This file is indexed.

/usr/share/pyshared/deap/base.py is in python-deap 0.7.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
#    This file is part of DEAP.
#
#    DEAP is free software: you can redistribute it and/or modify
#    it under the terms of the GNU Lesser General Public License as
#    published by the Free Software Foundation, either version 3 of
#    the License, or (at your option) any later version.
#
#    DEAP is distributed in the hope that it will be useful,
#    but WITHOUT ANY WARRANTY; without even the implied warranty of
#    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
#    GNU Lesser General Public License for more details.
#
#    You should have received a copy of the GNU Lesser General Public
#    License along with DEAP. If not, see <http://www.gnu.org/licenses/>.

"""The :mod:`~deap.base` module provides basic structures to build evolutionary
algorithms. It contains only two simple containers that are a basic N-ary 
:class:`~deap.base.Tree`, usefull for implementing genetic programing, and a 
virtual :class:`~deap.base.Fitness` class used as base class, for the fitness 
member of any individual.
"""

import copy
import operator
import functools
from collections import deque
from itertools import izip, repeat, count
        
class Toolbox(object):
    """A toolbox for evolution that contains the evolutionary operators.
    At first the toolbox contains two simple methods. The first method
    :meth:`~deap.toolbox.clone` duplicates any element it is passed as
    argument, this method defaults to the :func:`copy.deepcopy` function.
    The second method :meth:`~deap.toolbox.map` applies the function given
    as first argument to every items of the iterables given as next
    arguments, this method defaults to the :func:`map` function. You may
    populate the toolbox with any other function by using the
    :meth:`~deap.base.Toolbox.register` method.
    """

    def __init__(self):
        self.register("clone", copy.deepcopy)
        self.register("map", map)

    def register(self, alias, method, *args, **kargs):
        """Register a *method* in the toolbox under the name *alias*. You 
        may provide default arguments that will be passed automatically when 
        calling the registered method. Fixed arguments can then be overriden 
        at function call time. The following code block is a example of how
        the toolbox is used. ::

            >>> def func(a, b, c=3):
            ...     print a, b, c
            ... 
            >>> tools = Toolbox()
            >>> tools.register("myFunc", func, 2, c=4)
            >>> tools.myFunc(3)
            2 3 4

        """
        pfunc = functools.partial(method, *args, **kargs)
        pfunc.__name__ = alias
        setattr(self, alias, pfunc)

    def unregister(self, alias):
        """Unregister *alias* from the toolbox."""
        delattr(self, alias)

    def decorate(self, alias, *decorators):
        """Decorate *alias* with the specified *decorators*, *alias*
        has to be a registered function in the current toolbox. Decorate uses
        the signature preserving decoration function
        :func:`~deap.tools.decorate`.
        """
        from tools import decorate
        partial_func = getattr(self, alias)
        method = partial_func.func
        args = partial_func.args
        kargs = partial_func.keywords
        for decorator in decorators:
            method = decorate(decorator)(method)
        setattr(self, alias, functools.partial(method, *args, **kargs))

class Fitness(object):
    """The fitness is a measure of quality of a solution. If *values* are
    provided as a tuple, the fitness is initalized using those values,
    otherwise it is empty (or invalid).

    Fitnesses may be compared using the ``>``, ``<``, ``>=``, ``<=``, ``==``,
    ``!=``. The comparison of those operators is made lexicographically.
    Maximization and minimization are taken care off by a multiplication
    between the :attr:`weights` and the fitness :attr:`values`. The comparison
    can be made between fitnesses of different size, if the fitnesses are
    equal until the extra elements, the longer fitness will be superior to the
    shorter.

    .. note::
       When comparing fitness values that are **minimized**, ``a > b`` will
       return :data:`True` if *a* is **smaller** than *b*.
    """
    
    weights = None
    """The weights are used in the fitness comparison. They are shared among
    all fitnesses of the same type. When subclassing ``Fitness``, ``weights``
    must be defined as a tuple where each element is associated to an 
    objective. A negative weight element corresponds to the minimization of the
    associated objective and positive weight to the maximization.

    .. note::
        If weights is not defined during subclassing, the following error will 
        occur at instantiation of a subclass fitness object: 
        
        ``TypeError: Can't instantiate abstract <class Fitness[...]> with
        abstract attribute weights.``
    """
    
    wvalues = ()
    """Contains the weighted values of the fitness, the multiplication with the
    weights is made when the values are set via the property :attr:`values`.
    Multiplication is made on setting of the values for efficiency.
    
    Generally it is unnecessary to manipulate *wvalues* as it is an internal
    attribute of the fitness used in the comparison operators.
    """
    
    def __init__(self, values=()):
        if self.weights is None:
            raise TypeError("Can't instantiate abstract %r with abstract "
                "attribute weights." % (self.__class__))
        
        if len(values) > 0:
            self.values = values
        
    def getValues(self):
        return tuple(map(operator.div, self.wvalues, self.weights))
            
    def setValues(self, values):
        self.wvalues = tuple(map(operator.mul, values, self.weights))
            
    def delValues(self):
        self.wvalues = ()

    values = property(getValues, setValues, delValues,
        ("Fitness values. Use directly ``individual.fitness.values = values`` "
         "in order to set the fitness and ``del individual.fitness.values`` "
         "in order to clear (invalidate) the fitness. The (unweighted) fitness "
         "can be directly accessed via ``individual.fitness.values``."))
    
    @property 
    def valid(self):
        """Asses if a fitness is valid or not."""
        return len(self.wvalues) != 0

    def isDominated(self, other):
        """In addition to the comparison operators that are used to sort
        lexically the fitnesses, this method returns :data:`True` if this
        fitness is dominated by the *other* fitness and :data:`False` otherwise.
        The weights are used to compare minimizing and maximizing fitnesses. If
        there is more fitness values than weights, the last weight get repeated
        until the end of the comparison.
        """
        not_equal = False
        for self_wvalue, other_wvalue in izip(self.wvalues, other.wvalues):
            if self_wvalue > other_wvalue:
                return False
            elif self_wvalue < other_wvalue:
                not_equal = True
        return not_equal
        
    def __gt__(self, other):
        return not self.__le__(other)
        
    def __ge__(self, other):
        return not self.__lt__(other)

    def __le__(self, other):
        if not other:                   # Protection against yamling
            return False
        return self.wvalues <= other.wvalues

    def __lt__(self, other):
        if not other:                   # Protection against yamling
            return False
        return self.wvalues < other.wvalues

    def __eq__(self, other):
        if not other:                   # Protection against yamling
            return False
        return self.wvalues == other.wvalues
    
    def __ne__(self, other):
        return not self.__eq__(other)

    def __deepcopy__(self, memo):
        """Replace the basic deepcopy function with a faster one.
        
        It assumes that the elements in the :attr:`values` tuple are 
        immutable and the fitness does not contain any other object 
        than :attr:`values` and :attr:`weights`.
        """
        if len(self.wvalues) > 0:
            return self.__class__(self.values)
        else:
            return self.__class__()

    def __str__(self):
        """Return the values of the Fitness object."""
        return str(self.values)

    def __repr__(self):
        """Return the Python code to build a copy of the object."""
        module = self.__module__
        name = self.__class__.__name__
        return "%s.%s(%r)" % (module, name, self.values)

class Tree(list):
    """Basic N-ary tree class. A tree is initialized from the list `content`.
    The first element of the list is the root of the tree, then the
    following elements are the nodes. Each node can be either a list or a 
    single element. In the case of a list, it is considered as a subtree, 
    otherwise a leaf.
    """
    
    class NodeProxy(object):
        __slots__ = ['obj']
        def __new__(cls, obj, *args, **kargs):
            if isinstance(obj, cls):
                return obj
            inst = object.__new__(cls)
            inst.obj = obj
            return inst
            
        def getstate(self):
            """Return the state of the NodeProxy: the proxied object."""
            return self.obj
            
        @property
        def size(self):
            """Return the size of a leaf: 1."""
            return 1
            
        @property
        def height(self):
            """Return the height of a leaf: 0."""
            return 0
            
        @property
        def root(self):
            """Return the root of a leaf: itself."""
            return self
        
        def __eq__(self, other):
            return self.obj == other.obj        
        def __getattr__(self, attr):
            return getattr(self.obj, attr)
        def __call__(self, *args, **kargs):
            return self.obj(*args, **kargs)
        def __repr__(self):
            return self.obj.__repr__()
        def __str__(self):
            return self.obj.__str__()
                
    @classmethod        
    def convertNode(cls, node):
        """Convert node into the proper object either a Tree or a Node."""
        if isinstance(node, cls):
            if len(node) == 1:
                return cls.NodeProxy(node[0])
            return node
        elif isinstance(node, list):
            if len(node) > 1:
                return cls(node)
            else:
                return cls.NodeProxy(node[0])
        else:
            return cls.NodeProxy(node)

    def __init__(self, content=None):
        """Initialize a tree with a list `content`.
        
        The first element of the list is the root of the tree, then the
        following elements are the nodes. A node could be a list, then
        representing a subtree.
        """
        for elem in content:
            self.append(self.convertNode(elem))
        
    def getstate(self):
        """Return the state of the Tree as a list of arbitrary elements.
        It is mainly used for pickling a Tree object.
        """
        return [elem.getstate() for elem in self] 
    
    def __reduce__(self):
        """Return the class init, the object's state and the object's
        dict in a tuple. The function is used to pickle Tree.
        """
        return (self.__class__, (self.getstate(),), self.__dict__)
    
    def __deepcopy__(self, memo):
        """Deepcopy a Tree by first converting it back to a list of list."""
        new = self.__class__(copy.deepcopy(self.getstate()))
        new.__dict__.update(copy.deepcopy(self.__dict__, memo))
        return new        
        
    def __setitem__(self, key, value):
        """Set the item at `key` with the corresponding `value`."""
        list.__setitem__(self, key, self.convertNode(value))
        
    def __setslice__(self, i, j, value):
        """Set the slice at `i` to `j` with the corresponding `value`."""
        list.__setslice__(self, i, j, self.convertNode(value))
            
    def __str__(self):
        """Return the tree in its original form, a list, as a string."""
        return list.__str__(self)
        
    def __repr__(self):
        """Return the Python code to build a copy of the object."""
        module = self.__module__
        name = self.__class__.__name__
        return "%s.%s(%s)" % (module, name, list.__repr__(self))
        
    @property
    def root(self):
        """Return the root element of the tree.
        
        The root node of a tree is the node with no parents. There is at most 
        one root node in a rooted tree.
        """
        return self[0]

    @property
    def size(self):
        """Return the number of nodes in the tree.
        
        The size of a node is the number of descendants it has including itself.
        """
        return sum(elem.size for elem in self)

    @property
    def height(self):
        """Return the height of the tree.
        
        The height of a tree is the length of the path from the root to the 
        deepest node in the tree. A (rooted) tree with only one node (the root) 
        has a height of zero.
        """
        try:
            return max(elem.height for elem in self[1:])+1
        except ValueError:
            return 0
    
    @property
    def iter(self):
        """Return a generator function that iterates on the element
         of the tree in linear time using depth first algorithm.
        
            >>> t = Tree([1,2,3[4,5,[6,7]],8])
            >>> [i for i in t.iter]:
            [1, 2, 3, 4, 5, 6, 7, 8]
        """
        for elem in self:
            if isinstance(elem, Tree):
                for elem2 in elem.iter:
                    yield elem2
            else:
                yield elem
    
    @property
    def iter_leaf(self):
        """Return a generator function that iterates on the leaf
         of the tree in linear time using depth first 
         algorithm.
    
            >>> t = Tree([1,2,3,[4,5,[6,7]],8])
            >>> [i for i in t.iter_leaf]
            [2, 3, 5, 7, 8]
        """
        for elem in self[1:]:
            if isinstance(elem, Tree):
                for elem2 in elem.iter_leaf:
                    yield elem2
            else:
                yield elem
    
    @property
    def iter_leaf_idx(self):
        """Return a generator function that iterates on the leaf
        indices of the tree in linear time using depth first 
        algorithm.
        
            >>>  t = Tree([1,2,3,[4,[5,6,7],[8,9]],[10,11]]);
            >>> [i for i in t.iter_leaf_idx]
            [1, 2, 5, 6, 8, 10]
        """
        def leaf_idx(tree, total):
            total[0] += 1
            for elem in tree[1:]:
                if isinstance(elem, Tree):
                    for elem2 in leaf_idx(elem, total):
                        yield total[0]
                else:
                    yield total[0]
                    total[0] += 1
        return leaf_idx(self, [0])

    def searchSubtreeDF(self, index):
        """Search the subtree with the corresponding index based on a 
        depth-first search.
        """
        if index == 0:
            return self
        total = 0
        for child in self:
            if total == index:
                return child
            nbr_child = child.size
            if nbr_child + total > index:
                return child.searchSubtreeDF(index-total)
            total += nbr_child

    def setSubtreeDF(self, index, subtree):
        """Replace the tree with the corresponding index by subtree based
        on a depth-first search.
        """
        if index == 0:
            try:
                self[:] = subtree
            except TypeError:
                del self[1:]
                self[0] = subtree
            return
    
        total = 0
        for i, child in enumerate(self):
            if total == index:
                self[i] = subtree
                return
            nbr_child = child.size
            if nbr_child + total > index:
                child.setSubtreeDF(index-total, subtree)
                return
            total += nbr_child

    def searchSubtreeBF(self, index):
        """Search the subtree with the corresponding index based on a 
        breadth-first search.
        """
        if index == 0:
            return self
        queue = deque(self[1:])
        for i in xrange(index):
            subtree = queue.popleft()
            if isinstance(subtree, Tree):
                queue.extend(subtree[1:])
        return subtree

    def setSubtreeBF(self, index, subtree):
        """Replace the subtree with the corresponding index by subtree based
        on a breadth-first search.
        """
        if index == 0:
            try:
                self[:] = subtree
            except TypeError:
                del self[1:]
                self[0] = subtree
            return
                
        queue = deque(izip(repeat(self, len(self[1:])), count(1)))
        for i in xrange(index):
            elem = queue.popleft()
            parent = elem[0]
            child  = elem[1]
            if isinstance(parent[child], Tree):
                tree = parent[child]
                queue.extend(izip(repeat(tree, len(tree[1:])), count(1)))
        parent[child] = subtree