation (called 'popcount').
  // The 8-bit table lookup is one of the fastest, though this
  // implementation suffers from not doing any loop unrolling.  See, eg,
  //   http://www.dalkescientific.com/writings/diary/archive/2008/07/03/hakmem_and_other_popcounts.html
  //   http://gurmeetsingh.wordpress.com/2008/08/05/fast-bit-counting-routines/
  static size_type pos_to_offset(const unsigned char *bm, size_type pos) {
    // We could make these ints.  The tradeoff is size (eg does it overwhelm
    // the cache?) vs efficiency in referencing sub-word-sized array elements
    static const char bits_in[256] = {      // # of bits set in one char
      0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4,
      1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      1, 2, 2, 3, 2, 3, 3, 4, 2, 3, 3, 4, 3, 4, 4, 5,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      2, 3, 3, 4, 3, 4, 4, 5, 3, 4, 4, 5, 4, 5, 5, 6,
      3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      3, 4, 4, 5, 4, 5, 5, 6, 4, 5, 5, 6, 5, 6, 6, 7,
      4, 5, 5, 6, 5, 6, 6, 7, 5, 6, 6, 7, 6, 7, 7, 8,
    };
    size_type retval = 0;

    // [Note: condition pos > 8 is an optimization; convince yourself we
    // give exactly the same result as if we had pos >= 8 here instead.]
    for ( ; pos > 8; pos -= 8 )                    // bm[0..pos/8-1]
      retval += bits_in[*bm++];                    // chars we want *all* bits in
    return retval + bits_in[*bm & ((1 << pos)-1)]; // the char that includes pos
  }

  size_type pos_to_offset(size_type pos) const {   // not static but still const
    return pos_to_offset(bitmap, pos);
  }


 public:
  // Constructors -- default and copy -- and destructor
  sparsegroup(allocator_type& a) :
      group(0), settings(alloc_impl<value_alloc_type>(a)) {
    memset(bitmap, 0, sizeof(bitmap));
  }
  sparsegroup(const sparsegroup& x) : group(0), settings(x.settings) {
    if ( settings.num_buckets ) {
      group = allocate_group(x.settings.num_buckets);
      uninitialized_copy(x.group, x.group + x.settings.num_buckets, group);
    }
    memcpy(bitmap, x.bitmap, sizeof(bitmap));
  }
  ~sparsegroup() { free_group(); }

  // Operator= is just like the copy constructor, I guess
  // TODO(austern): Make this exception safe. Handle exceptions in value_type's
  // copy constructor.
  sparsegroup &operator=(const sparsegroup& x) {
    if ( &x == this ) return *this;                    // x = x
    if ( x.settings.num_buckets == 0 ) {
      free_group();
    } else {
      pointer p = allocate_group(x.settings.num_buckets);
      uninitialized_copy(x.group, x.group + x.settings.num_buckets, p);
      free_group();
      group = p;
    }
    memcpy(bitmap, x.bitmap, sizeof(bitmap));
    settings.num_buckets = x.settings.num_buckets;
    return *this;
  }

  // Many STL algorithms use swap instead of copy constructors
  void swap(sparsegroup& x) {
    STL_NAMESPACE::swap(group, x.group);
    for ( int i = 0; i < sizeof(bitmap) / sizeof(*bitmap); ++i )
      STL_NAMESPACE::swap(bitmap[i], x.bitmap[i]);  // swap not defined on arrays
    STL_NAMESPACE::swap(settings.num_buckets, x.settings.num_buckets);
    // we purposefully don't swap the allocator, which may not be swap-able
  }

  // It's always nice to be able to clear a table without deallocating it
  void clear() {
    free_group();
    memset(bitmap, 0, sizeof(bitmap));
    settings.num_buckets = 0;
  }

  // Functions that tell you about size.  Alas, these aren't so useful
  // because our table is always fixed size.
  size_type size() const           { return GROUP_SIZE; }
  size_type max_size() const       { return GROUP_SIZE; }
  bool empty() const               { return false; }
  // We also may want to know how many *used* buckets there are
  size_type num_nonempty() const   { return settings.num_buckets; }


  // get()/set() are explicitly const/non-const.  You can use [] if
  // you want something that can be either (potentially more expensive).
  const_reference get(size_type i) const {
    if ( bmtest(i) )           // bucket i is occupied
      return group[pos_to_offset(bitmap, i)];
    else
      return default_value();  // return the default reference
  }

  // TODO(csilvers): make protected + friend
  // This is used by sparse_hashtable to get an element from the table
  // when we know it exists.
  const_reference unsafe_get(size_type i) const {
    assert(bmtest(i));
    return group[pos_to_offset(bitmap, i)];
  }

  // TODO(csilvers): make protected + friend
  reference mutating_get(size_type i) {    // fills bucket i before getting
    if ( !bmtest(i) )
      set(i, default_value());
    return group[pos_to_offset(bitmap, i)];
  }

  // Syntactic sugar.  It's easy to return a const reference.  To
  // return a non-const reference, we need to use the assigner adaptor.
  const_reference operator[](size_type i) const {
    return get(i);
  }

  element_adaptor operator[](size_type i) {
    return element_adaptor(this, i);
  }

 private:
  // Create space at group[offset], assuming value_type has trivial
  // copy constructor and destructor, and the allocator_type is
  // the default libc_allocator_with_alloc.  (Really, we want it to have
  // "trivial move", because that's what realloc and memmove both do.
  // But there's no way to capture that using type_traits, so we
  // pretend that move(x, y) is equivalent to "x.~T(); new(x) T(y);"
  // which is pretty much correct, if a bit conservative.)
  void set_aux(size_type offset, true_type) {
    group = settings.realloc_or_die(group, settings.num_buckets+1);
    // This is equivalent to memmove(), but faster on my Intel P4,
    // at least with gcc4.1 -O2 / glibc 2.3.6.
    for (size_type i = settings.num_buckets; i > offset; --i)
      memcpy(group + i, group + i-1, sizeof(*group));
  }

  // Create space at group[offset], without special assumptions about value_type
  // and allocator_type.
  void set_aux(size_type offset, false_type) {
    // This is valid because 0 <= offset <= num_buckets
    pointer p = allocate_group(settings.num_buckets + 1);
    uninitialized_copy(group, group + offset, p);
    uninitialized_copy(group + offset, group + settings.num_buckets,
                       p + offset + 1);
    free_group();
    group = p;
  }

 public:
  // This returns a reference to the inserted item (which is a copy of val).
  // TODO(austern): Make this exception safe: handle exceptions from
  // value_type's copy constructor.
  reference set(size_type i, const_reference val) {
    size_type offset = pos_to_offset(bitmap, i);  // where we'll find (or insert)
    if ( bmtest(i) ) {
      // Delete the old value, which we're replacing with the new one
      group[offset].~value_type();
    } else {
      typedef integral_constant<bool,
          (has_trivial_copy<value_type>::value &&
           has_trivial_destructor<value_type>::value &&
           is_same<allocator_type,
                   libc_allocator_with_realloc<value_type> >::value)>
          realloc_and_memmove_ok; // we pretend mv(x,y) == "x.~T(); new(x) T(y)"
      set_aux(offset, realloc_and_memmove_ok());
      ++settings.num_buckets;
      bmset(i);
    }
    // This does the actual inserting.  Since we made the array using
    // malloc, we use "placement new" to just call the constructor.
    new(&group[offset]) value_type(val);
    return group[offset];
  }

  // We let you see if a bucket is non-empty without retrieving it
  bool test(size_type i) const {
    return bmtest(i) != 0;
  }
  bool test(iterator pos) const {
    return bmtest(pos.pos) != 0;
  }

 private:
  // Shrink the array, assuming value_type has trivial copy
  // constructor and destructor, and the allocator_type is the default
  // libc_allocator_with_alloc.  (Really, we want it to have "trivial
  // move", because that's what realloc and memmove both do.  But
  // there's no way to capture that using type_traits, so we pretend
  // that move(x, y) is equivalent to ""x.~T(); new(x) T(y);"
  // which is pretty much correct, if a bit conservative.)
  void erase_aux(size_type offset, true_type) {
    // This isn't technically necessary, since we know we have a
    // trivial destructor, but is a cheap way to get a bit more safety.
    group[offset].~value_type();
    // This is equivalent to memmove(), but faster on my Intel P4,
    // at lesat with gcc4.1 -O2 / glibc 2.3.6.
    assert(settings.num_buckets > 0);
    for (size_type i = offset; i < settings.num_buckets-1; ++i)
      memcpy(group + i, group + i+1, sizeof(*group));  // hopefully inlined!
    group = settings.realloc_or_die(group, settings.num_buckets-1);
  }

  // Shrink the array, without any special assumptions about value_type and
  // allocator_type.
  void erase_aux(size_type offset, false_type) {
    // This is valid because 0 <= offset < num_buckets. Note the inequality.
    pointer p = allocate_group(settings.num_buckets - 1);
    uninitialized_copy(group, group + offset, p);
    uninitialized_copy(group + offset + 1, group + settings.num_buckets,
                       p + offset);
    free_group();
    group = p;
  }

 public:
  // This takes the specified elements out of the group.  This is
  // "undefining", rather than "clearing".
  // TODO(austern): Make this exception safe: handle exceptions from
  // value_type's copy constructor.
  void erase(size_type i) {
    if ( bmtest(i) ) {                         // trivial to erase empty bucket
      size_type offset = pos_to_offset(bitmap,i); // where we'll find (or insert)
      if ( settings.num_buckets == 1 ) {
        free_group();
        group = NULL;
      } else {
        typedef integral_constant<bool,
            (has_trivial_copy<value_type>::value &&
             has_trivial_destructor<value_type>::value &&
             is_same<
                 allocator_type,
                 libc_allocator_with_realloc<value_type> >::value)>
            realloc_and_memmove_ok; // pretend mv(x,y) == "x.~T(); new(x) T(y)"
        erase_aux(offset, realloc_and_memmove_ok());
      }
      --settings.num_buckets;
      bmclear(i);
    }
  }

  void erase(iterator pos) {
    erase(pos.pos);
  }

  void erase(iterator start_it, iterator end_it) {
    // This could be more efficient, but to do so we'd need to make
    // bmclear() clear a range of indices.  Doesn't seem worth it.
    for ( ; start_it != end_it; ++start_it )
      erase(start_it);
  }


  // I/O
  // We support reading and writing groups to disk.  We don't store
  // the actual array contents (which we don't know how to store),
  // just the bitmap and size.  Meant to be used with table I/O.
  // Returns true if all was ok
  bool write_metadata(FILE *fp) const {
    // we explicitly set to u_int16_t
    assert(sizeof(settings.num_buckets) == 2);
    PUT_(settings.num_buckets, 8);
    PUT_(settings.num_buckets, 0);
    if ( !fwrite(bitmap, sizeof(bitmap), 1, fp) )
      return false;
    return true;
  }

  // Reading destroys the old group contents!  Returns true if all was ok
  bool read_metadata(FILE *fp) {
    clear();

    int x;          // the GET_ macro requires an 'int x' to be defined
    GET_(settings.num_buckets, 8);
    GET_(settings.num_buckets, 0);

    if ( !fread(bitmap, sizeof(bitmap), 1, fp) )  return false;

    // We'll allocate the space, but we won't fill it: it will be
    // left as uninitialized raw memory.
    group = allocate_group(settings.num_buckets);
    return true;
  }

  // If your keys and values are simple enough, we can write them
  // to disk for you.  "simple enough" means POD and no pointers.
  // However, we don't try to normalize endianness
  bool write_nopointer_data(FILE *fp) const {
    for ( const_nonempty_iterator it = nonempty_begin();
          it != nonempty_end(); ++it ) {
      if ( !fwrite(&*it, sizeof(*it), 1, fp) )  return false;
    }
    return true;
  }

  // When reading, we have to override the potential const-ness of *it.
  // Again, only meaningful if value_type is a POD.
  bool read_nopointer_data(FILE *fp) {
    for ( nonempty_iterator it = nonempty_begin();
          it != nonempty_end(); ++it ) {
      if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) )
        return false;
    }
    return true;
  }

  // Comparisons.  Note the comparisons are pretty arbitrary: we
  // compare values of the first index that isn't equal (using default
  // value for empty buckets).
  bool operator==(const sparsegroup& x) const {
    return ( settings.num_buckets == x.settings.num_buckets &&
             memcmp(bitmap, x.bitmap, sizeof(bitmap)) == 0 &&
             STL_NAMESPACE::equal(begin(), end(), x.begin()) ); // from algorithm
  }
  bool operator<(const sparsegroup& x) const {      // also from algorithm
    return STL_NAMESPACE::lexicographical_compare(begin(), end(), 
                                                  x.begin(), x.end());
  }
  bool operator!=(const sparsegroup& x) const { return !(*this == x); }
  bool operator<=(const sparsegroup& x) const { return !(x < *this); }
  bool operator>(const sparsegroup& x) const { return x < *this; }
  bool operator>=(const sparsegroup& x) const { return !(*this < x); }

 private:
  template <class A>
  class alloc_impl : public A {
   public:
    typedef typename A::pointer pointer;
    typedef typename A::size_type size_type;

    // Convert a normal allocator to one that has realloc_or_die()
    alloc_impl(const A& a) : A(a) { }

    // realloc_or_die should only be used when using the default
    // allocator (libc_allocator_with_realloc).
    pointer realloc_or_die(pointer /*ptr*/, size_type /*n*/) {
      fprintf(stderr, "realloc_or_die is only supported for "
                      "libc_allocator_with_realloc");
      exit(1);
      return NULL;
    }
  };

  // A template specialization of alloc_impl for
  // libc_allocator_with_realloc that can handle realloc_or_die.
  template <class A>
  class alloc_impl<libc_allocator_with_realloc<A> >
      : public libc_allocator_with_realloc<A> {
   public:
    typedef typename libc_allocator_with_realloc<A>::pointer pointer;
    typedef typename libc_allocator_with_realloc<A>::size_type size_type;

    alloc_impl(const libc_allocator_with_realloc<A>& a)
        : libc_allocator_with_realloc<A>(a) { }

    pointer realloc_or_die(pointer ptr, size_type n) {
      pointer retval = this->reallocate(ptr, n);
      if (retval == NULL) {
        // We really should use PRIuS here, but I don't want to have to add
        // a whole new configure option, with concomitant macro namespace
        // pollution, just to print this (unlikely) error message.  So I cast.
        fprintf(stderr, "sparsehash: FATAL ERROR: failed to reallocate "
                "%lu elements for ptr %p",
                static_cast<unsigned long>(n), ptr);
        exit(1);
      }
      return retval;
    }
  };

  // Package allocator with num_buckets to eliminate memory needed for the
  // zero-size allocator.
  // If new fields are added to this class, we should add them to
  // operator= and swap.
  class Settings : public alloc_impl<value_alloc_type> {
   public:
    Settings(const alloc_impl<value_alloc_type>& a, u_int16_t n = 0)
        : alloc_impl<value_alloc_type>(a), num_buckets(n) { }
    Settings(const Settings& s)
        : alloc_impl<value_alloc_type>(s), num_buckets(s.num_buckets) { }

    u_int16_t num_buckets;                    // limits GROUP_SIZE to 64K
  };

  // The actual data
  pointer group;                              // (small) array of T's
  Settings settings;                          // allocator and num_buckets
  unsigned char bitmap[(GROUP_SIZE-1)/8 + 1]; // fancy math is so we round up
};

// We need a global swap as well
template <class T, u_int16_t GROUP_SIZE, class Alloc>
inline void swap(sparsegroup<T,GROUP_SIZE,Alloc> &x,
                 sparsegroup<T,GROUP_SIZE,Alloc> &y) {
  x.swap(y);
}

// ---------------------------------------------------------------------------


template <class T, u_int16_t GROUP_SIZE = DEFAULT_SPARSEGROUP_SIZE,
          class Alloc = libc_allocator_with_realloc<T> >
class sparsetable {
 private:
  typedef typename Alloc::template rebind<T>::other value_alloc_type;
  typedef typename Alloc::template rebind<
      sparsegroup<T, GROUP_SIZE, value_alloc_type> >::other vector_alloc;

 public:
  // Basic types
  typedef T value_type;                        // stolen from stl_vector.h
  typedef Alloc allocator_type;
  typedef typename value_alloc_type::size_type size_type;
  typedef typename value_alloc_type::difference_type difference_type;
  typedef typename value_alloc_type::reference reference;
  typedef typename value_alloc_type::const_reference const_reference;
  typedef typename value_alloc_type::pointer pointer;
  typedef typename value_alloc_type::const_pointer const_pointer;
  typedef table_iterator<sparsetable<T, GROUP_SIZE, Alloc> > iterator;
  typedef const_table_iterator<sparsetable<T, GROUP_SIZE, Alloc> >
      const_iterator;
  typedef table_element_adaptor<sparsetable<T, GROUP_SIZE, Alloc> >
      element_adaptor;
  typedef STL_NAMESPACE::reverse_iterator<const_iterator> const_reverse_iterator;
  typedef STL_NAMESPACE::reverse_iterator<iterator> reverse_iterator;

  // These are our special iterators, that go over non-empty buckets in a
  // table.  These aren't const only because you can change non-empty bcks.
  typedef two_d_iterator< vector< sparsegroup<value_type, GROUP_SIZE,
                                              value_alloc_type>,
                                  vector_alloc> >
     nonempty_iterator;
  typedef const_two_d_iterator< vector< sparsegroup<value_type,
                                                    GROUP_SIZE,
                                                    value_alloc_type>,
                                        vector_alloc> >
     const_nonempty_iterator;
  typedef STL_NAMESPACE::reverse_iterator<nonempty_iterator> reverse_nonempty_iterator;
  typedef STL_NAMESPACE::reverse_iterator<const_nonempty_iterator> const_reverse_nonempty_iterator;
  // Another special iterator: it frees memory as it iterates (used to resize)
  typedef destructive_two_d_iterator< vector< sparsegroup<value_type,
                                                          GROUP_SIZE,
                                                          value_alloc_type>,
                                              vector_alloc> >
     destructive_iterator;

  // Iterator functions
  iterator begin()                      { return iterator(this, 0); }
  const_iterator begin() const          { return const_iterator(this, 0); }
  iterator end()                        { return iterator(this, size()); }
  const_iterator end() const            { return const_iterator(this, size()); }
  reverse_iterator rbegin()             { return reverse_iterator(end()); }
  const_reverse_iterator rbegin() const { return const_reverse_iterator(end()); }
  reverse_iterator rend()               { return reverse_iterator(begin()); }
  const_reverse_iterator rend() const { return const_reverse_iterator(begin()); }

  // Versions for our special non-empty iterator
  nonempty_iterator nonempty_begin()             {
    return nonempty_iterator(groups.begin(), groups.end(), groups.begin());
  }
  const_nonempty_iterator nonempty_begin() const {
    return const_nonempty_iterator(groups.begin(),groups.end(), groups.begin());
  }
  nonempty_iterator nonempty_end() {
    return nonempty_iterator(groups.begin(), groups.end(), groups.end());
  }
  const_nonempty_iterator nonempty_end() const {
    return const_nonempty_iterator(groups.begin(), groups.end(), groups.end());
  }
  reverse_nonempty_iterator nonempty_rbegin() {
    return reverse_nonempty_iterator(nonempty_end());
  }
  const_reverse_nonempty_iterator nonempty_rbegin() const {
    return const_reverse_nonempty_iterator(nonempty_end());
  }
  reverse_nonempty_iterator nonempty_rend() {
    return reverse_nonempty_iterator(nonempty_begin());
  }
  const_reverse_nonempty_iterator nonempty_rend() const {
    return const_reverse_nonempty_iterator(nonempty_begin());
  }
  destructive_iterator destructive_begin() {
    return destructive_iterator(groups.begin(), groups.end(), groups.begin());
  }
  destructive_iterator destructive_end() {
    return destructive_iterator(groups.begin(), groups.end(), groups.end());
  }

  typedef sparsegroup<value_type, GROUP_SIZE, allocator_type> group_type;
  typedef vector<group_type, vector_alloc > group_vector_type;

  typedef typename group_vector_type::reference GroupsReference;
  typedef typename group_vector_type::const_reference GroupsConstReference;
  typedef typename group_vector_type::iterator GroupsIterator;
  typedef typename group_vector_type::const_iterator GroupsConstIterator;

  // How to deal with the proper group
  static size_type num_groups(size_type num) {   // how many to hold num buckets
    return num == 0 ? 0 : ((num-1) / GROUP_SIZE) + 1;
  }

  u_int16_t pos_in_group(size_type i) const {
    return static_cast<u_int16_t>(i % GROUP_SIZE);
  }
  size_type group_num(size_type i) const {
    return i / GROUP_SIZE;
  }
  GroupsReference which_group(size_type i) {
    return groups[group_num(i)];
  }
  GroupsConstReference which_group(size_type i) const {
    return groups[group_num(i)];
  }

 public:
  // Constructors -- default, normal (when you specify size), and copy
  sparsetable(size_type sz = 0, Alloc alloc = Alloc())
      : groups(vector_alloc(alloc)), settings(alloc, sz) {
    groups.resize(num_groups(sz), group_type(settings));
  }
  // We can get away with using the default copy constructor,
  // and default destructor, and hence the default operator=.  Huzzah!

  // Many STL algorithms use swap instead of copy constructors
  void swap(sparsetable& x) {
    STL_NAMESPACE::swap(groups, x.groups);
    STL_NAMESPACE::swap(settings.table_size, x.settings.table_size);
    STL_NAMESPACE::swap(settings.num_buckets, x.settings.num_buckets);
  }

  // It's always nice to be able to clear a table without deallocating it
  void clear() {
    GroupsIterator group;
    for ( group = groups.begin(); group != groups.end(); ++group ) {
      group->clear();
    }
    settings.num_buckets = 0;
  }

  // ACCESSOR FUNCTIONS for the things we templatize on, basically
  allocator_type get_allocator() const {
    return allocator_type(settings);
  }


  // Functions that tell you about size.
  // NOTE: empty() is non-intuitive!  It does not tell you the number
  // of not-empty buckets (use num_nonempty() for that).  Instead
  // it says whether you've allocated any buckets or not.
  size_type size() const           { return settings.table_size; }
  size_type max_size() const       { return settings.max_size(); }
  bool empty() const               { return settings.table_size == 0; }
  // We also may want to know how many *used* buckets there are
  size_type num_nonempty() const   { return settings.num_buckets; }

  // OK, we'll let you resize one of these puppies
  void resize(size_type new_size) {
    groups.resize(num_groups(new_size), group_type(settings));
    if ( new_size < settings.table_size) {
      // lower num_buckets, clear last group
      if ( pos_in_group(new_size) > 0 )     // need to clear inside last group
        groups.back().erase(groups.back().begin() + pos_in_group(new_size),
                            groups.back().end());
      settings.num_buckets = 0;                   // refigure # of used buckets
      GroupsConstIterator group;
      for ( group = groups.begin(); group != groups.end(); ++group )
        settings.num_buckets += group->num_nonempty();
    }
    settings.table_size = new_size;
  }


  // We let you see if a bucket is non-empty without retrieving it
  bool test(size_type i) const {
    return which_group(i).test(pos_in_group(i));
  }
  bool test(iterator pos) const {
    return which_group(pos.pos).test(pos_in_group(pos.pos));
  }
  bool test(const_iterator pos) const {
    return which_group(pos.pos).test(pos_in_group(pos.pos));
  }

  // We only return const_references because it's really hard to
  // return something settable for empty buckets.  Use set() instead.
  const_reference get(size_type i) const {
    assert(i < settings.table_size);
    return which_group(i).get(pos_in_group(i));
  }

  // TODO(csilvers): make protected + friend
  // This is used by sparse_hashtable to get an element from the table
  // when we know it exists (because the caller has called test(i)).
  const_reference unsafe_get(size_type i) const {
    assert(i < settings.table_size);
    assert(test(i));
    return which_group(i).unsafe_get(pos_in_group(i));
  }

  // TODO(csilvers): make protected + friend element_adaptor
  reference mutating_get(size_type i) {    // fills bucket i before getting
    assert(i < settings.table_size);
    size_type old_numbuckets = which_group(i).num_nonempty();
    reference retval = which_group(i).mutating_get(pos_in_group(i));
    settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
    return retval;
  }

  // Syntactic sugar.  As in sparsegroup, the non-const version is harder
  const_reference operator[](size_type i) const {
    return get(i);
  }

  element_adaptor operator[](size_type i) {
    return element_adaptor(this, i);
  }

  // Needed for hashtables, gets as a nonempty_iterator.  Crashes for empty bcks
  const_nonempty_iterator get_iter(size_type i) const {
    assert(test(i));    // how can a nonempty_iterator point to an empty bucket?
    return const_nonempty_iterator(
      groups.begin(), groups.end(),
      groups.begin() + group_num(i),
      (groups[group_num(i)].nonempty_begin() +
       groups[group_num(i)].pos_to_offset(pos_in_group(i))));
  }
  // For nonempty we can return a non-const version
  nonempty_iterator get_iter(size_type i) {
    assert(test(i));    // how can a nonempty_iterator point to an empty bucket?
    return nonempty_iterator(
      groups.begin(), groups.end(),
      groups.begin() + group_num(i),
      (groups[group_num(i)].nonempty_begin() +
       groups[group_num(i)].pos_to_offset(pos_in_group(i))));
  }


  // This returns a reference to the inserted item (which is a copy of val)
  // The trick is to figure out whether we're replacing or inserting anew
  reference set(size_type i, const_reference val) {
    assert(i < settings.table_size);
    size_type old_numbuckets = which_group(i).num_nonempty();
    reference retval = which_group(i).set(pos_in_group(i), val);
    settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
    return retval;
  }

  // This takes the specified elements out of the table.  This is
  // "undefining", rather than "clearing".
  void erase(size_type i) {
    assert(i < settings.table_size);
    size_type old_numbuckets = which_group(i).num_nonempty();
    which_group(i).erase(pos_in_group(i));
    settings.num_buckets += which_group(i).num_nonempty() - old_numbuckets;
  }

  void erase(iterator pos) {
    erase(pos.pos);
  }

  void erase(iterator start_it, iterator end_it) {
    // This could be more efficient, but then we'd need to figure
    // out if we spanned groups or not.  Doesn't seem worth it.
    for ( ; start_it != end_it; ++start_it )
      erase(start_it);
  }


  // We support reading and writing tables to disk.  We don't store
  // the actual array contents (which we don't know how to store),
  // just the groups and sizes.  Returns true if all went ok.

 private:
  // Every time the disk format changes, this should probably change too
  static const unsigned long MAGIC_NUMBER = 0x24687531;

  // Old versions of this code write all data in 32 bits.  We need to
  // support these files as well as having support for 64-bit systems.
  // So we use the following encoding scheme: for values < 2^32-1, we
  // store in 4 bytes in big-endian order.  For values > 2^32, we
  // store 0xFFFFFFF followed by 8 bytes in big-endian order.  This
  // causes us to mis-read old-version code that stores exactly
  // 0xFFFFFFF, but I don't think that is likely to have happened for
  // these particular values.
  static bool write_32_or_64(FILE* fp, size_type value) {
    if ( value < 0xFFFFFFFFULL ) {        // fits in 4 bytes
      PUT_(value, 24);
      PUT_(value, 16);
      PUT_(value, 8);
      PUT_(value, 0);
    } else if ( value == 0xFFFFFFFFUL ) {   // special case in 32bit systems
      PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0);  // marker
      PUT_(0, 0); PUT_(0, 0); PUT_(0, 0); PUT_(0, 0);
      PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0);
    } else {
      PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0); PUT_(0xFF, 0);  // marker
      PUT_(value, 56);
      PUT_(value, 48);
      PUT_(value, 40);
      PUT_(value, 32);
      PUT_(value, 24);
      PUT_(value, 16);
      PUT_(value, 8);
      PUT_(value, 0);
    }
    return true;
  }

  static bool read_32_or_64(FILE* fp, size_type *value) {  // reads into value
    size_type first4 = 0;
    int x;
    GET_(first4, 24);
    GET_(first4, 16);
    GET_(first4, 8);
    GET_(first4, 0);
    if ( first4 < 0xFFFFFFFFULL ) {
      *value = first4;
    } else {
      GET_(*value, 56);
      GET_(*value, 48);
      GET_(*value, 40);
      GET_(*value, 32);
      GET_(*value, 24);
      GET_(*value, 16);
      GET_(*value, 8);
      GET_(*value, 0);
    }
    return true;
  }

 public:
  bool write_metadata(FILE *fp) const {
    if ( !write_32_or_64(fp, MAGIC_NUMBER) )  return false;
    if ( !write_32_or_64(fp, settings.table_size) )  return false;
    if ( !write_32_or_64(fp, settings.num_buckets) )  return false;

    GroupsConstIterator group;
    for ( group = groups.begin(); group != groups.end(); ++group )
      if ( group->write_metadata(fp) == false )  return false;
    return true;
  }

  // Reading destroys the old table contents!  Returns true if read ok.
  bool read_metadata(FILE *fp) {
    size_type magic_read = 0;
    if ( !read_32_or_64(fp, &magic_read) )  return false;
    if ( magic_read != MAGIC_NUMBER ) {
      clear();                        // just to be consistent
      return false;
    }

    if ( !read_32_or_64(fp, &settings.table_size) )  return false;
    if ( !read_32_or_64(fp, &settings.num_buckets) )  return false;

    resize(settings.table_size);                    // so the vector's sized ok
    GroupsIterator group;
    for ( group = groups.begin(); group != groups.end(); ++group )
      if ( group->read_metadata(fp) == false )  return false;
    return true;
  }

  // This code is identical to that for SparseGroup
  // If your keys and values are simple enough, we can write them
  // to disk for you.  "simple enough" means no pointers.
  // However, we don't try to normalize endianness
  bool write_nopointer_data(FILE *fp) const {
    for ( const_nonempty_iterator it = nonempty_begin();
          it != nonempty_end(); ++it ) {
      if ( !fwrite(&*it, sizeof(*it), 1, fp) )  return false;
    }
    return true;
  }

  // When reading, we have to override the potential const-ness of *it
  bool read_nopointer_data(FILE *fp) {
    for ( nonempty_iterator it = nonempty_begin();
          it != nonempty_end(); ++it ) {
      if ( !fread(reinterpret_cast<void*>(&(*it)), sizeof(*it), 1, fp) )
        return false;
    }
    return true;
  }

  // Comparisons.  Note the comparisons are pretty arbitrary: we
  // compare values of the first index that isn't equal (using default
  // value for empty buckets).
  bool operator==(const sparsetable& x) const {
    return ( settings.table_size == x.settings.table_size &&
             settings.num_buckets == x.settings.num_buckets &&
             groups == x.groups );
  }
  bool operator<(const sparsetable& x) const {      // also from algobase.h
    return STL_NAMESPACE::lexicographical_compare(begin(), end(), 
                                                  x.begin(), x.end());
  }
  bool operator!=(const sparsetable& x) const { return !(*this == x); }
  bool operator<=(const sparsetable& x) const { return !(x < *this); }
  bool operator>(const sparsetable& x) const { return x < *this; }
  bool operator>=(const sparsetable& x) const { return !(*this < x); }


 private:
  // Package allocator with table_size and num_buckets to eliminate memory
  // needed for the zero-size allocator.
  // If new fields are added to this class, we should add them to
  // operator= and swap.
  class Settings : public allocator_type {
   public:
    typedef typename allocator_type::size_type size_type;

    Settings(const allocator_type& a, size_type sz = 0, size_type n = 0)
        : allocator_type(a), table_size(sz), num_buckets(n) { }

    Settings(const Settings& s)
        : allocator_type(s),
          table_size(s.table_size), num_buckets(s.num_buckets) { }

    size_type table_size;          // how many buckets they want
    size_type num_buckets;         // number of non-empty buckets
  };

  // The actual data
  group_vector_type groups;        // our list of groups
  Settings settings;               // allocator, table size, buckets
};

// We need a global swap as well
template <class T, u_int16_t GROUP_SIZE, class Alloc>
inline void swap(sparsetable<T,GROUP_SIZE,Alloc> &x,
                 sparsetable<T,GROUP_SIZE,Alloc> &y) {
  x.swap(y);
}

#undef GET_
#undef PUT_

_END_GOOGLE_NAMESPACE_

#endif