This file is indexed.

/usr/share/pyshared/deap/algorithms.py is in python-deap 0.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#    This file is part of DEAP.
#
#    DEAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    DEAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

"""The :mod:`algorithms` module is intended to contain some specific algorithms
in order to execute very common evolutionary algorithms. The method used here
are more for convenience than reference as the implementation of every 
evolutionary algorithm may vary infinitely. Most of the algorithms in this module
use operators registered in the toolbox. Generaly, the keyword used are
:meth:`mate` for crossover, :meth:`mutate` for mutation, :meth:`~deap.select`
for selection and :meth:`evaluate` for evaluation.

You are encouraged to write your own algorithms in order to make them do what
you really want them to do.
"""

import logging
import random

_logger = logging.getLogger("deap.algorithms")

def varSimple(toolbox, population, cxpb, mutpb):
    """Part of the :func:`~deap.algorithmes.eaSimple` algorithm applying only
    the variation part (crossover followed by mutation). The modified 
    individuals have their fitness invalidated. The individuals are not cloned
    so there can be twice a reference to the same individual.
    
    This function expects :meth:`toolbox.mate` and :meth:`toolbox.mutate`
    aliases to be registered in the toolbox.
    """
    # Apply crossover and mutation on the offspring
    for ind1, ind2 in zip(population[::2], population[1::2]):
        if random.random() < cxpb:
            toolbox.mate(ind1, ind2)
            del ind1.fitness.values, ind2.fitness.values

    for ind in population:
        if random.random() < mutpb:
            toolbox.mutate(ind)
            del ind.fitness.values
    
    return population

def varAnd(toolbox, population, cxpb, mutpb):
    """Part of an evolutionary algorithm applying only the variation part
    (crossover **and** mutation). The modified individuals have their
    fitness invalidated. The individuals are cloned so returned population is
    independent of the input population.
    
    The variator goes as follow. First, the parental population
    :math:`P_\mathrm{p}` is duplicated using the :meth:`toolbox.clone` method
    and the result is put into the offspring population :math:`P_\mathrm{o}`.
    A first loop over :math:`P_\mathrm{o}` is executed to mate consecutive
    individuals. According to the crossover probability *cxpb*, the
    individuals :math:`\mathbf{x}_i` and :math:`\mathbf{x}_{i+1}` are mated
    using the :meth:`toolbox.mate` method. The resulting children
    :math:`\mathbf{y}_i` and :math:`\mathbf{y}_{i+1}` replace their respective
    parents in :math:`P_\mathrm{o}`. A second loop over the resulting
    :math:`P_\mathrm{o}` is executed to mutate every individual with a
    probability *mutpb*. When an individual is mutated it replaces its not
    mutated version in :math:`P_\mathrm{o}`. The resulting
    :math:`P_\mathrm{o}` is returned.
    
    This variation is named *And* beceause of its propention to apply both
    crossover and mutation on the individuals. Both probabilities should be in
    :math:`[0, 1]`.
    """
    offspring = [toolbox.clone(ind) for ind in population]
    
    # Apply crossover and mutation on the offspring
    for ind1, ind2 in zip(offspring[::2], offspring[1::2]):
        if random.random() < cxpb:
            toolbox.mate(ind1, ind2)
            del ind1.fitness.values, ind2.fitness.values
    
    for ind in offspring:
        if random.random() < mutpb:
            toolbox.mutate(ind)
            del ind.fitness.values
    
    return offspring

def eaSimple(toolbox, population, cxpb, mutpb, ngen, stats=None, halloffame=None):
    """This algorithm reproduce the simplest evolutionary algorithm as
    presented in chapter 7 of Back, Fogel and Michalewicz,
    "Evolutionary Computation 1 : Basic Algorithms and Operators", 2000.
    It uses :math:`\lambda = \kappa = \mu` and goes as follow.
    It first initializes the population (:math:`P(0)`) by evaluating
    every individual presenting an invalid fitness. Then, it enters the
    evolution loop that begins by the selection of the :math:`P(g+1)`
    population. Then the crossover operator is applied on a proportion of
    :math:`P(g+1)` according to the *cxpb* probability, the resulting and the
    untouched individuals are placed in :math:`P'(g+1)`. Thereafter, a
    proportion of :math:`P'(g+1)`, determined by *mutpb*, is 
    mutated and placed in :math:`P''(g+1)`, the untouched individuals are
    transferred :math:`P''(g+1)`. Finally, those new individuals are evaluated
    and the evolution loop continues until *ngen* generations are completed.
    Briefly, the operators are applied in the following order ::
    
        evaluate(population)
        for i in range(ngen):
            offspring = select(population)
            offspring = mate(offspring)
            offspring = mutate(offspring)
            evaluate(offspring)
            population = offspring
    
    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox.
    """
    _logger.info("Start of evolution")

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    if halloffame is not None:
        halloffame.update(population)
    if stats is not None:
        stats.update(population)

    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        # Select and clone the next generation individuals
        offsprings = toolbox.select(population, len(population))
        offsprings = map(toolbox.clone, offsprings)
        
        # Variate the pool of individuals
        offsprings = varSimple(toolbox, offsprings, cxpb, mutpb)
        
        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
        
        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offsprings)
            
        _logger.debug("Evaluated %i individuals", len(invalid_ind))  
        
        # Replace the current population by the offsprings
        population[:] = offsprings
        
        # Update the statistics with the new population
        if stats is not None:
            stats.update(population)
        
        # Log statistics on the current generation
        if stats is not None:
            print stats

    _logger.info("End of (successful) evolution")
    return population

def varOr(toolbox, population, lambda_, cxpb, mutpb):
    """Part of an evolutionary algorithm applying only the variation part
    (crossover, mutation **or** reproduction). The modified individuals have
    their fitness invalidated. The individuals are cloned so returned
    population is independent of the input population.
    
    The variator goes as follow. On each of the *lambda_* iteration, it
    selects one of the three operations; crossover, mutation or reproduction.
    In the case of a crossover, two individuals are selected at random from
    the parental population :math:`P_\mathrm{p}`, those individuals are cloned
    using the :meth:`toolbox.clone` method and then mated using the
    :meth:`toolbox.mate` method. Only the first child is appended to the
    offspring population :math:`P_\mathrm{o}`, the second child is discarded.
    In the case of a mutation, one individual is selected at random from
    :math:`P_\mathrm{p}`, it is cloned and then mutated using using the
    :meth:`toolbox.mutate` method. The resulting mutant is appended to
    :math:`P_\mathrm{o}`. In the case of a reproduction, one individual is
    selected at random from :math:`P_\mathrm{p}`, cloned and appended to
    :math:`P_\mathrm{o}`.
    
    This variation is named *Or* beceause an offspring will never result from
    both operations crossover and mutation. The sum of both probabilities
    shall be in :math:`[0, 1]`, the reproduction probability is
    1 - *cxpb* - *mutpb*.
    """
    assert (cxpb + mutpb) <= 1.0, ("The sum of the crossover and mutation "
        "probabilities must be smaller or equal to 1.0.")
        
    offsprings = []
    for _ in xrange(lambda_):
        op_choice = random.random()
        if op_choice < cxpb:            # Apply crossover
            ind1, ind2 = [toolbox.clone(ind) for ind in random.sample(population, 2)]
            toolbox.mate(ind1, ind2)
            del ind1.fitness.values
            offsprings.append(ind1)
        elif op_choice < cxpb + mutpb:  # Apply mutation
            ind = toolbox.clone(random.choice(population))
            toolbox.mutate(ind)
            del ind.fitness.values
            offsprings.append(ind)
        else:                           # Apply reproduction
            offsprings.append(random.choice(population))
    
    return offsprings

def varLambda(toolbox, population, lambda_, cxpb, mutpb):
    """Part of the :func:`~deap.algorithms.eaMuPlusLambda` and
    :func:`~deap.algorithms.eaMuCommaLambda` algorithms that produce the 
    lambda new individuals. The modified individuals have their fitness 
    invalidated. The individuals are not cloned so there can be twice a
    reference to the same individual.
    
    This function expects :meth:`toolbox.mate` and :meth:`toolbox.mutate`
    aliases to be registered in the toolbox.
    """
    assert (cxpb + mutpb) <= 1.0, ("The sum of the crossover and mutation "
        "probabilities must be smaller or equal to 1.0.")
        
    offsprings = []
    nb_offsprings = 0
    while nb_offsprings < lambda_:
        op_choice = random.random()
        if op_choice < cxpb:            # Apply crossover
            ind1, ind2 = random.sample(population, 2)
            ind1 = toolbox.clone(ind1)
            ind2 = toolbox.clone(ind2)
            toolbox.mate(ind1, ind2)
            del ind1.fitness.values, ind2.fitness.values
            offsprings.append(ind1)
            offsprings.append(ind2)
            nb_offsprings += 2
        elif op_choice < cxpb + mutpb:  # Apply mutation
            ind = random.choice(population) # select
            ind = toolbox.clone(ind) # clone
            toolbox.mutate(ind)
            del ind.fitness.values
            offsprings.append(ind)
            nb_offsprings += 1
        else:                           # Apply reproduction
            offsprings.append(random.choice(population))
            nb_offsprings += 1
    
    # Remove the exedant of offsprings
    if nb_offsprings > lambda_:
        del offsprings[lambda_:]
    
    return offsprings

def eaMuPlusLambda(toolbox, population, mu, lambda_, cxpb, mutpb, ngen, stats=None, halloffame=None):
    """This is the :math:`(\mu + \lambda)` evolutionary algorithm. First, 
    the individuals having an invalid fitness are evaluated. Then, the
    evolutionary loop begins by producing *lambda* offspring from the
    population, the offspring are generated by a crossover, a mutation or a
    reproduction proportionally to the probabilities *cxpb*, *mutpb* and
    1 - (cxpb + mutpb). The offspring are then evaluated and the next
    generation population is selected from both the offspring **and** the
    population. Briefly, the operators are applied as following ::
    
        evaluate(population)
        for i in range(ngen):
            offspring = generate_offspring(population)
            evaluate(offspring)
            population = select(population + offspring)
    
    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox.
    
    .. note::
       Both produced individuals from a crossover are put in the offspring
       pool. 
    
    """
    
    _logger.info("Start of evolution")

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    _logger.debug("Evaluated %i individuals", len(invalid_ind))

    if halloffame is not None:
        halloffame.update(population)
    if stats is not None:
        stats.update(population)

    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        # Variate the population
        offsprings = varLambda(toolbox, population, lambda_, cxpb, mutpb)
        
        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit
        
        _logger.debug("Evaluated %i individuals", len(invalid_ind))
        
        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offsprings)

        # Select the next generation population
        population[:] = toolbox.select(population + offsprings, mu)

        # Update the statistics with the new population
        if stats is not None:
            stats.update(population)
        
        # Log statistics on the current generation
        if stats is not None:
            _logger.debug(stats)

    _logger.info("End of (successful) evolution")
    return population
    
def eaMuCommaLambda(toolbox, population, mu, lambda_, cxpb, mutpb, ngen, stats=None, halloffame=None):
    """This is the :math:`(\mu~,~\lambda)` evolutionary algorithm. First, 
    the individuals having an invalid fitness are evaluated. Then, the
    evolutionary loop begins by producing *lambda* offspring from the
    population, the offspring are generated by a crossover, a mutation or a
    reproduction proportionally to the probabilities *cxpb*, *mutpb* and
    1 - (cxpb + mutpb). The offspring are then evaluated and the next
    generation population is selected **only** from the offspring. Briefly,
    the operators are applied as following ::
    
        evaluate(population)
        for i in range(ngen):
            offspring = generate_offspring(population)
            evaluate(offspring)
            population = select(offspring)
    
    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox.
    
    .. note::
       Both produced individuals from the crossover are put in the offspring
       pool.
    """
    assert lambda_ >= mu, "lambda must be greater or equal to mu."
        
    _logger.info("Start of evolution")

    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit

    _logger.debug("Evaluated %i individuals", len(invalid_ind))

    if halloffame is not None:
        halloffame.update(population)
    if stats is not None:
        stats.update(population)

    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        # Variate the population
        offsprings = varLambda(toolbox, population, lambda_, cxpb, mutpb)

        # Evaluate the individuals with an invalid fitness
        invalid_ind = [ind for ind in offsprings if not ind.fitness.valid]
        fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
        for ind, fit in zip(invalid_ind, fitnesses):
            ind.fitness.values = fit

        _logger.debug("Evaluated %i individuals", len(invalid_ind))

        # Update the hall of fame with the generated individuals
        if halloffame is not None:
            halloffame.update(offsprings)

        # Select the next generation population
        population[:] = toolbox.select(offsprings, mu)

        # Update the statistics with the new population
        if stats is not None:
            stats.update(population)

        # Log statistics on the current generation
        if stats is not None:
            _logger.debug(stats)

    _logger.info("End of (successful) evolution")
    return population

def varSteadyState(toolbox, population):
    """Part of the :func:`~deap.algorithms.eaSteadyState` algorithm 
    that produce the new individual by crossover of two randomly selected 
    parents and mutation on one randomly selected child. The modified 
    individual has its fitness invalidated. The individuals are not cloned so
    there can be twice a reference to the same individual.
    
    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate` and
    :meth:`toolbox.select` aliases to be
    registered in the toolbox.
    """
    # Select two individuals for crossover
    p1, p2 = random.sample(population, 2)
    p1 = toolbox.clone(p1)
    p2 = toolbox.clone(p2)
    toolbox.mate(p1, p2)
    
    # Randomly choose amongst the offsprings the returned child and mutate it
    child = random.choice((p1, p2))
    toolbox.mutate(child)
    
    return child,

def eaSteadyState(toolbox, population, ngen, stats=None, halloffame=None):
    """The steady-state evolutionary algorithm. Every generation, a single new
    individual is produced and put in the population producing a population of
    size :math:`lambda+1`, then :math:`lambda` individuals are kept according
    to the selection operator present in the toolbox.
    
    This function expects :meth:`toolbox.mate`, :meth:`toolbox.mutate`,
    :meth:`toolbox.select` and :meth:`toolbox.evaluate` aliases to be
    registered in the toolbox.
    """
    _logger.info("Start of evolution")
    
    # Evaluate the individuals with an invalid fitness
    invalid_ind = [ind for ind in population if not ind.fitness.valid]
    fitnesses = toolbox.map(toolbox.evaluate, invalid_ind)
    for ind, fit in zip(invalid_ind, fitnesses):
        ind.fitness.values = fit
    
    if halloffame is not None:
        halloffame.update(population)
    
    # Begin the generational process
    for gen in range(ngen):
        _logger.info("Evolving generation %i", gen)
        
        # Variate the population
        child, = varSteadyState(toolbox, population)
        
        # Evaluate the produced child
        child.fitness.values = toolbox.evaluate(child)
        
        # Update the hall of fame
        if halloffame is not None:
            halloffame.update((child,))
        
        # Select the next generation population
        population[:] = toolbox.select(population + [child], len(population))
        
        # Update the statistics with the new population
        if stats is not None:
            stats.update(population)

        # Log statistics on the current generation
        if stats is not None:
            _logger.debug(stats)

    _logger.info("End of (successful) evolution")
    return population