This file is indexed.

/usr/share/pyshared/brian/tools/parameters.py is in python-brian 1.3.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
# ----------------------------------------------------------------------------------
# Copyright ENS, INRIA, CNRS
# Contributors: Romain Brette (brette@di.ens.fr) and Dan Goodman (goodman@di.ens.fr)
# 
# Brian is a computer program whose purpose is to simulate models
# of biological neural networks.
# 
# This software is governed by the CeCILL license under French law and
# abiding by the rules of distribution of free software.  You can  use, 
# modify and/ or redistribute the software under the terms of the CeCILL
# license as circulated by CEA, CNRS and INRIA at the following URL
# "http://www.cecill.info". 
# 
# As a counterpart to the access to the source code and  rights to copy,
# modify and redistribute granted by the license, users are provided only
# with a limited warranty  and the software's author,  the holder of the
# economic rights,  and the successive licensors  have only  limited
# liability. 
# 
# In this respect, the user's attention is drawn to the risks associated
# with loading,  using,  modifying and/or developing or reproducing the
# software by the user in light of its specific status of free software,
# that may mean  that it is complicated to manipulate,  and  that  also
# therefore means  that it is reserved for developers  and  experienced
# professionals having in-depth computer knowledge. Users are therefore
# encouraged to load and test the software's suitability as regards their
# requirements in conditions enabling the security of their systems and/or 
# data to be ensured and,  more generally, to use and operate it in the 
# same conditions as regards security. 
# 
# The fact that you are presently reading this means that you have had
# knowledge of the CeCILL license and that you accept its terms.
# ----------------------------------------------------------------------------------
# 
"""
Classes and functions for storing and using parameters
"""

__all__ = ['attribdict', 'Parameters']

from itertools import chain
from inspect import *


class attribdict(dict):
    """
    Dictionary that can be accessed via keys
    
    Note that attributes starting with _ won't be added to the dict but
    will instead be directly added to the object.
    
    Note that an attribdict cannot have new real attributes
    added to it unless they start with _, because they will
    be added to the dict instead. To add a real attribute,
    use object.__setattr__(obj,name,val).
    """
    def __init__(self, **kwds):
        super(attribdict, self).__init__(**kwds)

    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            raise AttributeError

    def __setattr__(self, name, val):
        if name in dir(self) or (len(name) and name[0] == '_'):
            dict.__setattr__(self, name, val)
            return
        self[name] = val

    def __repr__(self):
        s = 'Attributes:'
        for k, v in self.iteritems():
            s += '\n    ' + k + ' = ' + str(v)
        return s


class Parameters(attribdict):
    """
    A storage class for keeping track of parameters
    
    Example usage::
    
        p = Parameters(
            a = 5,
            b = 6,
            computed_parameters = '''
            c = a + b
            ''')
        print p.c
        p.a = 1
        print p.c
    
    The first ``print`` statement will give 11, the second gives 7.
    
    Details:
    
    Call as::
    
        p = Parameters(...)
    
    Where the ``...`` consists of a list of keyword / value pairs (like a ``dict``).
    Keywords must not start with the underscore ``_`` character. Any
    keyword that starts with ``computed_`` should be a string of valid Python statements
    that compute new values based on the given ones. Whenever a non-computed value is
    changed, the computed parameters are recomputed, in alphabetical order of their
    keyword names (so ``computed_a`` is computed before ``computed_b`` for example).
    Non-computed values can be accessed and set via ``p.x``, ``p.x=1`` for example, whereas
    computed values can only be accessed and not set. New parameters can be added
    after the :class:`Parameters` object is created, including new ``computed_*`` parameters. You
    can 'derive' a new parameters object from a given one as follows::
    
        p1 = Parameters(x=1)
        p2 = Parameters(y=2,**p1)
        print p2.x
    
    Note that changing the value of ``x`` in ``p2`` will not change the value of ``x`` in ``p1`` (this
    is a copy operation).
    """
    def __init__(self, **kwds):
        super(Parameters, self).__init__(**kwds)
        self._recompute()

    def __getattr__(self, name):
        try:
            return self[name]
        except KeyError:
            try:
                return self._computed_values[name]
            except KeyError:
                raise AttributeError

    def __setattr__(self, name, val):
        if hasattr(self, '_computed_values') and name in self._computed_values:
            raise AttributeError('Cannot set computed value')
        attribdict.__setattr__(self, name, val)
        self._recompute()

    def _recompute(self):
        cv = dict(self)
        items = self.items()
        items.sort()
        for k, v in items:
            if k[:9] == 'computed_':
                v = '\n'.join([line.strip() for line in v.split('\n')])
                exec v in cv
        for k in cv.keys():
            if k[:1] == '_': # this is used to get rid of things like __builtins__ etc.
                cv.pop(k)
        for k in self.iterkeys():
            cv.pop(k)
        object.__setattr__(self, '_computed_values', cv)

    def ascode(self, name):
        """
        Returns a string which can be executed which gives all the parameters
        
        name is the name of the Parameters variable in the local namespace:
        
        Usage:
        
        P = Parameters(x=1)
        exec P.ascode('P')
        print x
        """
        s = ''
        allvals = dict(**self)
        allvals.update(self._computed_values)
        for k in allvals.iterkeys():
            if k[:9] != 'computed_':
                s += k + '=' + name + '.' + k + '\n'
        return s

    def get_vars(self, *vars):
        '''
        Returns a tuple of variables given their names
        
        vars can be a list of string names, or a single space separated string of names.
        '''
        vars = [v.split(' ') for v in vars]
        return tuple(getattr(self, v) for v in chain(*vars))

    def __repr__(self):
        s = 'Values:'
        for k, v in self.iteritems():
            if k[:9] != 'computed_':
                s += '\n    ' + k + ' = ' + str(v)
        if len(self._computed_values):
            s += '\n_computed values:'
            for k, v in self._computed_values.iteritems():
                s += '\n    ' + k + ' = ' + str(v)
        return s

    def __call__(self, **kwds):
        '''
        Returns a copy with specified arguments overwritten
        
        Sample usage:
        
        default_p = Parameters(x=1,y=2)
        specific_p = default_p(x=3)
        '''
        p = Parameters(**self) # pylint: disable-msg=W0621
        for k, v in kwds.iteritems():
            setattr(p, k, v)
        return p

    def __reduce__(self):
        return (_load_Parameters_from_pickle, (self.items(),))

def _load_Parameters_from_pickle(items):
    return Parameters(**dict(items))

if __name__ == "__main__":
    # turn off warning about attribute defined outside __init__
    # pylint: disable-msg=W0201
    p = Parameters(
        a=5,
        b=6,
        computed_p1='''
        c = a + b
        ''',
        computed_p2='''
        x = c**2
        ''')
    q = Parameters(
        d=100,
        computed_q='''
        e = a+d
        ''',
        **p
        )
    print p.c
    p.a = 1
    print p.c
    print p
    print
    print q
    q.a = -50
    print
    print q
    print
    try:
        q.c = 5
    except AttributeError, e:
        print e
    p.y = 6
    p.computed_p3 = '''
                    w = a*b
                    '''
    print p
    p.a = 2
    print p