/usr/share/pyshared/ffc/codesnippets.py is in python-ffc 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 | "Code snippets for code generation."
# Copyright (C) 2007 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Kristian B. Oelgaard 2010-2011
# Modified by Marie Rognes 2007-2010
# Modified by Peter Brune 2009
#
# First added: 2007-02-28
# Last changed: 2011-11-22
# Code snippets
__all__ = ["comment_ufc", "comment_dolfin", "header_h", "header_c", "footer",
"cell_coordinates", "jacobian", "inverse_jacobian",
"evaluate_f",
"facet_determinant", "map_onto_physical",
"fiat_coordinate_map", "transform_snippet",
"scale_factor", "combinations_snippet",
"normal_direction",
"facet_normal", "ip_coordinates", "cell_volume", "circumradius",
"facet_area"]
comment_ufc = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
"""
comment_dolfin = """\
// This code conforms with the UFC specification version %(ufc_version)s
// and was automatically generated by FFC version %(ffc_version)s.
//
// This code was generated with the option '-l dolfin' and
// contains DOLFIN-specific wrappers that depend on DOLFIN.
"""
header_h = """\
#ifndef __%(prefix_upper)s_H
#define __%(prefix_upper)s_H
#include <cmath>
#include <stdexcept>
#include <fstream>
#include <ufc.h>
"""
header_c = """\
#include "%(prefix)s.h"
"""
footer = """\
#endif
"""
cell_coordinates = "const double * const * x = c.coordinates;\n"
# Code snippets for computing Jacobian
_jacobian_1D = """\
// Extract vertex coordinates
const double * const * x%(restriction)s = c%(restriction)s.coordinates;
// Compute Jacobian of affine map from reference cell
const double J%(restriction)s_00 = x%(restriction)s[1][0] - x%(restriction)s[0][0];"""
_jacobian_2D = """\
// Extract vertex coordinates
const double * const * x%(restriction)s = c%(restriction)s.coordinates;
// Compute Jacobian of affine map from reference cell
const double J%(restriction)s_00 = x%(restriction)s[1][0] - x%(restriction)s[0][0];
const double J%(restriction)s_01 = x%(restriction)s[2][0] - x%(restriction)s[0][0];
const double J%(restriction)s_10 = x%(restriction)s[1][1] - x%(restriction)s[0][1];
const double J%(restriction)s_11 = x%(restriction)s[2][1] - x%(restriction)s[0][1];"""
_jacobian_3D = """\
// Extract vertex coordinates
const double * const * x%(restriction)s = c%(restriction)s.coordinates;
// Compute Jacobian of affine map from reference cell
const double J%(restriction)s_00 = x%(restriction)s[1][0] - x%(restriction)s[0][0];
const double J%(restriction)s_01 = x%(restriction)s[2][0] - x%(restriction)s[0][0];
const double J%(restriction)s_02 = x%(restriction)s[3][0] - x%(restriction)s[0][0];
const double J%(restriction)s_10 = x%(restriction)s[1][1] - x%(restriction)s[0][1];
const double J%(restriction)s_11 = x%(restriction)s[2][1] - x%(restriction)s[0][1];
const double J%(restriction)s_12 = x%(restriction)s[3][1] - x%(restriction)s[0][1];
const double J%(restriction)s_20 = x%(restriction)s[1][2] - x%(restriction)s[0][2];
const double J%(restriction)s_21 = x%(restriction)s[2][2] - x%(restriction)s[0][2];
const double J%(restriction)s_22 = x%(restriction)s[3][2] - x%(restriction)s[0][2];"""
# Code snippets for computing the inverse Jacobian. Assumes that
# Jacobian is already initialized
_inverse_jacobian_1D = """\
// Compute determinant of Jacobian
const double detJ%(restriction)s = J%(restriction)s_00;
// Compute inverse of Jacobian
const double K%(restriction)s_00 = 1.0 / detJ%(restriction)s;"""
_inverse_jacobian_2D = """\
// Compute determinant of Jacobian
double detJ%(restriction)s = J%(restriction)s_00*J%(restriction)s_11 - J%(restriction)s_01*J%(restriction)s_10;
// Compute inverse of Jacobian
const double K%(restriction)s_00 = J%(restriction)s_11 / detJ%(restriction)s;
const double K%(restriction)s_01 = -J%(restriction)s_01 / detJ%(restriction)s;
const double K%(restriction)s_10 = -J%(restriction)s_10 / detJ%(restriction)s;
const double K%(restriction)s_11 = J%(restriction)s_00 / detJ%(restriction)s;"""
_inverse_jacobian_3D = """\
// Compute sub determinants
const double d%(restriction)s_00 = J%(restriction)s_11*J%(restriction)s_22 - J%(restriction)s_12*J%(restriction)s_21;
const double d%(restriction)s_01 = J%(restriction)s_12*J%(restriction)s_20 - J%(restriction)s_10*J%(restriction)s_22;
const double d%(restriction)s_02 = J%(restriction)s_10*J%(restriction)s_21 - J%(restriction)s_11*J%(restriction)s_20;
const double d%(restriction)s_10 = J%(restriction)s_02*J%(restriction)s_21 - J%(restriction)s_01*J%(restriction)s_22;
const double d%(restriction)s_11 = J%(restriction)s_00*J%(restriction)s_22 - J%(restriction)s_02*J%(restriction)s_20;
const double d%(restriction)s_12 = J%(restriction)s_01*J%(restriction)s_20 - J%(restriction)s_00*J%(restriction)s_21;
const double d%(restriction)s_20 = J%(restriction)s_01*J%(restriction)s_12 - J%(restriction)s_02*J%(restriction)s_11;
const double d%(restriction)s_21 = J%(restriction)s_02*J%(restriction)s_10 - J%(restriction)s_00*J%(restriction)s_12;
const double d%(restriction)s_22 = J%(restriction)s_00*J%(restriction)s_11 - J%(restriction)s_01*J%(restriction)s_10;
// Compute determinant of Jacobian
double detJ%(restriction)s = J%(restriction)s_00*d%(restriction)s_00 + J%(restriction)s_10*d%(restriction)s_10 + J%(restriction)s_20*d%(restriction)s_20;
// Compute inverse of Jacobian
const double K%(restriction)s_00 = d%(restriction)s_00 / detJ%(restriction)s;
const double K%(restriction)s_01 = d%(restriction)s_10 / detJ%(restriction)s;
const double K%(restriction)s_02 = d%(restriction)s_20 / detJ%(restriction)s;
const double K%(restriction)s_10 = d%(restriction)s_01 / detJ%(restriction)s;
const double K%(restriction)s_11 = d%(restriction)s_11 / detJ%(restriction)s;
const double K%(restriction)s_12 = d%(restriction)s_21 / detJ%(restriction)s;
const double K%(restriction)s_20 = d%(restriction)s_02 / detJ%(restriction)s;
const double K%(restriction)s_21 = d%(restriction)s_12 / detJ%(restriction)s;
const double K%(restriction)s_22 = d%(restriction)s_22 / detJ%(restriction)s;"""
evaluate_f = "f.evaluate(vals, y, c);"
scale_factor = """\
// Set scale factor
const double det = std::abs(detJ);"""
_facet_determinant_1D = """\
// Facet determinant 1D (vertex)
const double det = 1.0;"""
_facet_determinant_2D = """\
// Get vertices on edge
static unsigned int edge_vertices[3][2] = {{1, 2}, {0, 2}, {0, 1}};
const unsigned int v0 = edge_vertices[facet%(restriction)s][0];
const unsigned int v1 = edge_vertices[facet%(restriction)s][1];
// Compute scale factor (length of edge scaled by length of reference interval)
const double dx0 = x%(restriction)s[v1][0] - x%(restriction)s[v0][0];
const double dx1 = x%(restriction)s[v1][1] - x%(restriction)s[v0][1];
const double det = std::sqrt(dx0*dx0 + dx1*dx1);"""
_facet_determinant_3D = """\
// Get vertices on face
static unsigned int face_vertices[4][3] = {{1, 2, 3}, {0, 2, 3}, {0, 1, 3}, {0, 1, 2}};
const unsigned int v0 = face_vertices[facet%(restriction)s][0];
const unsigned int v1 = face_vertices[facet%(restriction)s][1];
const unsigned int v2 = face_vertices[facet%(restriction)s][2];
// Compute scale factor (area of face scaled by area of reference triangle)
const double a0 = (x%(restriction)s[v0][1]*x%(restriction)s[v1][2] + x%(restriction)s[v0][2]*x%(restriction)s[v2][1] + x%(restriction)s[v1][1]*x%(restriction)s[v2][2]) - (x%(restriction)s[v2][1]*x%(restriction)s[v1][2] + x%(restriction)s[v2][2]*x%(restriction)s[v0][1] + x%(restriction)s[v1][1]*x%(restriction)s[v0][2]);
const double a1 = (x%(restriction)s[v0][2]*x%(restriction)s[v1][0] + x%(restriction)s[v0][0]*x%(restriction)s[v2][2] + x%(restriction)s[v1][2]*x%(restriction)s[v2][0]) - (x%(restriction)s[v2][2]*x%(restriction)s[v1][0] + x%(restriction)s[v2][0]*x%(restriction)s[v0][2] + x%(restriction)s[v1][2]*x%(restriction)s[v0][0]);
const double a2 = (x%(restriction)s[v0][0]*x%(restriction)s[v1][1] + x%(restriction)s[v0][1]*x%(restriction)s[v2][0] + x%(restriction)s[v1][0]*x%(restriction)s[v2][1]) - (x%(restriction)s[v2][0]*x%(restriction)s[v1][1] + x%(restriction)s[v2][1]*x%(restriction)s[v0][0] + x%(restriction)s[v1][0]*x%(restriction)s[v0][1]);
const double det = std::sqrt(a0*a0 + a1*a1 + a2*a2);"""
_normal_direction_1D = """\
const bool direction = facet%(restriction)s == 0 ? x%(restriction)s[0][0] > x%(restriction)s[1][0] : x%(restriction)s[1][0] > x%(restriction)s[0][0];"""
_normal_direction_2D = """\
const bool direction = dx1*(x%(restriction)s[%(facet)s][0] - x%(restriction)s[v0][0]) - dx0*(x%(restriction)s[%(facet)s][1] - x%(restriction)s[v0][1]) < 0;"""
_normal_direction_3D = """\
const bool direction = a0*(x%(restriction)s[%(facet)s][0] - x%(restriction)s[v0][0]) + a1*(x%(restriction)s[%(facet)s][1] - x%(restriction)s[v0][1]) + a2*(x%(restriction)s[%(facet)s][2] - x%(restriction)s[v0][2]) < 0;"""
_facet_normal_1D = """
// Facet normals are 1.0 or -1.0: (-1.0) <-- X------X --> (1.0)
const double n%(restriction)s = %(direction)sdirection ? 1.0 : -1.0;"""
_facet_normal_2D = """\
// Compute facet normals from the facet scale factor constants
const double n%(restriction)s0 = %(direction)sdirection ? dx1 / det : -dx1 / det;
const double n%(restriction)s1 = %(direction)sdirection ? -dx0 / det : dx0 / det;"""
_facet_normal_3D = """\
// Compute facet normals from the facet scale factor constants
const double n%(restriction)s0 = %(direction)sdirection ? a0 / det : -a0 / det;
const double n%(restriction)s1 = %(direction)sdirection ? a1 / det : -a1 / det;
const double n%(restriction)s2 = %(direction)sdirection ? a2 / det : -a2 / det;"""
_cell_volume_1D = """\
// Cell Volume.
const double volume%(restriction)s = std::abs(detJ%(restriction)s);"""
_cell_volume_2D = """\
// Cell Volume.
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/2.0;"""
_cell_volume_3D = """\
// Cell Volume.
const double volume%(restriction)s = std::abs(detJ%(restriction)s)/6.0;"""
_circumradius_1D = """\
// Compute circumradius, in 1D it is equal to the cell volume.
const double circumradius%(restriction)s = std::abs(detJ%(restriction)s);"""
_circumradius_2D = """\
// Compute circumradius, assuming triangle is embedded in 2D.
const double v1v2%(restriction)s = std::sqrt( (x%(restriction)s[2][0] - x%(restriction)s[1][0])*(x%(restriction)s[2][0] - x%(restriction)s[1][0]) + (x%(restriction)s[2][1] - x%(restriction)s[1][1])*(x%(restriction)s[2][1] - x%(restriction)s[1][1]) );
const double v0v2%(restriction)s = std::sqrt( J%(restriction)s_11*J%(restriction)s_11 + J%(restriction)s_01*J%(restriction)s_01 );
const double v0v1%(restriction)s = std::sqrt( J%(restriction)s_00*J%(restriction)s_00 + J%(restriction)s_10*J%(restriction)s_10 );
const double circumradius%(restriction)s = 0.25*(v1v2%(restriction)s*v0v2%(restriction)s*v0v1%(restriction)s)/(volume%(restriction)s);"""
_circumradius_3D = """\
// Compute circumradius.
const double v1v2%(restriction)s = std::sqrt( (x%(restriction)s[2][0] - x%(restriction)s[1][0])*(x%(restriction)s[2][0] - x%(restriction)s[1][0]) + (x%(restriction)s[2][1] - x%(restriction)s[1][1])*(x%(restriction)s[2][1] - x%(restriction)s[1][1]) + (x%(restriction)s[2][2] - x%(restriction)s[1][2])*(x%(restriction)s[2][2] - x%(restriction)s[1][2]) );
const double v0v2%(restriction)s = std::sqrt(J%(restriction)s_01*J%(restriction)s_01 + J%(restriction)s_11*J%(restriction)s_11 + J%(restriction)s_21*J%(restriction)s_21);
const double v0v1%(restriction)s = std::sqrt(J%(restriction)s_00*J%(restriction)s_00 + J%(restriction)s_10*J%(restriction)s_10 + J%(restriction)s_20*J%(restriction)s_20);
const double v0v3%(restriction)s = std::sqrt(J%(restriction)s_02*J%(restriction)s_02 + J%(restriction)s_12*J%(restriction)s_12 + J%(restriction)s_22*J%(restriction)s_22);
const double v1v3%(restriction)s = std::sqrt( (x%(restriction)s[3][0] - x%(restriction)s[1][0])*(x%(restriction)s[3][0] - x%(restriction)s[1][0]) + (x%(restriction)s[3][1] - x%(restriction)s[1][1])*(x%(restriction)s[3][1] - x%(restriction)s[1][1]) + (x%(restriction)s[3][2] - x%(restriction)s[1][2])*(x%(restriction)s[3][2] - x%(restriction)s[1][2]) );
const double v2v3%(restriction)s = std::sqrt( (x%(restriction)s[3][0] - x%(restriction)s[2][0])*(x%(restriction)s[3][0] - x%(restriction)s[2][0]) + (x%(restriction)s[3][1] - x%(restriction)s[2][1])*(x%(restriction)s[3][1] - x%(restriction)s[2][1]) + (x%(restriction)s[3][2] - x%(restriction)s[2][2])*(x%(restriction)s[3][2] - x%(restriction)s[2][2]) );
const double la%(restriction)s = v1v2%(restriction)s*v0v3%(restriction)s;
const double lb%(restriction)s = v0v2%(restriction)s*v1v3%(restriction)s;
const double lc%(restriction)s = v0v1%(restriction)s*v2v3%(restriction)s;
const double s%(restriction)s = 0.5*(la%(restriction)s+lb%(restriction)s+lc%(restriction)s);
const double area%(restriction)s = std::sqrt(s%(restriction)s*(s%(restriction)s-la%(restriction)s)*(s%(restriction)s-lb%(restriction)s)*(s%(restriction)s-lc%(restriction)s));
const double circumradius%(restriction)s = area%(restriction)s / ( 6.0*volume%(restriction)s );"""
_facet_area_1D = """\
// Facet Area (FIXME: Should this be 0.0?).
const double facet_area = 1.0;"""
_facet_area_2D = """\
// Facet Area.
const double facet_area = det;"""
_facet_area_3D = """\
// Facet Area (divide by two because 'det' is scaled by area of reference triangle).
const double facet_area = det/2.0;"""
evaluate_basis_dofmap = """\
unsigned int element = 0;
unsigned int tmp = 0;
for (unsigned int j = 0; j < %d; j++)
{
if (tmp + dofs_per_element[j] > i)
{
i -= tmp;
element = element_types[j];
break;
}
else
tmp += dofs_per_element[j];
}"""
# Used in evaluate_basis_derivatives. For second order derivatives in 2D it will
# generate the combinations: [(0, 0), (0, 1), (1, 0), (1, 1)] (i.e., xx, xy, yx, yy)
# which will also be the ordering of derivatives in the return value.
combinations_snippet = """\
// Declare pointer to two dimensional array that holds combinations of derivatives and initialise
unsigned int **%(combinations)s = new unsigned int *[%(num_derivatives)s];
for (unsigned int row = 0; row < %(num_derivatives)s; row++)
{
%(combinations)s[row] = new unsigned int [%(n)s];
for (unsigned int col = 0; col < %(n)s; col++)
%(combinations)s[row][col] = 0;
}
// Generate combinations of derivatives
for (unsigned int row = 1; row < %(num_derivatives)s; row++)
{
for (unsigned int num = 0; num < row; num++)
{
for (unsigned int col = %(n)s-1; col+1 > 0; col--)
{
if (%(combinations)s[row][col] + 1 > %(topological_dimension-1)s)
%(combinations)s[row][col] = 0;
else
{
%(combinations)s[row][col] += 1;
break;
}
}
}
}"""
_transform_interval_snippet = """\
// Compute inverse of Jacobian
const double %(K)s[1][1] = {{K_00}};
// Declare transformation matrix
// Declare pointer to two dimensional array and initialise
double **%(transform)s = new double *[%(num_derivatives)s];
for (unsigned int j = 0; j < %(num_derivatives)s; j++)
{
%(transform)s[j] = new double [%(num_derivatives)s];
for (unsigned int k = 0; k < %(num_derivatives)s; k++)
%(transform)s[j][k] = 1;
}
// Construct transformation matrix
for (unsigned int row = 0; row < %(num_derivatives)s; row++)
{
for (unsigned int col = 0; col < %(num_derivatives)s; col++)
{
for (unsigned int k = 0; k < %(n)s; k++)
%(transform)s[row][col] *= %(K)s[%(combinations)s[col][k]][%(combinations)s[row][k]];
}
}"""
_transform_triangle_snippet = """\
// Compute inverse of Jacobian
const double %(K)s[2][2] = \
{{K_00, K_01},\
{K_10, K_11}};
// Declare transformation matrix
// Declare pointer to two dimensional array and initialise
double **%(transform)s = new double *[%(num_derivatives)s];
for (unsigned int j = 0; j < %(num_derivatives)s; j++)
{
%(transform)s[j] = new double [%(num_derivatives)s];
for (unsigned int k = 0; k < %(num_derivatives)s; k++)
%(transform)s[j][k] = 1;
}
// Construct transformation matrix
for (unsigned int row = 0; row < %(num_derivatives)s; row++)
{
for (unsigned int col = 0; col < %(num_derivatives)s; col++)
{
for (unsigned int k = 0; k < %(n)s; k++)
%(transform)s[row][col] *= %(K)s[%(combinations)s[col][k]][%(combinations)s[row][k]];
}
}"""
_transform_tetrahedron_snippet = """\
// Compute inverse of Jacobian
const double %(K)s[3][3] = \
{{K_00, K_01, K_02},\
{K_10, K_11, K_12},\
{K_20, K_21, K_22}};
// Declare transformation matrix
// Declare pointer to two dimensional array and initialise
double **%(transform)s = new double *[%(num_derivatives)s];
for (unsigned int j = 0; j < %(num_derivatives)s; j++)
{
%(transform)s[j] = new double [%(num_derivatives)s];
for (unsigned int k = 0; k < %(num_derivatives)s; k++)
%(transform)s[j][k] = 1;
}
// Construct transformation matrix
for (unsigned int row = 0; row < %(num_derivatives)s; row++)
{
for (unsigned int col = 0; col < %(num_derivatives)s; col++)
{
for (unsigned int k = 0; k < %(n)s; k++)
%(transform)s[row][col] *= %(K)s[%(combinations)s[col][k]][%(combinations)s[row][k]];
}
}"""
# Codesnippets used in evaluate_dof
_map_onto_physical_1D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0];
const double w1 = X_%(i)d[%(j)s][0];
// Compute affine mapping y = F(X)
y[0] = w0*x[0][0] + w1*x[1][0];"""
_map_onto_physical_2D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
// Compute affine mapping y = F(X)
y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0];
y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1];"""
_map_onto_physical_3D = """\
// Evaluate basis functions for affine mapping
const double w0 = 1.0 - X_%(i)d[%(j)s][0] - X_%(i)d[%(j)s][1] - X_%(i)d[%(j)s][2];
const double w1 = X_%(i)d[%(j)s][0];
const double w2 = X_%(i)d[%(j)s][1];
const double w3 = X_%(i)d[%(j)s][2];
// Compute affine mapping y = F(X)
y[0] = w0*x[0][0] + w1*x[1][0] + w2*x[2][0] + w3*x[3][0];
y[1] = w0*x[0][1] + w1*x[1][1] + w2*x[2][1] + w3*x[3][1];
y[2] = w0*x[0][2] + w1*x[1][2] + w2*x[2][2] + w3*x[3][2];"""
_ip_coordinates_1D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*x%(restriction)s[0][0] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][0];"""
_ip_coordinates_2D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*x%(restriction)s[0][0] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][0] + %(name)s[%(ip)s][2]*x%(restriction)s[2][0];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*x%(restriction)s[0][1] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][1] + %(name)s[%(ip)s][2]*x%(restriction)s[2][1];"""
_ip_coordinates_3D = """\
X%(num_ip)d[0] = %(name)s[%(ip)s][0]*x%(restriction)s[0][0] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][0] + %(name)s[%(ip)s][2]*x%(restriction)s[2][0] + \
%(name)s[%(ip)s][3]*x%(restriction)s[3][0];
X%(num_ip)d[1] = %(name)s[%(ip)s][0]*x%(restriction)s[0][1] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][1] + %(name)s[%(ip)s][2]*x%(restriction)s[2][1] + \
%(name)s[%(ip)s][3]*x%(restriction)s[3][1];
X%(num_ip)d[2] = %(name)s[%(ip)s][0]*x%(restriction)s[0][2] + \
%(name)s[%(ip)s][1]*x%(restriction)s[1][2] + %(name)s[%(ip)s][2]*x%(restriction)s[2][2] + \
%(name)s[%(ip)s][3]*x%(restriction)s[3][2];"""
# Codesnippets used in evaluatebasis[|derivatives]
_map_coordinates_FIAT_interval = """\
// Get coordinates and map to the reference (FIAT) element
double X = (2.0*coordinates[0] - x[0][0] - x[1][0]) / J_00;"""
_map_coordinates_FIAT_triangle = """\
// Compute constants
const double C0 = x[1][0] + x[2][0];
const double C1 = x[1][1] + x[2][1];
// Get coordinates and map to the reference (FIAT) element
double X = (J_01*(C1 - 2.0*coordinates[1]) + J_11*(2.0*coordinates[0] - C0)) / detJ;
double Y = (J_00*(2.0*coordinates[1] - C1) + J_10*(C0 - 2.0*coordinates[0])) / detJ;"""
_map_coordinates_FIAT_tetrahedron = """\
// Compute constants
const double C0 = x[3][0] + x[2][0] + x[1][0] - x[0][0];
const double C1 = x[3][1] + x[2][1] + x[1][1] - x[0][1];
const double C2 = x[3][2] + x[2][2] + x[1][2] - x[0][2];
// Get coordinates and map to the reference (FIAT) element
double X = (d_00*(2.0*coordinates[0] - C0) + d_10*(2.0*coordinates[1] - C1) + d_20*(2.0*coordinates[2] - C2)) / detJ;
double Y = (d_01*(2.0*coordinates[0] - C0) + d_11*(2.0*coordinates[1] - C1) + d_21*(2.0*coordinates[2] - C2)) / detJ;
double Z = (d_02*(2.0*coordinates[0] - C0) + d_12*(2.0*coordinates[1] - C1) + d_22*(2.0*coordinates[2] - C2)) / detJ;
"""
# Mappings to code snippets used by format
jacobian = {1: _jacobian_1D, 2: _jacobian_2D, 3: _jacobian_3D}
inverse_jacobian = {1: _inverse_jacobian_1D,
2: _inverse_jacobian_2D,
3: _inverse_jacobian_3D}
facet_determinant = {1: _facet_determinant_1D,
2: _facet_determinant_2D,
3: _facet_determinant_3D}
map_onto_physical = {1: _map_onto_physical_1D,
2: _map_onto_physical_2D,
3: _map_onto_physical_3D}
fiat_coordinate_map = {"interval": _map_coordinates_FIAT_interval,
"triangle": _map_coordinates_FIAT_triangle,
"tetrahedron": _map_coordinates_FIAT_tetrahedron}
transform_snippet = {"interval": _transform_interval_snippet,
"triangle": _transform_triangle_snippet,
"tetrahedron": _transform_tetrahedron_snippet}
normal_direction = {1: _normal_direction_1D,
2: _normal_direction_2D,
3: _normal_direction_3D}
facet_normal = {1: _facet_normal_1D,
2: _facet_normal_2D,
3: _facet_normal_3D}
ip_coordinates = {1: (3, _ip_coordinates_1D),
2: (10, _ip_coordinates_2D),
3: (21, _ip_coordinates_3D)}
cell_volume = {1: _cell_volume_1D,
2: _cell_volume_2D,
3: _cell_volume_3D}
circumradius = {1: _circumradius_1D,
2: _circumradius_2D,
3: _circumradius_3D}
facet_area = {1: _facet_area_1D,
2: _facet_area_2D,
3: _facet_area_3D}
|