/usr/share/pyshared/dipy/tracking/metrics.py is in python-dipy 0.5.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 | ''' Metrics for tracks, where tracks are arrays of points '''
import numpy as np
from scipy.interpolate import splprep, splev
def length(xyz, along=False):
''' Euclidean length of track line
This will give length in mm if tracks are expressed in world coordinates.
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
along : bool, optional
If True, return array giving cumulative length along track,
otherwise (default) return scalar giving total length.
Returns
---------
L : scalar or array shape (N-1,)
scalar in case of `along` == False, giving total length, array if
`along` == True, giving cumulative lengths.
Examples
----------
>>> from dipy.tracking.metrics import length
>>> xyz = np.array([[1,1,1],[2,3,4],[0,0,0]])
>>> expected_lens = np.sqrt([1+2**2+3**2, 2**2+3**2+4**2])
>>> length(xyz) == expected_lens.sum()
True
>>> len_along = length(xyz, along=True)
>>> np.allclose(len_along, expected_lens.cumsum())
True
>>> length([])
0
>>> length([[1, 2, 3]])
0
>>> length([], along=True)
array([0])
'''
xyz = np.asarray(xyz)
if xyz.shape[0] < 2:
if along:
return np.array([0])
return 0
dists = np.sqrt((np.diff(xyz, axis=0)**2).sum(axis=1))
if along:
return np.cumsum(dists)
return np.sum(dists)
def bytes(xyz):
''' Size of track in bytes
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
Returns
---------
int : number of bytes
'''
return xyz.nbytes
def midpoint(xyz):
''' Midpoint of track
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
Returns
---------
mp : array shape (3,)
Middle point of line, such that, if L is the line length then
`np` is the point such that the length xyz[0] to `mp` and from
`mp` to xyz[-1] is L/2. If the middle point is not a point in
`xyz`, then we take the interpolation between the two nearest
`xyz` points. If `xyz` is empty, return a ValueError
Examples
-----------
>>> from dipy.tracking.metrics import midpoint
>>> midpoint([])
Traceback (most recent call last):
...
ValueError: xyz array cannot be empty
>>> midpoint([[1, 2, 3]])
array([1, 2, 3])
>>> xyz = np.array([[1,1,1],[2,3,4]])
>>> midpoint(xyz)
array([ 1.5, 2. , 2.5])
>>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]])
>>> midpoint(xyz)
array([ 1., 1., 1.])
>>> xyz = np.array([[0,0,0],[1,0,0],[3,0,0]])
>>> midpoint(xyz)
array([ 1.5, 0. , 0. ])
>>> xyz = np.array([[0,9,7],[1,9,7],[3,9,7]])
>>> midpoint(xyz)
array([ 1.5, 9. , 7. ])
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
if n_pts == 1:
return xyz.copy().squeeze()
cumlen = np.zeros(n_pts)
cumlen[1:] = length(xyz, along=True)
midlen=cumlen[-1]/2.0
ind=np.where((cumlen-midlen)>0)[0][0]
len0=cumlen[ind-1]
len1=cumlen[ind]
Ds=midlen-len0
Lambda = Ds/(len1-len0)
return Lambda*xyz[ind]+(1-Lambda)*xyz[ind-1]
def center_of_mass(xyz):
''' Center of mass of streamline
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
Returns
---------
com : array shape (3,)
center of mass of streamline
Examples
----------
>>> from dipy.tracking.metrics import center_of_mass
>>> center_of_mass([])
Traceback (most recent call last):
...
ValueError: xyz array cannot be empty
>>> center_of_mass([[1,1,1]])
array([ 1., 1., 1.])
>>> xyz = np.array([[0,0,0],[1,1,1],[2,2,2]])
>>> center_of_mass(xyz)
array([ 1., 1., 1.])
'''
xyz = np.asarray(xyz)
if xyz.size == 0:
raise ValueError('xyz array cannot be empty')
return np.mean(xyz,axis=0)
def magn(xyz,n=1):
''' magnitude of vector
'''
mag=np.sum(xyz**2,axis=1)**0.5
imag=np.where(mag==0)
mag[imag]=np.finfo(float).eps
if n>1:
return np.tile(mag,(n,1)).T
return mag.reshape(len(mag),1)
def frenet_serret(xyz):
r''' Frenet-Serret Space Curve Invariants
Calculates the 3 vector and 2 scalar invariants of a space curve
defined by vectors r = (x,y,z). If z is omitted (i.e. the array xyz has
shape (N,2), then the curve is
only 2D (planar), but the equations are still valid.
Similar to
http://www.mathworks.com/matlabcentral/fileexchange/11169
In the following equations the prime ($'$) indicates differentiation
with respect to the parameter $s$ of a parametrised curve $\mathbf{r}(s)$.
- $\mathbf{T}=\mathbf{r'}/|\mathbf{r'}|\qquad$ (Tangent vector)}
- $\mathbf{N}=\mathbf{T'}/|\mathbf{T'}|\qquad$ (Normal vector)
- $\mathbf{B}=\mathbf{T}\times\mathbf{N}\qquad$ (Binormal vector)
- $\kappa=|\mathbf{T'}|\qquad$ (Curvature)
- $\mathrm{\tau}=-\mathbf{B'}\cdot\mathbf{N}$ (Torsion)
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
Returns
---------
T : array shape (N,3)
array representing the tangent of the curve xyz
N : array shape (N,3)
array representing the normal of the curve xyz
B : array shape (N,3)
array representing the binormal of the curve xyz
k : array shape (N,1)
array representing the curvature of the curve xyz
t : array shape (N,1)
array representing the torsion of the curve xyz
Examples
----------
Create a helix and calculate its tangent, normal, binormal, curvature
and torsion
>>> from dipy.tracking import metrics as tm
>>> import numpy as np
>>> theta = 2*np.pi*np.linspace(0,2,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=theta/(2*np.pi)
>>> xyz=np.vstack((x,y,z)).T
>>> T,N,B,k,t=tm.frenet_serret(xyz)
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
dxyz=np.gradient(xyz)[0]
ddxyz=np.gradient(dxyz)[0]
#Tangent
T=np.divide(dxyz,magn(dxyz,3))
#Derivative of Tangent
dT=np.gradient(T)[0]
#Normal
N = np.divide(dT,magn(dT,3))
#Binormal
B = np.cross(T,N)
#Curvature
k = magn(np.cross(dxyz,ddxyz),1)/(magn(dxyz,1)**3)
#Torsion
#(In matlab was t=dot(-B,N,2))
t = np.sum(-B*N,axis=1)
#return T,N,B,k,t,dxyz,ddxyz,dT
return T,N,B,k,t
def mean_curvature(xyz):
''' Calculates the mean curvature of a curve
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a curve
Returns
-----------
m : float
float representing the mean curvature
Examples
--------
Create a straight line and a semi-circle and print their mean curvatures
>>> from dipy.tracking import metrics as tm
>>> import numpy as np
>>> x=np.linspace(0,1,100)
>>> y=0*x
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> m=tm.mean_curvature(xyz) #mean curvature straight line
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> m=tm.mean_curvature(xyz) #mean curvature for semi-circle
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
dxyz=np.gradient(xyz)[0]
ddxyz=np.gradient(dxyz)[0]
#Curvature
k = magn(np.cross(dxyz,ddxyz),1)/(magn(dxyz,1)**3)
return np.mean(k)
def mean_orientation(xyz):
'''
Calculates the mean orientation of a curve
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a curve
Returns
-----------
m : float
float representing the mean orientation
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
dxyz=np.gradient(xyz)[0]
return np.mean(dxyz,axis=0)
def generate_combinations(items, n):
""" Combine sets of size n from items
Parameters
------------
items : sequence
n : int
Returns
--------
ic : iterator
Examples
--------
>>> from dipy.tracking.metrics import generate_combinations
>>> ic=generate_combinations(range(3),2)
>>> for i in ic: print i
[0, 1]
[0, 2]
[1, 2]
"""
if n == 0:
yield []
elif n == 2:
#if n=2 non_recursive
for i in xrange(len(items)-1):
for j in xrange(i+1,len(items)):
yield [i,j]
else:
#if n>2 uses recursion
for i in xrange(len(items)):
for cc in generate_combinations(items[i+1:], n-1):
yield [items[i]] + cc
def longest_track_bundle(bundle,sort=False):
''' Return longest track or length sorted track indices in `bundle`
If `sort` == True, return the indices of the sorted tracks in the
bundle, otherwise return the longest track.
Parameters
------------
bundle : sequence
of tracks as arrays, shape (N1,3) ... (Nm,3)
sort : bool, optional
If False (default) return longest track. If True, return length
sorted indices for tracks in bundle
Returns
---------
longest_or_indices : array
longest track - shape (N,3) - (if `sort` is False), or indices
of length sorted tracks (if `sort` is True)
Examples
--------
>>> from dipy.tracking.metrics import longest_track_bundle
>>> import numpy as np
>>> bundle = [np.array([[0,0,0],[2,2,2]]),np.array([[0,0,0],[4,4,4]])]
>>> longest_track_bundle(bundle)
array([[0, 0, 0],
[4, 4, 4]])
>>> longest_track_bundle(bundle,True)
array([0, 1])
'''
alllengths=[length(t) for t in bundle]
alllengths=np.array(alllengths)
if sort:
ilongest=alllengths.argsort()
return ilongest
else:
ilongest=alllengths.argmax()
return bundle[ilongest]
def intersect_sphere(xyz,center,radius):
''' If any segment of the track is intersecting with a sphere of
specific center and radius return True otherwise False
Parameters
------------
xyz : array, shape (N,3)
representing x,y,z of the N points of the track
center : array, shape (3,)
center of the sphere
radius : float
radius of the sphere
Returns
----------
tf : {True,False}
True if track `xyz` intersects sphere
>>> from dipy.tracking.metrics import intersect_sphere
>>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
>>> sph_cent=np.array([1,1,1])
>>> sph_radius = 1
>>> intersect_sphere(line,sph_cent,sph_radius)
True
Notes
-----
The ray to sphere intersection method used here is similar with
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/
http://local.wasp.uwa.edu.au/~pbourke/geometry/sphereline/source.cpp
we just applied it for every segment neglecting the intersections where
the intersecting points are not inside the segment
'''
center=np.array(center)
#print center
lt=xyz.shape[0]
for i in xrange(lt-1):
#first point
x1=xyz[i]
#second point
x2=xyz[i+1]
#do the calculations as given in the Notes
x=x2-x1
a=np.inner(x,x)
x1c=x1-center
b=2*np.inner(x,x1c)
c=np.inner(center,center)+np.inner(x1,x1)-2*np.inner(center,x1) - radius**2
bb4ac =b*b-4*a*c
#print 'bb4ac',bb4ac
if abs(a)<np.finfo(float).eps or bb4ac < 0 :#too small segment or no intersection
continue
if bb4ac ==0: #one intersection point p
mu=-b/2*a
p=x1+mu*x
#check if point is inside the segment
#print 'p',p
if np.inner(p-x1,p-x1) <= a:
return True
if bb4ac > 0: #two intersection points p1 and p2
mu=(-b+np.sqrt(bb4ac))/(2*a)
p1=x1+mu*x
mu=(-b-np.sqrt(bb4ac))/(2*a)
p2=x1+mu*x
#check if points are inside the line segment
#print 'p1,p2',p1,p2
if np.inner(p1-x1,p1-x1) <= a or np.inner(p2-x1,p2-x1) <= a:
return True
return False
def inside_sphere(xyz,center,radius):
r''' If any point of the track is inside a sphere of a specified
center and radius return True otherwise False. Mathematicaly this
can be simply described by $|x-c|\le r$ where $x$ a point $c$ the
center of the sphere and $r$ the radius of the sphere.
Parameters
-------------
xyz : array, shape (N,3)
representing x,y,z of the N points of the track
center : array, shape (3,)
center of the sphere
radius : float
radius of the sphere
Returns
----------
tf : {True,False}
Examples
--------
>>> from dipy.tracking.metrics import inside_sphere
>>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
>>> sph_cent=np.array([1,1,1])
>>> sph_radius = 1
>>> inside_sphere(line,sph_cent,sph_radius)
True
'''
return (np.sqrt(np.sum((xyz-center)**2,axis=1))<=radius).any()==True
def inside_sphere_points(xyz,center,radius):
''' If a track intersects with a sphere of a specified center and
radius return the points that are inside the sphere otherwise False.
Mathematicaly this can be simply described by $|x-c| \le r$ where $x$
a point $c$ the center of the sphere and $r$ the radius of the
sphere.
Parameters
------------
xyz : array, shape (N,3)
representing x,y,z of the N points of the track
center : array, shape (3,)
center of the sphere
radius : float
radius of the sphere
Returns
---------
xyzn : array, shape(M,3)
array representing x,y,z of the M points inside the sphere
Examples
----------
>>> from dipy.tracking.metrics import inside_sphere_points
>>> line=np.array(([0,0,0],[1,1,1],[2,2,2]))
>>> sph_cent=np.array([1,1,1])
>>> sph_radius = 1
>>> inside_sphere_points(line,sph_cent,sph_radius)
array([[1, 1, 1]])
'''
return xyz[(np.sqrt(np.sum((xyz-center)**2,axis=1))<=radius)]
def spline(xyz,s=3,k=2,nest=-1):
''' Generate B-splines as documented in
http://www.scipy.org/Cookbook/Interpolation
The scipy.interpolate packages wraps the netlib FITPACK routines
(Dierckx) for calculating smoothing splines for various kinds of
data and geometries. Although the data is evenly spaced in this
example, it need not be so to use this routine.
Parameters
---------------
xyz : array, shape (N,3)
array representing x,y,z of N points in 3d space
s : float, optional
A smoothing condition. The amount of smoothness is determined by
satisfying the conditions: sum((w * (y - g))**2,axis=0) <= s
where g(x) is the smoothed interpolation of (x,y). The user can
use s to control the tradeoff between closeness and smoothness of
fit. Larger satisfying the conditions: sum((w * (y -
g))**2,axis=0) <= s where g(x) is the smoothed interpolation of
(x,y). The user can use s to control the tradeoff between
closeness and smoothness of fit. Larger s means more smoothing
while smaller values of s indicate less smoothing. Recommended
values of s depend on the weights, w. If the weights represent
the inverse of the standard-deviation of y, then a: good s value
should be found in the range (m-sqrt(2*m),m+sqrt(2*m)) where m is
the number of datapoints in x, y, and w.
k : int, optional
Degree of the spline. Cubic splines are recommended. Even
values of k should be avoided especially with a small s-value.
for the same set of data. If task=-1 find the weighted least
square spline for a given set of knots, t.
nest : None or int, optional
An over-estimate of the total number of knots of the spline to
help in determining the storage space. None results in value
m+2*k. -1 results in m+k+1. Always large enough is nest=m+k+1.
Default is -1.
Returns
----------
xyzn : array, shape (M,3)
Examples
----------
>>> import numpy as np
>>> t=np.linspace(0,1.75*2*np.pi,100)# make ascending spiral in 3-space
>>> x = np.sin(t)
>>> y = np.cos(t)
>>> z = t
>>> x+= np.random.normal(scale=0.1, size=x.shape) # add noise
>>> y+= np.random.normal(scale=0.1, size=y.shape)
>>> z+= np.random.normal(scale=0.1, size=z.shape)
>>> xyz=np.vstack((x,y,z)).T
>>> xyzn=spline(xyz,3,2,-1)
>>> len(xyzn) > len(xyz)
True
See also
----------
From scipy documentation scipy.interpolate.splprep and
scipy.interpolate.splev
'''
# find the knot points
tckp,u = splprep([xyz[:,0],xyz[:,1],xyz[:,2]],s=s,k=k,nest=nest)
# evaluate spline, including interpolated points
xnew,ynew,znew = splev(np.linspace(0,1,400),tckp)
return np.vstack((xnew,ynew,znew)).T
def startpoint(xyz):
''' First point of the track
Parameters
-------------
xyz: array, shape(N,3) representing the track
Returns
---------
sp: array, shape(3,) first track point
Examples
----------
>>> from dipy.tracking.metrics import startpoint
>>> import numpy as np
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> sp=startpoint(xyz)
>>> sp.any()==xyz[0].any()
True
'''
return xyz[0]
def endpoint(xyz):
'''
Parameters
-------------
xyz : array, shape(N,3) representing the track
Returns
---------
ep : array, shape(3,) first track point
Examples
----------
>>> from dipy.tracking.metrics import endpoint
>>> import numpy as np
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> ep=endpoint(xyz)
>>> ep.any()==xyz[-1].any()
True
'''
return xyz[-1]
def arbitrarypoint(xyz,distance):
''' Select an arbitrary point along distance on the track (curve)
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
distance : float
float representing distance travelled from the xyz[0] point of
the curve along the curve.
Returns
---------
ap : array shape (3,)
arbitrary point of line, such that, if the arbitrary point is not
a point in `xyz`, then we take the interpolation between the two
nearest `xyz` points. If `xyz` is empty, return a ValueError
Examples
-----------
>>> import numpy as np
>>> from dipy.tracking.metrics import arbitrarypoint, length
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> ap=arbitrarypoint(xyz,length(xyz)/3)
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
if n_pts == 1:
return xyz.copy().squeeze()
cumlen = np.zeros(n_pts)
cumlen[1:] = length(xyz, along=True)
if cumlen[-1]<distance:
raise ValueError('Given distance is bigger than '
'the length of the curve')
ind=np.where((cumlen-distance)>0)[0][0]
len0=cumlen[ind-1]
len1=cumlen[ind]
Ds=distance-len0
Lambda = Ds/(len1-len0)
return Lambda*xyz[ind]+(1-Lambda)*xyz[ind-1]
def _extrap(xyz,cumlen,distance):
''' Helper function for extrapolate
'''
ind=np.where((cumlen-distance)>0)[0][0]
len0=cumlen[ind-1]
len1=cumlen[ind]
Ds=distance-len0
Lambda = Ds/(len1-len0)
return Lambda*xyz[ind]+(1-Lambda)*xyz[ind-1]
def downsample(xyz,n_pols=3):
''' downsample for a specific number of points along the curve/track
Uses the length of the curve. It works in a similar fashion to
midpoint and arbitrarypoint but it also reduces the number of segments
of a track.
Parameters
------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
n_pol : int
integer representing number of points (poles) we need along the curve.
Returns
---------
xyz2 : array shape (M,3)
array representing x,y,z of M points that where extrapolated. M
should be equal to n_pols
Examples
-----------
>>> import numpy as np
>>> # a semi-circle
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> xyz2=downsample(xyz,3)
>>> # a cosine
>>> x=np.pi*np.linspace(0,1,100)
>>> y=np.cos(theta)
>>> z=0*y
>>> xyz=np.vstack((x,y,z)).T
>>> xyz2=downsample(xyz,3)
>>> len(xyz2)
3
>>> xyz3=downsample(xyz,10)
>>> len(xyz3)
10
'''
xyz = np.asarray(xyz)
n_pts = xyz.shape[0]
if n_pts == 0:
raise ValueError('xyz array cannot be empty')
if n_pts == 1:
return xyz.copy().squeeze()
cumlen = np.zeros(n_pts)
cumlen[1:] = length(xyz, along=True)
step=cumlen[-1]/(n_pols-1)
if cumlen[-1]<step:
raise ValueError('Given number of points n_pols is incorrect. ')
if n_pols<=2:
raise ValueError('Given number of points n_pols needs to be'
' higher than 2. ')
xyz2=[_extrap(xyz,cumlen,distance)
for distance in np.arange(0,cumlen[-1],step)]
return np.vstack((np.array(xyz2),xyz[-1]))
def principal_components(xyz):
''' We use PCA to calculate the 3 principal directions for a track
Parameters
----------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
Returns
-------
va : eigenvalues
ve : eigenvectors
Examples
--------
>>> import numpy as np
>>> from dipy.tracking.metrics import principal_components
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> va, ve = principal_components(xyz)
>>> np.allclose(va, [0.51010101, 0.09883545, 0])
True
'''
C=np.cov(xyz.T)
va,ve=np.linalg.eig(C)
return va,ve
def midpoint2point(xyz,p):
''' Calculate distance from midpoint of a curve to arbitrary point p
Parameters
-------------
xyz : array-like shape (N,3)
array representing x,y,z of N points in a track
p : array shape (3,)
array representing an arbitrary point with x,y,z coordinates in
space.
Returns
---------
d : float
a float number representing Euclidean distance
Examples
-----------
>>> import numpy as np
>>> from dipy.tracking.metrics import midpoint2point, midpoint
>>> theta=np.pi*np.linspace(0,1,100)
>>> x=np.cos(theta)
>>> y=np.sin(theta)
>>> z=0*x
>>> xyz=np.vstack((x,y,z)).T
>>> dist=midpoint2point(xyz,np.array([0,0,0]))
'''
mid=midpoint(xyz)
return np.sqrt(np.sum((xyz-mid)**2))
if __name__ == "__main__":
pass
|