This file is indexed.

/usr/share/pyshared/brian/equations.py is in python-brian 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
# ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
# 
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
# 
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software.  You can  use, 
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info". 
# 
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability. 
# 
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or 
# data to be ensured and,  more generally, to use and operate it in the 
# same conditions as regards security. 
# 
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
# 
'''
Differential equations for Brian models.
'''
#from scipy.weave import blitz
from operator import isSequenceType
import types
from units import *
from stdunits import *
from inspection import *
from scipy import exp
from scipy import weave
from globalprefs import *
import re
import inspect
import optimiser
import warnings
import uuid
import numpy
from numpy import zeros, ones
import numpy
from log import *
from optimiser import *
from scipy import optimize
import unitsafefunctions
import copy
try:
    import sympy
    use_sympy = True
except:
    warnings.warn('sympy not installed')
    use_sympy = False

__all__ = ['Equations', 'unique_id']

# TODO: write interface for equations.py

def unique_id():
    """
    Returns a unique name (e.g. for internal hidden variables).
    """
    return '_' + str(uuid.uuid1().int)


class Equations(object):
    """Container that stores equations from which models can be created
    
    Initialised as::
    
        Equations(expr[,level=0[,keywords...]])
    
    with arguments:
    
    ``expr``
        An expression, which can each be a string representing equations,
        an :class:`Equations` objects, or a list of strings and :class:`Equations` objects.
        See below for details of the string format.
    ``level``
        Indicates how many levels back in the stack the namespace for string
        equations is found, so that e.g. ``level=0`` looks in the
        namespace of the function where the :class:`Equations` object was created,
        ``level=1`` would look in the namespace of the function that called the
        function where the :class:`Equations` object was created, etc.
        Normally you can just leave this out.
    ``keywords``
        Any sequence of keyword pairs ``key=value`` where the string ``key``
        in the string equations will be replaced with ``value`` which can
        be either a string, value or ``None``, in the latter case a unique
        name will be generated automatically (but it won't be pretty).
    
    Systems of equations can be defined by passing lists of :class:`Equations` to a
    new :class:`Equations` object, or by adding :class:`Equations` objects together (the usage
    is similar to that of a Python ``list``).
    
    **String equations**
    
    String equations can be of any of the following forms:
    
    (1) ``dx/dt = f : unit`` (differential equation)
    (2) ``x = f : unit`` (equation)
    (3) ``x = y`` (alias)
    (4) ``x : unit`` (parameter)
    
    Here each of ``x`` and ``y`` can be any valid Python variable name,
    ``f`` can be any valid Python expression, and ``unit`` should be the
    unit of the corresponding ``x``. You can also include multi-line
    expressions by appending a ``\`` character at the end of each line
    which is continued on the next line (following the Python standard),
    or comments by including a ``#`` symbol.
    
    These forms mean:
    
    *Differential equation*
        A differential equation with variable ``x`` which has physical
        units ``unit``. The variable ``x`` will become one of the state
        variables of the model.
    *Equation*
        An equation defining the meaning of ``x`` can be used for building
        systems of complicated differential equations.
    *Alias*
        The variable ``x`` becomes equivalent to the variable ``y``, useful
        for connecting two separate systems of equations together.
    *Parameter*
        The variable ``x`` will have physical units ``unit`` and will be
        one of the state variables of the model (but will not evolve
        dynamically, instead it should be set by the user).
        
    .. index::
        single: xi
        pair: xi; noise
        single: white noise
        single: gaussian noise
        single: noise
        single: noise; gaussian
        single: noise; white
    
    **Noise**
        
    String equations can also use the reserved term ``xi`` for a
    Gaussian white noise with mean 0 and variance 1.
    
    **Example usage** ::

        eqs=Equations('''
        dv/dt=(u-v)/tau : volt
        u=3*v : volt
        w=v
        ''')
    
    **Details**
    
    For more details, see :ref:`moreonequations` in the user manual.
    """
    def __init__(self, expr='', level=0, **kwds):
        # Empty object
        self._Vm = None # name of variable with membrane potential
        self._eq_names = [] # equations names
        self._diffeq_names = [] # differential equations names
        self._diffeq_names_nonzero = [] # differential equations names
        self._function = {} # dictionary of functions
        self._string = {} # dictionary of strings (defining the functions)
        self._namespace = {} # dictionary of namespaces for the strings (globals,locals)
        self._alias = {} # aliases (mapping name1 -> name2)
        self._units = {'t':second} # dictionary of units
        self._dependencies = {} # dictionary of dependencies (on static equations)
        self._useweave = get_global_preference('useweave')
        self._cpp_compiler = get_global_preference('weavecompiler')
        self._extra_compile_args = ['-O3']
        if self._cpp_compiler == 'gcc':
            self._extra_compile_args += get_global_preference('gcc_options') # ['-march=native', '-ffast-math']
        self._frozen = False # True if all units and parameters are gone
        self._prepared = False

        if not isinstance(expr, str): # assume it is a sequence of Equations objects
            for eqs in expr:
                if not isinstance(eqs, Equations):
                    eqs = Equations(eqs, level=level + 1)
                self += eqs
        elif expr != '':
            # Check keyword arguments
            param_dict = {}
            for name, value in kwds.iteritems():
                if value is None: # name is not important: choose unique name
                    value = unique_id()
                if isinstance(value, str): # variable name substitution
                    expr = re.sub('\\b' + name + '\\b', value, expr)
                    expr = re.sub('\\bd' + name + '\\b', 'd' + value, expr) # derivative
                else:
                    param_dict[name] = value

            if kwds == {}: # weird: changed from param_dict on 18/06/08
                self.parse_string_equations(expr, level=level + 1)
            else:
                self.parse_string_equations(expr, namespace=param_dict, level=level + 1)

    """
    -----------------------------------------------------------------------
    PARSING AND BUILDING NAMESPACES
    -----------------------------------------------------------------------
    """

    def parse_string_equations(self, eqns, level=1, namespace=None):
        """
        Parses a string defining equations and builds an Equations object.
        Uses the namespace in the given level of the stack.
        """
        diffeq_pattern = re.compile('\s*d(\w+)\s*/\s*dt\s*=\s*(.+?)\s*:\s*(.*)')
        eq_pattern = re.compile('\s*(\w+)\s*=\s*(.+?)\s*:\s*(.*)')
        alias_pattern = re.compile('\s*(\w+)\s*=\s*(\w+)\s*$')
        param_pattern = re.compile('\s*(\w+)\s*:\s*(.*)')
        empty_pattern = re.compile('\s*$')
        patterns = [diffeq_pattern, eq_pattern, alias_pattern, param_pattern, empty_pattern]
        # Merge multi-line statements
        eqns = re.sub('\\\s*?\n', ' ', eqns)

        # Namespace of the functions
        ns_global, ns_local = namespace, namespace
        if namespace is None:
            frame = inspect.stack()[level + 1][0]
            ns_global, ns_local = frame.f_globals, frame.f_locals
            #print frame.f_code.co_filename #useful for debugging which file the namespace came from

        for line in eqns.splitlines():
            line = re.sub('#.*', '', line) # remove comments
            result = None
            for pattern in patterns:
                result = pattern.match(line)
                if result:
                    break
            if result == None:
                raise TypeError, "Invalid equation string: " + line
            if pattern == eq_pattern:
                name, eq, unit = result.groups()
                self.add_eq(name, eq, unit, ns_global, ns_local)
            elif pattern == diffeq_pattern:
                name, eq, unit = result.groups()
                self.add_diffeq(name, eq, unit, ns_global, ns_local)
            elif pattern == alias_pattern:
                name1, name2 = result.groups()
                self.add_alias(name1, name2)
            elif pattern == param_pattern:
                name, unit = result.groups()
                self.add_param(name, unit, ns_global, ns_local)

    def add_eq(self, name, eq, unit, global_namespace={}, local_namespace={}):
        """
        Inserts an equation.
        name = variable name
        eq = string definition
        unit = unit of the variable (possibly a string)
        *_namespace = namespaces associated to the string
        """
        # Find external objects
        vars = list(get_identifiers(eq))
        if type(unit) == types.StringType:
            vars.extend(list(get_identifiers(unit)))
        self._namespace[name] = {}
        for var in vars:
            if var in local_namespace: #local
                self._namespace[name][var] = local_namespace[var]
            elif var in global_namespace: #global
                self._namespace[name][var] = global_namespace[var]
            elif var in globals(): # typically units
                self._namespace[name][var] = globals()[var]

        self._eq_names.append(name)
        if type(unit) == types.StringType:
            self._units[name] = eval(unit, self._namespace[name].copy())
        else:
            self._units[name] = unit
        self._string[name] = eq

    def add_diffeq(self, name, eq, unit, global_namespace={}, local_namespace={}, nonzero=True):
        """
        Inserts a differential equation.
        name = variable name
        eq = string definition
        unit = unit of the variable (possibly a string)
        *_namespace = namespaces associated to the string
        nonzero = False if dx/dt=0 (parameter)
        """
        # Find external objects
        vars = list(get_identifiers(eq))
        if type(unit) == types.StringType:
            vars.extend(list(get_identifiers(unit)))
        self._namespace[name] = {}
        for var in vars:
            if var in local_namespace: #local
                self._namespace[name][var] = local_namespace[var]
            elif var in global_namespace: #global
                self._namespace[name][var] = global_namespace[var]
            elif var in globals(): # typically units
                self._namespace[name][var] = globals()[var]

        self._diffeq_names.append(name)
        if type(unit) == types.StringType:
            self._units[name] = eval(unit, self._namespace[name].copy())
        else:
            self._units[name] = unit
        self._string[name] = eq
        if nonzero:
            self._diffeq_names_nonzero.append(name)

    def add_alias(self, name1, name2):
        """
        Inserts an alias.
        name1 = new name
        name2 = old name
        """
        self._alias[name1] = name2
        # TODO: what if name2 is not defined yet?
        self.add_eq(name1, name2, self._units[name2])

    def add_param(self, name, unit, global_namespace={}, local_namespace={}):
        """
        Inserts a parameter.
        name = variable name
        eq = string definition
        unit = unit of the variable (possibly a string)
        *_namespace = namespaces associated to the string
        """
        if isinstance(unit, Quantity):
            unit = scalar_representation(unit)
        self.add_diffeq(name, '0*' + unit + '/second', unit, global_namespace, local_namespace, nonzero=False)

    """
    -----------------------------------------------------------------------
    FINALISATION
    -----------------------------------------------------------------------
    """

    def prepare(self, check_units=True):
        '''
        Do a number of checks (units) and preparation of the object.
        '''
        if self._prepared:
            return
        # Let Vm be the first differential equation
        vm_name = self.get_Vm()
        if vm_name:
            # TODO: INFO logging
            i = self._diffeq_names.index(vm_name)
            self._diffeq_names[0], self._diffeq_names[i] = self._diffeq_names[i], self._diffeq_names[0]
        else:
            pass
            # TODO: WARNING log that a potential problem has occurred here?

        # Clean namespace (avoids conflicts between variables and external variables)
        self.clean_namespace()
        # Compile strings to functions
        self.compile_functions()
        # Check units
        if check_units: self.check_units()
        # Set the update order of (static) variables
        self.set_eq_order()
        # Replace static variables by their value in differential equations
        self.substitute_eq()
        self.compile_functions()

        # Check free variables
        free_vars = self.free_variables()
        if free_vars != []:
            log_info('brian.equations', 'Free variables: ' + str(free_vars))

        self._prepared = True

    def get_Vm(self):
        '''
        Finds the variable that is most likely to be the
        membrane potential.
        '''
        if self._Vm:
            return self._Vm
        vm_names = ['v', 'V', 'vm', 'Vm']
        guesses = [var for var in self._diffeq_names if var in vm_names]
        if len(guesses) == 1: # Unambiguous
            return guesses[0]
        else: # Ambiguous or not found
            return None

    def clean_namespace(self):
        '''
        Removes all variable names from namespaces
        '''
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        for name in self._namespace:
            for var in all_variables:
                if var in self._namespace[name]:
                    log_warn('brian.equations', 'Equation variable ' + var + ' also exists in the namespace')
                    del self._namespace[name][var]

    def compile_functions(self, freeze=False):
        """
        Compile all functions defined as strings.
        If freeze is True, all external parameters and units are replaced by their value.
        ALL FUNCTIONS MUST HAVE STRINGS.
        """
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        # Check if freezable
        freeze = freeze and all([optimiser.freeze(expr, all_variables, self._namespace[name])\
                               for name, expr in self._string.iteritems()])
        self._frozen = freeze

        # Compile strings to functions
        for name, expr in self._string.iteritems():
            namespace = self._namespace[name] # name space of the function
            # Find variables
            vars = [var for var in get_identifiers(expr) if var in all_variables]
            if freeze:
                expr = optimiser.freeze(expr, all_variables, namespace)
                #self._string[name]=expr # should we?
                #namespace={}
            s = "lambda " + ','.join(vars) + ":" + expr
            self._function[name] = eval(s, namespace)

    def check_units(self):
        '''
        Checks the units of the differential equations, using
        the units of x.
        dx_i/dt must have units of x_i / time.
        '''
        self.set_eq_order()
        # Better: replace xi in the string, or in the namespace
        try:
            for var in self._eq_names:
                f = self._function[var]
                old_func_globals = copy.copy(f.func_globals)
                f.func_globals['xi'] = 0 * second ** -.5 # Noise
                f.func_globals.update(namespace_replace_quantity_with_pure(f.func_globals))
                units = namespace_replace_quantity_with_pure(self._units)
                self.apply(var, units) + self._units[var] # Check that the two terms have the same dimension
                f.func_globals.update(old_func_globals)
            for var in self._diffeq_names:
                f = self._function[var]
                old_func_globals = copy.copy(f.func_globals)
                f.func_globals['xi'] = 0 * second ** -.5 # Noise
                f.func_globals.update(namespace_replace_quantity_with_pure(f.func_globals))
                units = namespace_replace_quantity_with_pure(self._units)
                self.apply(var, units) + (self._units[var] / second) # Check that the two terms have the same dimension
                f.func_globals.update(old_func_globals)
        except DimensionMismatchError, inst:
            raise DimensionMismatchError("The differential equation of " + var + " is not homogeneous", *inst._dims)
        except:
            warnings.warn("Unexpected exception in checking units of " + var)
            raise

    def set_eq_order(self):
        '''
        Computes the internal depency graph of static variables
        and deduces the update order.
        Sets the list of dependencies of dynamic variables on static variables.
        This is called by check_units()
        '''
        if len(self._eq_names) > 0:
            # Internal dependency dictionary
            dependency = {}
            for key in self._eq_names:
                f = self._function[key]
                dependency[key] = [var for var in f.func_code.co_varnames if var in self._eq_names]

            # Sets the order
            staticvars_list = []
            no_dep = None
            while (len(staticvars_list) < len(self._eq_names)) and (no_dep != []):
                no_dep = [key for key, value in dependency.iteritems() if value == []]
                staticvars_list += no_dep
                # Clear dependency list
                for key in no_dep:
                    del dependency[key]
                for key, value in dependency.iteritems():
                    dependency[key] = [var for var in value if not(var in staticvars_list)]

            if no_dep == []: # The dependency graph has cycles!
                raise ReferenceError, "The static variables are referring to each other"
        else:
            staticvars_list = []

        # Calculate dependencies on static variables
        self._dependencies = {}
        for key in staticvars_list:
            self._dependencies[key] = []
            for var in self._function[key].func_code.co_varnames:
                if var in self._eq_names:
                    self._dependencies[key] += [var] + self._dependencies[var]
        for key in self._diffeq_names:
            f = self._function[key]
            self._dependencies[key] = []
            for var in f.func_code.co_varnames:
                if var in self._eq_names:
                    self._dependencies[key] += [var] + self._dependencies[var]

        # Sort the dependency lists
        for key in self._dependencies:
            staticdep = [(staticvars_list.index(var), var) for var in self._dependencies[key]]
            staticdep.sort()
            self._dependencies[key] = [x[1] for x in staticdep]

        # Update _eq
        self._eq_names = staticvars_list

    def substitute_eq(self, name=None):
        """
        Replaces the static variable 'name' by its value in differential
        equations.
        If None: substitute all static variables.
        """
        if name is None:
            for var in self._eq_names[-1::-1]: # reverse order
                self.substitute_eq(var)
        else:
            self.add_prefix_namespace(name)
            #print name
            for var in self._diffeq_names_nonzero:
                # String
                self._string[var] = re.sub("\\b" + name + "\\b", '(' + self._string[name] + ')', self._string[var])
                # Namespace
                self._namespace[var].update(self._namespace[name])
            #print self

    def add_prefix_namespace(self, name):
        """
        Make the variables in the namespace associated to variable name
        specific to that variable by inserting the prefix name_.
        """
        vars = self._namespace[name].keys()
        untransformed_funcs = set(getattr(unitsafefunctions, v) for v in unitsafefunctions.quantity_versions)
        untransformed_funcs.update(set([numpy.clip]))
        for var in vars:
            v = self._namespace[name][var]
            addprefix = True
            if isinstance(v, numpy.ufunc):
                addprefix = False
            try:
                if v in untransformed_funcs:
                    addprefix = False
            except TypeError: #unhashable types
                pass
            if addprefix:
                # String
                self._string[name] = re.sub("\\b" + var + "\\b", name + '_' + var, self._string[name])
                # Namespace
                self._namespace[name][name + '_' + var] = self._namespace[name][var]
                del self._namespace[name][var]

    def free_variables(self):
        """
        Returns the list of free variables (i.e., which are not defined within the
        equation string).
        """
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        free_vars = []
        for expr in self._string.itervalues():
            free_vars += [name for name in get_identifiers(expr) if name not in all_variables]
        return list(set(free_vars))

    """
    -----------------------------------------------------------------------
    CALCULATING RHS OF DIFF EQUATIONS
    -----------------------------------------------------------------------
    """
    def apply(self, state, vardict):
        '''
        Calculates self._function[state] with arguments in vardict and
        static variables. The dictionary is filled with the required
        static variables.
        '''
        f = self._function[state]
        # Calculate static variables
        for var in self._dependencies[state]:
            # could add something like: if var not in vardict: this would allow you to override the dependencies if you wanted to - worth doing?
            vardict[var] = call_with_dict(self._function[var], vardict)
        return f(*[vardict[var] for var in f.func_code.co_varnames])

    """
    -----------------------------------------------------------------------
    EQUATION INSPECTION
    -----------------------------------------------------------------------
    """
    def is_stochastic(self, var=None):
        '''
        Returns True if the equation for var is stochastic,
        or if all equations are stochastic (var=None).
        '''
        if var:
            return 'xi' in get_identifiers(self._string[var])
        else:
            return any([self.is_stochastic(name) for name in self._diffeq_names_nonzero])

    def is_time_dependent(self, var=None):
        '''
        Returns True if the equation for var is time dependent,
        or if all equations are time dependent (var=None).
        '''
        if var:
            return 't' in get_identifiers(self._string[var])
        else:
            return any([self.is_time_dependent(name) for name in self._diffeq_names_nonzero])
#            return any([self.is_time_dependent(name) for name in self._diffeq_names_nonzero+self._eq_names])

    def is_linear(self):
        '''
        Returns True if all equations are linear.
        If the equations are time dependent, then returns False.
        If the equations depend on external functions, then returns False.
        '''
        if self.is_time_dependent():
            return False

        for f in self._namespace.iterkeys():
            if any([type(key) == types.FunctionType for key in self._namespace[f].itervalues()]):
                return False
        return all([is_affine(f) for f in self._function.itervalues()])

    def is_conditionally_linear(self):
        '''
        Returns True if the differential equations are linear with respect to the
        state variable.
        '''
        # Equations have to be prepared for it to work.
        for var in self._diffeq_names:
            S = self._units.copy()
            S[var] = AffineFunction()
            try:
                self.apply(var, S)
            except:
                return False
        return True

    """
    -----------------------------------------------------------------------
    NUMERICAL INTEGRATION (to be replaced by code generation)
    -----------------------------------------------------------------------
    """

    def forward_euler(self, S, dt):
        '''
        Updates the value of the state variables in dictionary S
        with the forward Euler algorithm over step dt.
        '''
        # Calculate all static variables (or do that after?)
        #for var in self._eq_names:
        #    S[var]=call_with_dict(self._function[var],S)
        # Calculate derivatives
        buffer = {}
        for varname in self._diffeq_names_nonzero:
            f = self._function[varname]
            buffer[varname] = f(*[S[var] for var in f.func_code.co_varnames])
        # Update variables
        for var in self._diffeq_names_nonzero:
            S[var] += dt * buffer[var]

    def forward_euler_code_string(self):
        '''
        Generates Python code for a forward Euler step.
        '''
        # TODO: check if it can really be frozen
        # TODO: change /a to *(1/a) with precalculation (use parser)
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        # nonzero? insert dt?
        vars_tmp = [name + '__tmp' for name in self._diffeq_names]
        lines = ','.join(self._diffeq_names) + '=P._S\n'
        lines += ','.join(vars_tmp) + '=P._dS\n'
        for name in self._diffeq_names_nonzero:
            namespace = self._namespace[name]
            expr = optimiser.freeze(self._string[name], all_variables, namespace)
            lines += name + '__tmp[:]=' + expr + '\n'
        lines += 'P._S+=dt*P._dS\n'
        #print lines
        return lines
        # Return a function f(P) or a namespace (exec code in namespace)
        # 1st option: include directly in neurongroup._state_updater (good?)        

    def forward_euler_code(self):
        '''
        Generates Python code for a forward Euler step.
        '''
        # TODO: check if it can really be frozen
        # TODO: change /a to *(1/a) with precalculation (use parser)
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        # nonzero? insert dt?
        vars_tmp = [name + '__tmp' for name in self._diffeq_names]
        lines = ','.join(self._diffeq_names) + '=P._S\n'
        lines += ','.join(vars_tmp) + '=P._dS\n'
        for name in self._diffeq_names_nonzero:
            namespace = self._namespace[name]
            expr = optimiser.freeze(self._string[name], all_variables, namespace)
            lines += name + '__tmp[:]=' + expr + '\n'
        lines += 'P._S+=dt*P._dS\n'
        #print lines
        return compile(lines, 'Euler update code', 'exec')
        # Return a function f(P) or a namespace (exec code in namespace)
        # 1st option: include directly in neurongroup._state_updater (good?)

    def Runge_Kutta2(self, S, dt):
        '''
        Updates the value of the state variables in dictionary S
        with the 2nd order Runge-Kutta algorithm over step dt (midpoint).
        '''
        # Calculate all static variables (or do that after?)
        #for var in self._eq_names:
        #    S[var]=call_with_dict(self._function[var],S)
        # Calculate derivatives
        buffer = {}
        S_half = S.copy()
        # Half a step
        for varname in self._diffeq_names_nonzero:
            f = self._function[varname]
            buffer[varname] = f(*[S[var] for var in f.func_code.co_varnames])
        # Update variables
        for var in self._diffeq_names_nonzero:
            S_half[var] = S[var] + .5 * dt * buffer[var]

        # Whole step
        for varname in self._diffeq_names_nonzero:
            f = self._function[varname]
            buffer[varname] = f(*[S_half[var] for var in f.func_code.co_varnames])
        # Update variables
        for var in self._diffeq_names_nonzero:
            S[var] += dt * buffer[var]

    def exponential_euler(self, S, dt):
        '''
        Updates the value of the state variables in dictionary S
        with an exponential Euler algorithm over step dt.
        Test with is_conditionally_linear first.
        Same as default integration method in Genesis.
        Close to the implicit Euler method in Neuron.
        '''
        # Calculate all static variables (BAD: INSERT IT BELOW)
        #for var in self._eq_names:
        #    S[var]=call_with_dict(self._function[var],S)
        n = len(S[self._diffeq_names_nonzero[0]])
        # Calculate the coefficients of the affine function
        Z = zeros(n)
        O = ones(n)
        A = {}
        B = {}
        for varname in self._diffeq_names_nonzero:
            f = self._function[varname]
            oldval = S[varname]
            S[varname] = Z
            B[varname] = f(*[S[var] for var in f.func_code.co_varnames]).copy() # important if compiled
            S[varname] = O
            A[varname] = f(*[S[var] for var in f.func_code.co_varnames]) - B[varname]
            B[varname] /= A[varname]
            S[varname] = oldval
        # Integrate
        for varname in self._diffeq_names_nonzero:
            f = self._function[varname]
            if self._useweave:
                Bx = B[varname]
                Ax = A[varname]
                Sx = S[varname]
                # Compilation with blitz: we need an approximation because exp is not understood
                #weave.blitz('Sx[:]=-Bx+(Sx+Bx)*(1.+Ax*dt*(1.+.5*Ax*dt))',check_size=0)
                code = """
                for(int k=0;k<n;k++)
                    Sx(k)=-Bx(k)+(Sx(k)+Bx(k))*exp(Ax(k)*dt);
                """
                weave.inline(code, ['n', 'Bx', 'Sx', 'Ax', 'dt'], \
                             compiler=self._cpp_compiler,
                             type_converters=weave.converters.blitz,
                             extra_compile_args=self._extra_compile_args)
            else:
                #S[varname][:]=-B[varname]+(S[varname]+B[varname])*exp(A[varname]*dt)
                # A little faster:
                S[varname] += B[varname]
                S[varname] *= exp(A[varname] * dt)
                S[varname] -= B[varname]

    def exponential_euler_code(self):
        '''
        Generates Python code for an exponential Euler step.
        Not efficient for the moment!
        '''
        all_variables = self._eq_names + self._diffeq_names + self._alias.keys() + ['t']
        vars_tmp = [name + '__tmp' for name in self._diffeq_names]
        lines = ','.join(self._diffeq_names) + '=P._S\n'
        lines += ','.join(vars_tmp) + '=P._dS\n'
        for name in self._diffeq_names:
            # Freeze
            namespace = self._namespace[name]
            expr = optimiser.freeze(self._string[name], all_variables, namespace)
            # Find a and b in dx/dt=a*x+b
            sym_expr = symbolic_eval(expr)
            if isinstance(sym_expr, float):
                lines += name + '__tmp[:]=' + name + '+(' + str(expr) + ')*dt\n'
            else:
                sym_expr = sym_expr.expand()
                sname = sympy.Symbol(name)
                terms = sympy.collect(sym_expr, name, evaluate=False)
                if sname ** 0 in terms:
                    b = terms[sname ** 0]
                else:
                    b = 0
                if sname in terms:
                    a = terms[sname]
                else:
                    a = 0
                lines += name + '__tmp[:]=' + str(-b / a + (sname + b / a) * sympy.exp(a * sympy.Symbol('dt'))) + '\n'
        lines += 'P._S[:]=P._dS'
        #print lines
        return compile(lines, 'Exponential Euler update code', 'exec')

    """
    -------------------
    COMBINING EQUATIONS
    -------------------
    """
    def __add__(self, other):
        '''
        Union of two sets of equations
        '''
        if not isinstance(other, Equations):
            other = Equations(other, level=1)
        result = self.__class__()
        result += self
        result += other
        return result
    __radd__ = __add__

    def __iadd__(self, other):
        if not isinstance(other, Equations):
            other = Equations(other, level=1)
        self._eq_names = list(set(self._eq_names + other._eq_names)) # what to do if same variables?
        self._diffeq_names = list(set(self._diffeq_names + other._diffeq_names))
        self._diffeq_names_nonzero = list(set(self._diffeq_names_nonzero + other._diffeq_names_nonzero))
        self._function = disjoint_dict_union(self._function, other._function)
        self._alias = disjoint_dict_union(self._alias, other._alias)
        self._string = disjoint_dict_union(self._string, other._string)
        self._namespace = disjoint_dict_union(self._namespace, other._namespace)
        # We do this to fix a bug where if you add two Equations together and
        # then create groups from them, the add_prefix_namespace step creates
        # names which can't be correctly resolved in the second NeuronGroup
        # created. This happens because although self._namespace is a new object,
        # self._namespace[var] is shared between the two objects.
        for var in self._namespace.keys():
            self._namespace[var] = copy.copy(self._namespace[var])
        try:
            self._units = disjoint_dict_union(self._units, other._units)
        except AttributeError:
            raise DimensionMismatchError("The two sets of equations do not have compatible units")
        return self

    """
    ---------------------------------
    OTHER METHODS (CALLED EXTERNALLY)
    ---------------------------------
    """
    def fixed_point(self, **kwd):
        '''
        Returns a fixed point of the differential equations
        as a dictionary. The keyword arguments give the (optional)
        initial point (default = 0).
        '''
        values = {}
        for name, value in self._units.iteritems():
            values[name] = 0 * value
        values.update(kwd)
        # Initial vector
        x0 = [values[name] for name in self._diffeq_names_nonzero]
        # Vector function
        def f(x):
            # Put the units back
            x = [xi * get_unit(x0i) for xi, x0i in zip(x, x0)]
            values.update(zip(self._diffeq_names_nonzero, x))
            return [self.apply(name, values) for name in self._diffeq_names_nonzero]
        xf, _, ier, _ = optimize.fsolve(f, x0, full_output=True)
        if ier:
            # Put the units back
            xf = [xfi * get_unit(x0i) for xfi, x0i in zip(xf, x0)]
            # Return a dictionary
            return dict(zip(self._diffeq_names_nonzero, xf))
        else: # Not found
            warnings.warn('Could not find a fixed point of the equations')
            return kwd

    def substitute(self, name1, name2):
        """
        Changes name1 to name2 (variable names).
        Note: I don't where this is called!
        """
        # Aliases
        if name1 in self._alias:
            self._alias[name2] = self._alias[name1]
            del self._alias[name1]
        # Units
        if name1 in self._units:
            self._units[name2] = self._units[name1]
            del self._units[name1]
        # Equations
        if name1 in self._eq_names:
            self._eq_names[self._eq_names.index(name1)] = name2
        # Differential equations
        if name1 in self._diffeq_names:
            self._diffeq_names[self._diffeq_names.index(name1)] = name2
        if name1 in self._diffeq_names_nonzero:
            self._diffeq_names_nonzero[self._diffeq_names_nonzero.index(name1)] = name2
        # Strings
        if name1 in self._string:
            self._string[name2] = self._string[name1]
            del self._string[name1]
        for name, value in self._string.iteritems():
            self._string[name] = re.sub("\\b" + name1 + "\\b", name2, value)
        # Namespaces
        if name1 in self._namespace:
            self._namespace[name2] = self._namespace[name1]
            del self._namespace[name1]

    def __getattr__(self, name):
        '''
        Returns the corresponding function.
        '''
        # bug with clustertools
        if name == 'as_array':
            raise Exception()
        return lambda ** kwd:self.apply(name, kwd)

    def __len__(self):
        '''
        Number of differential equations

        Note: is this still used?
        '''
        return len(self._diffeq_names)

    def __repr__(self):
        s = ''
        for var in self._diffeq_names:
            s += 'd' + var + '/dt = ' + self._string[var] + ' [diffeq]\n'
        for var in self._eq_names:
            if var in self._alias:
                typename = ' [alias]'
            else:
                typename = ' [eq]'
            s += var + ' = ' + self._string[var] + typename + '\n'
        return s

    def __reduce__(self):
        # To avoid recursion, we temporarily set the class to a trivial
        # class, this is restored at the end, and by _load_Equations_from_pickle
        # too
        self.__class__, cls = PickledEquations, self.__class__
        selfcopy = copy.copy(self)
        # We need to delete __builtins__ from all the namespaces as it is
        # not picklable, so we make copies
        selfcopy._namespace = copy.copy(selfcopy._namespace)
        for key in selfcopy._namespace.keys():
            selfcopy._namespace[key] = copy.copy(selfcopy._namespace[key])
            if '__builtins__' in selfcopy._namespace[key]:
                del selfcopy._namespace[key]['__builtins__']
        selfcopy._function = {}
        # Sometimes namespaces have numpy ufuncs in them, which are not
        # picklable, so we replace them with PickledUfunc objects which just
        # store their name, and _load_equations_from_pickle will extract them
        # from numpy again
        def replaceufunc(d):
            for k in d.keys():
                v = d[k]
                if isinstance(v, numpy.ufunc):
                    d[k] = PickledUfunc(v)
                if isinstance(v, dict):
                    replaceufunc(v)
        replaceufunc(selfcopy.__dict__)
        self.__class__ = cls
        return (_load_Equations_from_pickle, (selfcopy, cls))

class PickledUfunc(object):
    def __init__(self, ufunc):
        self.name = ufunc.__name__
    def get(self):
        return getattr(numpy, self.name)

class PickledEquations(object):
    pass

def _load_Equations_from_pickle(eqs, cls):
    def replaceufunc(d):
        for k in d.keys():
            v = d[k]
            if isinstance(v, PickledUfunc):
                d[k] = v.get()
            if isinstance(v, dict):
                replaceufunc(v)
    replaceufunc(eqs.__dict__)
    eqs.__class__ = cls
    eqs.prepare()
    return eqs

# Utilitary functions
# -------------------
def call_with_dict(f, d):
    '''
    Calls a function f with arguments from dictionary d.
    The dictionary can contain keys that are not variables of f.
    '''
    return f(*[d[var] for var in f.func_code.co_varnames])

def disjoint_dict_union(d1, d2):
    '''
    Merges the dictionaries d1 and d2 and checks that
    they are compatible (i.e., raises an exception if d1[key]!=d2[key])
    '''
    result = {}
    result.update(d1)
    for key, value in d2.iteritems(): # Bug here
        if (key in d1) and (d1[key] != value):
            raise AttributeError, "Incompatible dictionaries in disjoint union, problem with key " + key
        result[key] = value
    return result