/usr/share/pyshared/pyromaths/sixiemes/angles.py is in pyromaths 11.05.1b2-0ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 | #!/usr/bin/python
# -*- coding: utf-8 -*-
#
# Pyromaths
# Un programme en Python qui permet de créer des fiches d'exercices types de
# mathématiques niveau collège ainsi que leur corrigé en LaTeX.
# Copyright (C) 2006 -- Jérôme Ortais (jerome.ortais@pyromaths.org)
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
#
import math
from random import randrange
from ..outils import Arithmetique
from ..outils import Geometrie
def eq_droites(A, B):
(xA, yA) = A
(xB, yB) = B
a = ((yB - yA) * 1.0) / (xB - xA)
b = ((xB * yA - xA * yB) * 1.0) / (xB - xA)
return (a, b)
def inter_droites(A, B, C, D):
"""
Calcule les coordonn\xc3\xa9es du point d'intersection des droites (AB) et (CD)
"""
(a1, b1) = eq_droites(A, B)
(a2, b2) = eq_droites(C, D)
if a1 == a2: #droites parallèles
xI = A[0]
yI = A[1]
else:
xI = ((b2 - b1) * 1.0) / (a1 - a2)
yI = ((a1 * b2 - a2 * b1) * 1.0) / (a1 - a2)
return (xI, yI)
def dist_pt_droite(A, B, C):
"""
calcule la distance du point C \xc3\xa0 la droite (AB)
"""
(a, b) = eq_droites(A, B)
(xC, yC) = C
d = (abs(a * xC - yC + b) * 1.0) / math.sqrt(a ** 2 + 1)
return d
def dist_points(A, B):
""" Calcul la distance entre deux points"""
(xA, yA) = A
(xB, yB) = B
d = math.sqrt((xB - xA) ** 2 + (yB - yA) ** 2)
return d
def coord_projete(A, B, C):
"""
Calcule les coordonn\xc3\xa9es du projet\xc3\xa9 orthogonal de C sur la droite (AB)
"""
(xA, yA) = A
(xB, yB) = B
(xC, yC) = C
n = dist_points(A, B)
p = (xB - xA) / n
q = (yB - yA) / n
s = p * (xC - xA) + q * (yC - yA)
return (xA + s * p, yA + s * q)
def verifie_distance_mini(A, B, C, D):
"""
V\xc3\xa9rifie que la distance minimale entre [AB] et [AC] est sup\xc3\xa9rieure \xc3\xa0 dmin
"""
dmin = 1.2
(xA, yA) = A
(xB, yB) = B
if xA > xB:
(xA, yA, xB, yB) = (xB, yB, xA, yA)
(xC, yC) = C
(xD, yD) = D
if xC > xD:
(xC, yC, xD, yD) = (xD, yD, xC, yC)
(xI, yI) = inter_droites(A, B, C, D)
if xA <= xI <= xB and xC <= xI <= xD or xA <= coord_projete(A, B, C)[0] <= \
xB and dist_pt_droite(A, B, C) < dmin or xA <= coord_projete(A,
B, D)[0] <= xB and dist_pt_droite(A, B, D) < dmin or xC <= \
coord_projete(C, D, A)[0] <= xD and dist_pt_droite(C, D, A) < \
dmin or xC <= coord_projete(C, D, B)[0] <= xD and dist_pt_droite(C,
D, B) < dmin or dist_points(A, C) < dmin or dist_points(A, D) < \
dmin or dist_points(B, C) < dmin or dist_points(B, D) < dmin:
isValid = False
else:
isValid = True
return isValid
def verifie_angle(lpoints, A, B, C):
"""
V\xc3\xa9rifie que l'angle BAC ne coupe pas les autres angles d\xc3\xa9j\xc3\xa0 trac\xc3\xa9s
"""
if len(lpoints) == 0: #Premier angle créé
isValid = True
else:
for i in range(len(lpoints)):
(A1, B1, C1) = (lpoints[i])[:3]
isValid = verifie_distance_mini(A, B, A1, B1) and \
verifie_distance_mini(A, B, A1, C1) and \
verifie_distance_mini(A, C, A1, B1) and \
verifie_distance_mini(A, C, A1, C1)
if not isValid:
break
return isValid
def cree_angles(nb_angles, xmax, ymax):
'''
cr\xc3\xa9e une s\xc3\xa9rie d\'angles "non s\xc3\xa9quents"
'''
(xmax, ymax) = (xmax - .5, ymax - .5) #taille de l'image en cm
lg_seg = 6 #longueur des côtés des angles
lpoints = []
cpt = 0 #evite une boucle infinie
while len(lpoints) < nb_angles and cpt < 1000:
(xA, yA) = (randrange(5, xmax * 10) / 10.0, randrange(5, ymax *
10) / 10.0)
alpha = randrange(360) #angle entre un côté et l'horizontal
if len(lpoints) < nb_angles / 2:
beta = randrange(90, 180) #crée un angle droit ou obtus
else:
beta = randrange(0, 75) + 15 #crée un angle aigu (entre 15° et 89°)
xB = xA + lg_seg * math.cos((alpha * math.pi) / 180)
yB = yA + lg_seg * math.sin((alpha * math.pi) / 180)
xC = xA + lg_seg * math.cos(((alpha + beta) * math.pi) / 180)
yC = yA + lg_seg * math.sin(((alpha + beta) * math.pi) / 180)
(A, B, C) = ((xA, yA), (xB, yB), (xC, yC))
if xA != xB and xA != xC and .5 < xB < xmax and .5 < yB < ymax and \
.5 < xC < xmax and .5 < yC < ymax and verifie_angle(lpoints,
A, B, C):
lpoints.append((A, B, C, alpha, beta))
else:
cpt = cpt + 1
#print len(lpoints)
return lpoints
def PosAngle(alpha, beta):
"""retourne les angles pour placer les points sur la figure"""
A = (alpha + beta / 2.0 + 180) % 360
B = (alpha - 90) % 360
C = (alpha + beta + 90) % 360
return (A, B, C)
def PointName(l3noms, indice):
list = []
for i in range(3):
list.append(l3noms[i])
return tuple(list)
def figure(exo, cor, lpoints, lnoms, xmax, ymax):
exo.append("\\begin{pspicture}(%s,%s)" % (xmax, ymax))
exo.append("\\psframe(0,0)(%s,%s)" % (xmax, ymax))
exo.append("\\psset{PointSymbol=none,MarkAngleRadius=0.6}")
cor.append("\\begin{pspicture}(%s,%s)" % (xmax, ymax))
cor.append("\\psset{PointSymbol=none,MarkAngleRadius=0.6}")
cor.append("\\psframe(0,0)(%s,%s)" % (xmax, ymax))
for i in range(len(lnoms)):
points_exo = ''
points_cor = ''
points_exo += "\\pstGeonode[PointName={%s,%s,%s}," % lnoms[i]
points_cor += "\\pstGeonode[PointName={%s,%s,%s}," % lnoms[i]
points_exo += "PosAngle={%s,%s,%s}]" % PosAngle(lpoints[i][3], lpoints[i][4])
points_cor += "PosAngle={%s,%s,%s}]" % PosAngle(lpoints[i][3], lpoints[i][4])
for j in range(3):
points_exo += "(%.2f,%.2f)" % lpoints[i][j]
points_exo += "{a%s%s}" % (j, i)
points_cor += "(%.2f,%.2f)" % lpoints[i][j]
points_cor += "{a%s%s}" % (j, i)
exo.append(points_exo)
cor.append(points_cor)
exo.append("\\pstMarkAngle{a%s%s}{a%s%s}{a%s%s}{}"%(1,i,0,i,2,i))
cor.append("\\pstMarkAngle{a%s%s}{a%s%s}{a%s%s}{}"%(1,i,0,i,2,i))
exo.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a1%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a1%s}" % (i, i, i, i))
cor.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a1%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a1%s}" % (i, i, i, i))
exo.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a2%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a2%s}" % (i, i, i, i))
cor.append("\\pstLineAB[nodesepB=-.5]{a0%s}{a2%s}\\pstLineAB[arrows=-|,linestyle=none]{a0%s}{a2%s}" % (i, i, i, i))
exo.append("\\end{pspicture}\\par")
cor.append("\\end{pspicture}\\par")
return (exo, cor)
def reponses(exo, cor, lpoints, lnoms):
cor.append("\\begin{multicols}{4}")
for i in range(len(lnoms)):
cor.append("$\\widehat{%s%s%s}=%s\degres$\\par" % (lnoms[i][1],
lnoms[i][0], lnoms[i][2], lpoints[i][4]))
if lpoints[i][4] < 90:
cor.append("angle aigu\\par")
elif lpoints[i][4] > 90:
cor.append("angle obtus\\par")
else:
cor.append("angle droit\\par")
cor.append("\\end{multicols}")
exo.append("\\begin{tabularx}{\\textwidth}{|*{4}{X|}}")
exo.append("\\hline angle 1 : & angle 2 : & angle 3 : & angle 4 : \\\\")
exo.append("\\hline &&& \\\\ &&& \\\\ &&& \\\\ \\hline")
exo.append("\\end{tabularx}")
def MesureAngles():
nb_angles = 4
(xmax, ymax) = (18, 8) #taille de l'image en cm
lnoms = []
lpoints = []
cpt = 0
while len(lpoints) < nb_angles:
if cpt > 1000:
lpoints = []
cpt = 0
lpoints = cree_angles(nb_angles, xmax, ymax)
cpt = cpt + 1
tmpl = Geometrie.choix_points(3 * nb_angles)
for i in range(nb_angles):
lnoms.append(tuple(tmpl[3 * i:3 * i + 3]))
exo = ["\\exercice", "Nommer, mesurer et donner la nature de chacun des angles suivants :\\par "]
cor = ["\\exercice*", "Nommer, mesurer et donner la nature de chacun des angles suivants :\\par "]
figure(exo, cor, lpoints, lnoms, xmax, ymax)
reponses(exo, cor, lpoints, lnoms)
return (exo, cor)
|