This file is indexed.

/usr/share/pyshared/pyromaths/sixiemes/angles.py is in pyromaths 11.05.1b2-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
#!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Pyromaths
# Un programme en Python qui permet de créer des fiches d'exercices types de
# mathématiques niveau collège ainsi que leur corrigé en LaTeX.
# Copyright (C) 2006 -- Jérôme Ortais (jerome.ortais@pyromaths.org)
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#

import math
from random import randrange
from ..outils import Arithmetique
from ..outils import Geometrie


def eq_droites(A, B):
    (xA, yA) = A
    (xB, yB) = B
    a = ((yB - yA) * 1.0) / (xB - xA)
    b = ((xB * yA - xA * yB) * 1.0) / (xB - xA)
    return (a, b)


def inter_droites(A, B, C, D):
    """
    Calcule les coordonn\xc3\xa9es du point d'intersection des droites (AB) et (CD)
    """

    (a1, b1) = eq_droites(A, B)
    (a2, b2) = eq_droites(C, D)
    if a1 == a2:  #droites parallèles
        xI = A[0]
        yI = A[1]
    else:
        xI = ((b2 - b1) * 1.0) / (a1 - a2)
        yI = ((a1 * b2 - a2 * b1) * 1.0) / (a1 - a2)
    return (xI, yI)


def dist_pt_droite(A, B, C):
    """
    calcule la distance du point C \xc3\xa0 la droite (AB)
    """

    (a, b) = eq_droites(A, B)
    (xC, yC) = C
    d = (abs(a * xC - yC + b) * 1.0) / math.sqrt(a ** 2 + 1)
    return d


def dist_points(A, B):
    """ Calcul la distance entre deux points"""

    (xA, yA) = A
    (xB, yB) = B
    d = math.sqrt((xB - xA) ** 2 + (yB - yA) ** 2)
    return d


def coord_projete(A, B, C):
    """
    Calcule les coordonn\xc3\xa9es du projet\xc3\xa9 orthogonal de C sur la droite (AB)
    """

    (xA, yA) = A
    (xB, yB) = B
    (xC, yC) = C
    n = dist_points(A, B)
    p = (xB - xA) / n
    q = (yB - yA) / n
    s = p * (xC - xA) + q * (yC - yA)
    return (xA + s * p, yA + s * q)


def verifie_distance_mini(A, B, C, D):
    """
    V\xc3\xa9rifie que la distance minimale entre [AB] et [AC] est sup\xc3\xa9rieure \xc3\xa0 dmin
    """

    dmin = 1.2
    (xA, yA) = A
    (xB, yB) = B
    if xA > xB:
        (xA, yA, xB, yB) = (xB, yB, xA, yA)
    (xC, yC) = C
    (xD, yD) = D
    if xC > xD:
        (xC, yC, xD, yD) = (xD, yD, xC, yC)
    (xI, yI) = inter_droites(A, B, C, D)
    if xA <= xI <= xB and xC <= xI <= xD or xA <= coord_projete(A, B, C)[0] <= \
        xB and dist_pt_droite(A, B, C) < dmin or xA <= coord_projete(A,
            B, D)[0] <= xB and dist_pt_droite(A, B, D) < dmin or xC <= \
        coord_projete(C, D, A)[0] <= xD and dist_pt_droite(C, D, A) < \
        dmin or xC <= coord_projete(C, D, B)[0] <= xD and dist_pt_droite(C,
            D, B) < dmin or dist_points(A, C) < dmin or dist_points(A, D) < \
        dmin or dist_points(B, C) < dmin or dist_points(B, D) < dmin:
        isValid = False
    else:
        isValid = True
    return isValid


def verifie_angle(lpoints, A, B, C):
    """
    V\xc3\xa9rifie que l'angle BAC ne coupe pas les autres angles d\xc3\xa9j\xc3\xa0 trac\xc3\xa9s
    """

    if len(lpoints) == 0:  #Premier angle créé
        isValid = True
    else:
        for i in range(len(lpoints)):
            (A1, B1, C1) = (lpoints[i])[:3]
            isValid = verifie_distance_mini(A, B, A1, B1) and \
                verifie_distance_mini(A, B, A1, C1) and \
                verifie_distance_mini(A, C, A1, B1) and \
                verifie_distance_mini(A, C, A1, C1)
            if not isValid:
                break
    return isValid


def cree_angles(nb_angles, xmax, ymax):
    '''
    cr\xc3\xa9e une s\xc3\xa9rie d\'angles "non s\xc3\xa9quents"
    '''

    (xmax, ymax) = (xmax - .5, ymax - .5)  #taille de l'image en cm
    lg_seg = 6  #longueur des côtés des angles
    lpoints = []
    cpt = 0  #evite une boucle infinie
    while len(lpoints) < nb_angles and cpt < 1000:
        (xA, yA) = (randrange(5, xmax * 10) / 10.0, randrange(5, ymax *
                    10) / 10.0)
        alpha = randrange(360)  #angle entre un côté et l'horizontal
        if len(lpoints) < nb_angles / 2:
            beta = randrange(90, 180)  #crée un angle droit ou obtus
        else:
            beta = randrange(0, 75) + 15  #crée un angle aigu (entre 15° et 89°)
        xB = xA + lg_seg * math.cos((alpha * math.pi) / 180)
        yB = yA + lg_seg * math.sin((alpha * math.pi) / 180)
        xC = xA + lg_seg * math.cos(((alpha + beta) * math.pi) / 180)
        yC = yA + lg_seg * math.sin(((alpha + beta) * math.pi) / 180)
        (A, B, C) = ((xA, yA), (xB, yB), (xC, yC))
        if xA != xB and xA != xC and .5 < xB < xmax and .5 < yB < ymax and \
            .5 < xC < xmax and .5 < yC < ymax and verifie_angle(lpoints,
                A, B, C):
            lpoints.append((A, B, C, alpha, beta))
        else:
            cpt = cpt + 1

    #print len(lpoints)

    return lpoints


def PosAngle(alpha, beta):
    """retourne les angles pour placer les points sur la figure"""

    A = (alpha + beta / 2.0 + 180) % 360
    B = (alpha - 90) % 360
    C = (alpha + beta + 90) % 360
    return (A, B, C)


def PointName(l3noms, indice):
    list = []
    for i in range(3):
        list.append(l3noms[i])
    return tuple(list)


def figure(exo, cor, lpoints, lnoms, xmax, ymax):
    exo.append("\\begin{pspicture}(%s,%s)" % (xmax, ymax))
    exo.append("\\psframe(0,0)(%s,%s)" % (xmax, ymax))
    exo.append("\\psset{PointSymbol=none,MarkAngleRadius=0.6}")
    cor.append("\\begin{pspicture}(%s,%s)" % (xmax, ymax))
    cor.append("\\psset{PointSymbol=none,MarkAngleRadius=0.6}")
    cor.append("\\psframe(0,0)(%s,%s)" % (xmax, ymax))
    for i in range(len(lnoms)):
        points_exo = ''
        points_cor = ''
        points_exo += "\\pstGeonode[PointName={%s,%s,%s}," % lnoms[i]
        points_cor += "\\pstGeonode[PointName={%s,%s,%s}," % lnoms[i]
        points_exo += "PosAngle={%s,%s,%s}]" % PosAngle(lpoints[i][3], lpoints[i][4])
        points_cor += "PosAngle={%s,%s,%s}]" % PosAngle(lpoints[i][3], lpoints[i][4])
        for j in range(3):
            points_exo += "(%.2f,%.2f)" % lpoints[i][j]
            points_exo += "{a%s%s}" % (j, i)
            points_cor += "(%.2f,%.2f)" % lpoints[i][j]
            points_cor += "{a%s%s}" % (j, i)
        exo.append(points_exo)
        cor.append(points_cor)
        exo.append("\\pstMarkAngle{a%s%s}{a%s%s}{a%s%s}{}"%(1,i,0,i,2,i))
        cor.append("\\pstMarkAngle{a%s%s}{a%s%s}{a%s%s}{}"%(1,i,0,i,2,i))
        exo.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a1%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a1%s}" % (i, i, i, i))
        cor.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a1%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a1%s}" % (i, i, i, i))
        exo.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a2%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a2%s}" % (i, i, i, i))
        cor.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a2%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a2%s}" % (i, i, i, i))
    exo.append("\\end{pspicture}\\par")
    cor.append("\\end{pspicture}\\par")
    return (exo, cor)


def reponses(exo, cor, lpoints, lnoms):
    cor.append("\\begin{multicols}{4}")
    for i in range(len(lnoms)):
        cor.append("$\\widehat{%s%s%s}=%s\degres$\\par" % (lnoms[i][1],
                 lnoms[i][0], lnoms[i][2], lpoints[i][4]))
        if lpoints[i][4] < 90:
            cor.append("angle aigu\\par")
        elif lpoints[i][4] > 90:
            cor.append("angle obtus\\par")
        else:
            cor.append("angle droit\\par")
    cor.append("\\end{multicols}")
    exo.append("\\begin{tabularx}{\\textwidth}{|*{4}{X|}}")
    exo.append("\\hline angle 1 : & angle 2 : & angle 3 : & angle 4 : \\\\")
    exo.append("\\hline &&& \\\\ &&& \\\\ &&& \\\\ \\hline")
    exo.append("\\end{tabularx}")


def MesureAngles():
    nb_angles = 4
    (xmax, ymax) = (18, 8)  #taille de l'image en cm
    lnoms = []
    lpoints = []
    cpt = 0
    while len(lpoints) < nb_angles:
        if cpt > 1000:
            lpoints = []
            cpt = 0
        lpoints = cree_angles(nb_angles, xmax, ymax)
        cpt = cpt + 1
    tmpl = Geometrie.choix_points(3 * nb_angles)
    for i in range(nb_angles):
        lnoms.append(tuple(tmpl[3 * i:3 * i + 3]))
    exo = ["\\exercice", "Nommer, mesurer et donner la nature de chacun des angles suivants :\\par "]
    cor = ["\\exercice*", "Nommer, mesurer et donner la nature de chacun des angles suivants :\\par "]
    figure(exo, cor, lpoints, lnoms, xmax, ymax)
    reponses(exo, cor, lpoints, lnoms)
    return (exo, cor)