/usr/share/pyshared/ffc/evaluatebasis.py is in python-ffc 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 | """Code generation for evaluation of finite element basis values. This module generates
code which is more or less a C++ representation of the code found in FIAT."""
# Copyright (C) 2007-2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2007-04-04
# Last changed: 2011-02-21
#
# Modified by Marie E. Rognes, 2011
#
# MER: The original module generated code that was more or less a C++
# representation of the code found in FIAT. I've modified this (for 2
# and 3D) to generate code that does the same as FIAT, but with loops
# unrolled etc, thus removing unnecessary computations at runtime.
# There might be some clean-ups required, specially after this.
# Python modules
import math
import numpy
# FFC modules
from ffc.log import error
from ffc.cpp import remove_unused, indent, format
from ffc.quadrature.symbolics import create_float, create_float, create_symbol,\
create_product, create_sum, create_fraction, CONST
def _evaluate_basis_all(data):
"""Like evaluate_basis, but return the values of all basis functions (dofs)."""
if isinstance(data, str):
return format["exception"]("evaluate_basis_all: %s" % data)
# Prefetch formats.
f_assign = format["assign"]
f_component = format["component"]
f_comment = format["comment"]
f_loop = format["generate loop"]
f_r, f_s = format["free indices"][:2]
f_tensor = format["tabulate tensor"]
f_values = format["argument values"]
f_basis = format["call basis"]
f_dof_vals = format["dof values"]
f_double = format["float declaration"]
f_float = format["floating point"]
f_decl = format["declaration"]
f_ref_var = format["reference variable"]
# Initialise return code.
code = []
# FIXME: KBO: Figure out how the return format should be, either:
# [N0[0], N0[1], N1[0], N1[1], ...]
# or
# [N0[0], N1[0], ..., N0[1], N1[1], ...]
# for vector (tensor elements), currently returning option 1.
# FIXME: KBO: For now, just call evaluate_basis and map values accordingly,
# this will keep the amount of code at a minimum. If it turns out that speed
# is an issue (overhead from calling evaluate_basis), we can easily generate
# all the code
# Get total value shape and space dimension for entire element (possibly mixed).
value_size = data["value_size"]
space_dimension = data["space_dimension"]
# Special case where space dimension is one (constant elements).
if space_dimension == 1:
code += [f_comment("Element is constant, calling evaluate_basis.")]
code += [f_basis(format["int"](0), f_values)]
return "\n".join(code)
# Declare helper value to hold single dof values.
code += [f_comment("Helper variable to hold values of a single dof.")]
if value_size == 1:
code += [f_decl(f_double, f_dof_vals, f_float(0.0))]
else:
code += [f_decl(f_double, f_component(f_dof_vals, value_size), f_tensor([0.0]*value_size))]
# Create loop over dofs that calls evaluate_basis for a single dof and
# inserts the values into the global array.
code += ["", f_comment("Loop dofs and call evaluate_basis.")]
lines_r = []
loop_vars_r = [(f_r, 0, space_dimension)]
if value_size == 1:
lines_r += [f_basis(f_r, f_ref_var(f_dof_vals))]
else:
lines_r += [f_basis(f_r, f_dof_vals)]
if value_size == 1:
lines_r += [f_assign(f_component(f_values, f_r), f_dof_vals)]
else:
index = format["matrix index"](f_r, f_s, value_size)
lines_s = [f_assign(f_component(f_values, index), f_component(f_dof_vals, f_s))]
lines_r += f_loop(lines_s, [(f_s, 0, value_size)])
code += f_loop(lines_r, loop_vars_r)
# Generate bode (no need to remove unused).
return "\n".join(code)
# From FIAT_NEW.polynomial_set.tabulate()
def _evaluate_basis(data):
"""Generate run time code to evaluate an element basisfunction at an
arbitrary point. The value(s) of the basisfunction is/are
computed as in FIAT as the dot product of the coefficients (computed at compile time)
and basisvalues which are dependent on the coordinate and thus have to be computed at
run time.
The function should work for all elements supported by FIAT, but it remains
untested for tensor valued elements."""
if isinstance(data, str):
return format["exception"]("evaluate_basis: %s" % data)
# Prefetch formats.
f_assign = format["assign"]
f_comment = format["comment"]
f_values = format["argument values"]
f_float = format["floating point"]
f_component = format["component"]
# Initialise return code.
code = []
# Get the element cell domain and geometric dimension.
element_cell_domain = data["cell_domain"]
geometric_dimension = data["geometric_dimension"]
# Get code snippets for Jacobian, Inverse of Jacobian and mapping of
# coordinates from physical element to the FIAT reference element.
# FIXME: KBO: Change this when supporting R^2 in R^3 elements.
code += [format["jacobian and inverse"](geometric_dimension)]
code += ["", format["fiat coordinate map"](element_cell_domain)]
# Get value shape and reset values. This should also work for TensorElement,
# scalar are empty tuples, therefore (1,) in which case value_shape = 1.
value_size = data["value_size"]
code += ["", f_comment("Reset values.")]
if value_size == 1:
# Reset values as a pointer.
code += [f_assign(format["dereference pointer"](f_values), f_float(0.0))]
else:
# Reset all values.
code += [f_assign(f_component(f_values, i), f_float(0.0)) for i in range(value_size)]
# Create code for all basis values (dofs).
dof_cases = []
for dof in data["dof_data"]:
dof_cases.append(_generate_dof_code(data, dof))
code += [format["switch"](format["argument basis num"], dof_cases)]
# if len(data_list) == 1:
# data = data_list[0]
# # Map degree of freedom to local degree.
# code += ["", _map_dof(0)]
# # Generate element code.
# code += _generate_element_code(data, 0, False)
# # If the element is of type MixedElement (including Vector- and TensorElement).
# else:
# # Generate element code, for all sub-elements.
# code += _mixed_elements(data_list)
# Remove unused variables (from transformations and mappings) in code.
code = remove_unused("\n".join(code))
# code = "\n".join(code)
return code
#def _map_dof(sum_space_dim):
# """This function creates code to map a basis function to a local basis function.
# Example, the following mixed element:
# element = VectorElement("Lagrange", "triangle", 2)
# has the element list, elements = [Lagrange order 2, Lagrange order 2] and 12 dofs (6 each).
# The evaluation of basis function 8 is then mapped to 2 (8-6) for local element no. 2."""
# # In case of only one element or the first element in a series then we don't subtract anything.
# if sum_space_dim == 0:
# code = [format["comment"]("Map degree of freedom to element degree of freedom")]
# code += [format["const uint declaration"](format["local dof"], format["argument basis num"])]
# else:
# code = [format["comment"]("Map degree of freedom to element degree of freedom")]
# code += [format["const uint declaration"](format["local dof"],\
# format["sub"]([format["argument basis num"], "%d" % sum_space_dim]))]
# return "\n".join(code)
#def _mixed_elements(data_list):
# "Generate code for each sub-element in the event of mixed elements"
# # Prefetch formats to speed up code generation.
# f_dofmap_if = format["dofmap if"]
# f_if = format["if"]
# sum_value_dim = 0
# sum_space_dim = 0
# # Initialise return code.
# code = []
# # Loop list of data and generate code for each element.
# for data in data_list:
# # Get value and space dimension (should be tensor ready).
# value_dim = sum(data["value_shape"] or (1,))
# space_dim = data["space_dimension"]
# # Generate map from global to local dof.
# element_code = [_map_dof(sum_space_dim)]
# # Generate code for basis element.
# element_code += _generate_element_code(data, sum_value_dim, True)
# # Remove unused code for each sub element and indent code.
# if_code = indent(remove_unused("\n".join(element_code)), 2)
# # Create if statement and add to code.
# code += [f_if(f_dofmap_if(sum_space_dim, sum_space_dim + space_dim - 1), if_code)]
# # Increase sum of value dimension, and space dimension.
# sum_value_dim += value_dim
# sum_space_dim += space_dim
# return code
#def _generate_element_code(data, dof_data):
def _generate_dof_code(data, dof_data):
"""Generate code for a single basis element as the dot product of
coefficients and basisvalues. Then apply transformation if applicable."""
# Generate basisvalues.
code = _compute_basisvalues(data, dof_data)
# Tabulate coefficients.
code += _tabulate_coefficients(dof_data)
# Compute the value of the basisfunction as the dot product of the coefficients
# and basisvalues and apply transformation.
code += _compute_values(data, dof_data)
return remove_unused("\n".join(code))
def _tabulate_coefficients(dof_data):
"""This function tabulates the element coefficients that are generated by FIAT at
compile time."""
# Prefetch formats to speed up code generation.
f_comment = format["comment"]
f_table = format["static const float declaration"]
f_coefficients = format["coefficients"]
f_component = format["component"]
f_decl = format["declaration"]
f_tensor = format["tabulate tensor"]
f_new_line = format["new line"]
# Get coefficients from basis functions, computed by FIAT at compile time.
coefficients = dof_data["coeffs"]
# # Use rank to handle coefficients.
# rank = len(data["value_shape"])
# if rank == 0:
# coefficients = [coefficients]
# # Vector valued basis element [Raviart-Thomas, Brezzi-Douglas-Marini (BDM)].
# elif rank == 1:
# coefficients = numpy.transpose(coefficients, [1,0,2])
# # Tensor and other elements.
# else:
# error("Rank %d elements are currently not supported" % rank)
# Initialise return code.
code = [f_comment("Table(s) of coefficients.")]
# Get number of members of the expansion set.
num_mem = dof_data["num_expansion_members"]
# Generate tables for each component.
for i, coeffs in enumerate(coefficients):
# Varable name for coefficients.
name = f_component(f_coefficients(i), num_mem)
# Generate array of values.
code += [f_decl(f_table, name, f_new_line + f_tensor(coeffs))] + [""]
return code
def _compute_values(data, dof_data):
"""This function computes the value of the basisfunction as the dot product
of the coefficients and basisvalues."""
# Prefetch formats to speed up code generation.
f_values = format["argument values"]
f_component = format["component"]
f_comment = format["comment"]
f_add = format["add"]
f_coefficients = format["coefficients"]
f_basisvalues = format["basisvalues"]
f_r = format["free indices"][0]
# f_dof = format["local dof"]
f_deref_pointer = format["dereference pointer"]
f_detJ = format["det(J)"]
f_inv = format["inverse"]
f_mul = format["mul"]
f_iadd = format["iadd"]
f_group = format["grouping"]
f_tmp_ref = format["tmp ref value"]
f_assign = format["assign"]
f_loop = format["generate loop"]
f_const_float = format["const float declaration"]
f_trans = format["transform"]
f_inner = format["inner product"]
# Initialise return code.
code = [f_comment("Compute value(s).")]
# Get dof data.
num_components = dof_data["num_components"]
offset = dof_data["offset"]
# # Get number of components, change for tensor valued elements.
# shape = data["value_shape"]
# if shape == ():
# num_components = 1
# elif len(shape) == 1:
# num_components = shape[0]
# else:
# error("Tensor valued elements are not supported yet: %d " % shape)
lines = []
if data["value_size"] != 1:
# Loop number of components.
for i in range(num_components):
# Generate name and value to create matrix vector multiply.
name = f_component(f_values, i + offset)
value = f_mul([f_component(f_coefficients(i), f_r),\
f_component(f_basisvalues, f_r)])
lines += [f_iadd(name, value)]
else:
# Generate name and value to create matrix vector multiply.
name = f_deref_pointer(f_values)
value = f_mul([f_component(f_coefficients(0), f_r),\
f_component(f_basisvalues, f_r)])
lines = [f_iadd(name, value)]
# Get number of members of the expansion set.
num_mem = dof_data["num_expansion_members"]
loop_vars = [(f_r, 0, num_mem)]
code += f_loop(lines, loop_vars)
# Apply transformation if applicable.
mapping = dof_data["mapping"]
if mapping == "affine":
pass
elif mapping == "contravariant piola":
code += ["", f_comment("Using contravariant Piola transform to map values back to the physical element.")]
# Get temporary values before mapping.
code += [f_const_float(f_tmp_ref(i), f_component(f_values, i + offset))\
for i in range(num_components)]
# Create names for inner product.
topological_dimension = data["topological_dimension"]
basis_col = [f_tmp_ref(j) for j in range(topological_dimension)]
for i in range(num_components):
# Create Jacobian.
jacobian_row = [f_trans("J", i, j, None) for j in range(topological_dimension)]
# Create inner product and multiply by inverse of Jacobian.
inner = f_group(f_inner(jacobian_row, basis_col))
value = f_mul([f_inv(f_detJ(None)), inner])
name = f_component(f_values, i + offset)
code += [f_assign(name, value)]
elif mapping == "covariant piola":
code += ["", f_comment("Using covariant Piola transform to map values back to the physical element.")]
# Get temporary values before mapping.
code += [f_const_float(f_tmp_ref(i), f_component(f_values, i + offset))\
for i in range(num_components)]
# Create names for inner product.
topological_dimension = data["topological_dimension"]
basis_col = [f_tmp_ref(j) for j in range(topological_dimension)]
for i in range(num_components):
# Create inverse of Jacobian.
inv_jacobian_column = [f_trans("JINV", j, i, None) for j in range(topological_dimension)]
# Create inner product of basis values and inverse of Jacobian.
value = f_group(f_inner(inv_jacobian_column, basis_col))
name = f_component(f_values, i + offset)
code += [f_assign(name, value)]
else:
error("Unknown mapping: %s" % mapping)
return code
# MER: Uncommented these after unrolling loops at compile time instead
# of runtime
#
# # FIAT_NEW code (compute index function) TriangleExpansionSet.
# # def idx(p,q):
# # return (p+q)*(p+q+1)/2 + q
# def _idx2D(p, q):
# f_add = format["add"]
# f_group = format["grouping"]
# f_int = format["int"]
# pq = format["addition"]([str(p), str(q)])
# pq1 = f_group(f_add([pq, f_int(1)]))
# if q == "0":
# return format["div"](format["mul"]([pq, pq1]), f_int(2))
# return f_add([format["div"](format["mul"]([f_group(pq), pq1]), f_int(2)), str(q)])
# # FIAT_NEW code (compute index function) TetrahedronExpansionSet.
# # def idx(p,q,r):
# # return (p+q+r)*(p+q+r+1)*(p+q+r+2)/6 + (q+r)*(q+r+1)/2 + r
# def _idx3D(p, q, r):
# f_add = format["add"]
# f_group = format["grouping"]
# f_int = format["int"]
# pqr = format["addition"]([str(p), str(q), str(r)])
# pqr1 = f_group(f_add([pqr, f_int(1)]))
# pqr2 = f_group(f_add([pqr, f_int(2)]))
# qr = format["addition"]([str(q), str(r)])
# qr1 = f_group(f_add([qr, f_int(1)]))
# if q == r == "0":
# return format["div"](format["mul"]([pqr, pqr1, pqr2]), f_int(6))
# pqrg = f_group(pqr)
# fac0 = format["div"](format["mul"]([pqrg, pqr1, pqr2]), f_int(6))
# if r == "0":
# return f_add([fac0, format["div"](format["mul"]([qr, qr1]), f_int(2))])
# return f_add([fac0, format["div"](format["mul"]([f_group(qr), qr1]), f_int(2)), str(r)])
# # FIAT_NEW code (helper variables) TriangleExpansionSet and TetrahedronExpansionSet.
# # def jrc( a , b , n ):
# # an = float( ( 2*n+1+a+b)*(2*n+2+a+b)) \
# # / float( 2*(n+1)*(n+1+a+b))
# # bn = float( (a*a-b*b) * (2*n+1+a+b) ) \
# # / float( 2*(n+1)*(2*n+a+b)*(n+1+a+b) )
# # cn = float( (n+a)*(n+b)*(2*n+2+a+b) ) \
# # / float( (n+1)*(n+1+a+b)*(2*n+a+b) )
# # return an,bn,cn
# def _jrc(a, b, n):
# f1 = create_float(1)
# f2 = create_float(2)
# an_num = create_product([ f2*n + f1 + a + b, f2*n + f2 + a + b ])
# an_denom = create_product([ f2, n + f1, n + f1 + a + b ])
# an = create_fraction(an_num, an_denom)
# bn_num = create_product([ a*a - b*b, f2*n + f1 + a + b ])
# bn_denom = create_product([ f2, n + f1, f2*n + a + b, n + f1 + a + b ])
# bn = create_fraction(bn_num, bn_denom)
# cn_num = create_product([ n + a, n + b, f2*n + f2 + a + b ])
# cn_denom = create_product([ n + f1, n + f1 + a + b, f2*n + a + b ])
# cn = create_fraction(cn_num, cn_denom)
# return (an, bn, cn)
def _compute_basisvalues(data, dof_data):
"""From FIAT_NEW.expansions."""
UNROLL = True
# Prefetch formats to speed up code generation.
f_comment = format["comment"]
f_add = format["add"]
f_mul = format["mul"]
f_imul = format["imul"]
f_sub = format["sub"]
f_group = format["grouping"]
f_assign = format["assign"]
f_sqrt = format["sqrt"]
f_x = format["x coordinate"]
f_y = format["y coordinate"]
f_z = format["z coordinate"]
f_double = format["float declaration"]
f_basisvalue = format["basisvalues"]
f_component = format["component"]
f_float = format["floating point"]
f_uint = format["uint declaration"]
f_tensor = format["tabulate tensor"]
f_loop = format["generate loop"]
f_decl = format["declaration"]
f_tmp = format["tmp value"]
f_int = format["int"]
f_r, f_s, f_t = format["free indices"][:3]
idx0 = f_r + f_r
idx1 = f_s + f_s
idx2 = f_t + f_t
# Create temporary values.
f1, f2, f3, f4, f5 = [create_symbol(f_tmp(i), CONST) for i in range(0,5)]
an, bn, cn = [create_symbol(f_tmp(i), CONST) for i in range(5,8)]
# Get embedded degree.
embedded_degree = dof_data["embedded_degree"]
# Create helper symbols.
symbol_p = create_symbol(f_r, CONST)
symbol_q = create_symbol(f_s, CONST)
symbol_r = create_symbol(f_t, CONST)
symbol_x = create_symbol(f_x, CONST)
symbol_y = create_symbol(f_y, CONST)
symbol_z = create_symbol(f_z, CONST)
basis_idx0 = create_symbol(f_component(f_basisvalue, idx0), CONST)
basis_idx1 = create_symbol(f_component(f_basisvalue, idx1), CONST)
basis_idx2 = create_symbol(f_component(f_basisvalue, idx2), CONST)
int_0 = f_int(0)
int_1 = f_int(1)
int_2 = f_int(2)
int_n = f_int(embedded_degree)
int_n1 = f_int(embedded_degree + 1)
int_nm1 = f_int(embedded_degree - 1)
float_0 = create_float(0)
float_1 = create_float(1)
float_2 = create_float(2)
float_3 = create_float(3)
float_4 = create_float(4)
float_1_5 = create_float(1.5)
float_0_5 = create_float(0.5)
float_0_25 = create_float(0.25)
# Initialise return code.
code = [""]
# Create zero array for basisvalues.
# Get number of members of the expansion set.
num_mem = dof_data["num_expansion_members"]
code += [f_comment("Array of basisvalues.")]
code += [f_decl(f_double, f_component(f_basisvalue, num_mem), f_tensor([0.0]*num_mem))]
# Declare helper variables, will be removed if not used.
code += ["", f_comment("Declare helper variables.")]
code += [f_decl(f_uint, idx0, int_0)]
code += [f_decl(f_uint, idx1, int_0)]
code += [f_decl(f_uint, idx2, int_0)]
code += [f_decl(f_double, str(an), f_float(0))]
code += [f_decl(f_double, str(bn), f_float(0))]
code += [f_decl(f_double, str(cn), f_float(0))]
# Get the element cell domain.
# FIXME: KBO: Change this when supporting R^2 in R^3 elements.
element_cell_domain = data["cell_domain"]
def _jrc(a, b, n):
an = float( ( 2*n+1+a+b)*(2*n+2+a+b))/ float( 2*(n+1)*(n+1+a+b))
bn = float( (a*a-b*b) * (2*n+1+a+b))/ float( 2*(n+1)*(2*n+a+b)*(n+1+a+b) )
cn = float( (n+a)*(n+b)*(2*n+2+a+b))/ float( (n+1)*(n+1+a+b)*(2*n+a+b) )
return (an,bn,cn)
# 1D
if (element_cell_domain == "interval"):
# FIAT_NEW.expansions.LineExpansionSet.
# FIAT_NEW code
# psitilde_as = jacobi.eval_jacobi_batch(0,0,n,ref_pts)
# FIAT_NEW.jacobi.eval_jacobi_batch(a,b,n,xs)
# The initial value basisvalue 0 is always 1.0
# FIAT_NEW code
# for ii in range(result.shape[1]):
# result[0,ii] = 1.0 + xs[ii,0] - xs[ii,0]
code += ["", f_comment("Compute basisvalues.")]
code += [f_assign(f_component(f_basisvalue, 0), f_float(1.0))]
# Only continue if the embedded degree is larger than zero.
if embedded_degree > 0:
# FIAT_NEW.jacobi.eval_jacobi_batch(a,b,n,xs).
# result[1,:] = 0.5 * ( a - b + ( a + b + 2.0 ) * xsnew )
# The initial value basisvalue 1 is always x
code += [f_assign(f_component(f_basisvalue, 1), f_x)]
# Only active is embedded_degree > 1.
if embedded_degree > 1:
# FIAT_NEW.jacobi.eval_jacobi_batch(a,b,n,xs).
# apb = a + b (equal to 0 because of function arguments)
# for k in range(2,n+1):
# a1 = 2.0 * k * ( k + apb ) * ( 2.0 * k + apb - 2.0 )
# a2 = ( 2.0 * k + apb - 1.0 ) * ( a * a - b * b )
# a3 = ( 2.0 * k + apb - 2.0 ) \
# * ( 2.0 * k + apb - 1.0 ) \
# * ( 2.0 * k + apb )
# a4 = 2.0 * ( k + a - 1.0 ) * ( k + b - 1.0 ) \
# * ( 2.0 * k + apb )
# a2 = a2 / a1
# a3 = a3 / a1
# a4 = a4 / a1
# result[k,:] = ( a2 + a3 * xsnew ) * result[k-1,:] \
# - a4 * result[k-2,:]
# The below implements the above (with a = b = apb = 0)
for r in range(2, embedded_degree+1):
# Define helper variables
a1 = 2.0*r*r*(2.0*r - 2.0)
a3 = ((2.0*r - 2.0)*(2.0*r - 1.0 )*(2.0*r))/a1
a4 = (2.0*(r - 1.0)*(r - 1.0)*(2.0*r))/a1
assign_to = f_component(f_basisvalue, r)
assign_from = f_sub([f_mul([f_x, f_component(f_basisvalue, r-1), f_float(a3)]),
f_mul([f_component(f_basisvalue, r-2), f_float(a4)])])
code += [f_assign(assign_to, assign_from)]
# Scale values.
# FIAT_NEW.expansions.LineExpansionSet.
# FIAT_NEW code
# results = numpy.zeros( ( n+1 , len(pts) ) , type( pts[0][0] ) )
# for k in range( n + 1 ):
# results[k,:] = psitilde_as[k,:] * math.sqrt( k + 0.5 )
lines = []
loop_vars = [(str(symbol_p), 0, int_n1)]
# Create names.
basis_k = create_symbol(f_component(f_basisvalue, str(symbol_p)), CONST)
# Compute value.
fac1 = create_symbol( f_sqrt(str(symbol_p + float_0_5)), CONST )
lines += [format["imul"](str(basis_k), str(fac1))]
# Create loop (block of lines).
code += f_loop(lines, loop_vars)
# 2D
elif (element_cell_domain == "triangle"):
# FIAT_NEW.expansions.TriangleExpansionSet.
# Compute helper factors
# FIAT_NEW code
# f1 = (1.0+2*x+y)/2.0
# f2 = (1.0 - y) / 2.0
# f3 = f2**2
fac1 = create_fraction(float_1 + float_2*symbol_x + symbol_y, float_2)
fac2 = create_fraction(float_1 - symbol_y, float_2)
code += [f_decl(f_double, str(f1), fac1)]
code += [f_decl(f_double, str(f2), fac2)]
code += [f_decl(f_double, str(f3), f2*f2)]
code += ["", f_comment("Compute basisvalues.")]
# The initial value basisvalue 0 is always 1.0.
# FIAT_NEW code
# for ii in range( results.shape[1] ):
# results[0,ii] = 1.0 + apts[ii,0]-apts[ii,0]+apts[ii,1]-apts[ii,1]
code += [f_assign(f_component(f_basisvalue, 0), f_float(1.0))]
def _idx2d(p, q):
return (p+q)*(p+q+1)/2 + q
# Only continue if the embedded degree is larger than zero.
if embedded_degree > 0:
# The initial value of basisfunction 1 is equal to f1.
# FIAT_NEW code
# results[idx(1,0),:] = f1
code += [f_assign(f_component(f_basisvalue, 1), str(f1))]
# NOTE: KBO: The order of the loops is VERY IMPORTANT!!
# Only active is embedded_degree > 1.
if embedded_degree > 1:
# FIAT_NEW code (loop 1 in FIAT)
# for p in range(1,n):
# a = (2.0*p+1)/(1.0+p)
# b = p / (p+1.0)
# results[idx(p+1,0)] = a * f1 * results[idx(p,0),:] \
# - p/(1.0+p) * f3 *results[idx(p-1,0),:]
# FIXME: KBO: Is there an error in FIAT? why is b not used?
for r in range(1, embedded_degree):
rr = _idx2d((r + 1), 0)
assign_to = f_component(f_basisvalue, rr)
ss = _idx2d(r, 0)
tt = _idx2d((r - 1), 0)
A = (2*r + 1.0)/(r + 1)
B = r/(1.0 + r)
v1 = f_mul([f_component(f_basisvalue, ss), f_float(A),
str(f1)])
v2 = f_mul([f_component(f_basisvalue, tt), f_float(B),
str(f3)])
assign_from = f_sub([v1, v2])
code += [f_assign(assign_to, assign_from)]
# FIAT_NEW code (loop 2 in FIAT).
# for p in range(n):
# results[idx(p,1),:] = 0.5 * (1+2.0*p+(3.0+2.0*p)*y) \
# * results[idx(p,0)]
for r in range(0, embedded_degree):
# (p+q)*(p+q+1)/2 + q
rr = _idx2d(r, 1)
assign_to = f_component(f_basisvalue, rr)
ss = _idx2d(r, 0)
A = 0.5*(1 + 2*r)
B = 0.5*(3 + 2*r)
C = f_add([f_float(A), f_mul([f_float(B), str(symbol_y)])])
assign_from = f_mul([f_component(f_basisvalue, ss),
f_group(C)])
code += [f_assign(assign_to, assign_from)]
# Only active is embedded_degree > 1.
if embedded_degree > 1:
# FIAT_NEW code (loop 3 in FIAT).
# for p in range(n-1):
# for q in range(1,n-p):
# (a1,a2,a3) = jrc(2*p+1,0,q)
# results[idx(p,q+1),:] \
# = ( a1 * y + a2 ) * results[idx(p,q)] \
# - a3 * results[idx(p,q-1)]
for r in range(0, embedded_degree - 1):
for s in range(1, embedded_degree - r):
rr = _idx2d(r, (s + 1))
ss = _idx2d(r, s)
tt = _idx2d(r, s - 1)
A, B, C = _jrc(2*r + 1, 0, s)
assign_to = f_component(f_basisvalue, rr)
assign_from = f_sub([f_mul([f_component(f_basisvalue, ss), f_group(f_add([f_float(B), f_mul([str(symbol_y), f_float(A)])]))]),
f_mul([f_component(f_basisvalue, tt), f_float(C)])])
code += [f_assign(assign_to, assign_from)]
# FIAT_NEW code (loop 4 in FIAT).
# for p in range(n+1):
# for q in range(n-p+1):
# results[idx(p,q),:] *= math.sqrt((p+0.5)*(p+q+1.0))
n1 = embedded_degree + 1
for r in range(0, n1):
for s in range(0, n1 - r):
rr = _idx2d(r, s)
A = (r + 0.5)*(r + s + 1)
assign_to = f_component(f_basisvalue, rr)
code += [f_imul(assign_to, f_sqrt(A))]
# 3D
elif (element_cell_domain == "tetrahedron"):
# FIAT_NEW code (compute index function) TetrahedronExpansionSet.
# def idx(p,q,r):
# return (p+q+r)*(p+q+r+1)*(p+q+r+2)/6 + (q+r)*(q+r+1)/2 + r
def _idx3d(p, q, r):
return (p+q+r)*(p+q+r+1)*(p+q+r+2)/6 + (q+r)*(q+r+1)/2 + r
# FIAT_NEW.expansions.TetrahedronExpansionSet.
# Compute helper factors.
# FIAT_NEW code
# factor1 = 0.5 * ( 2.0 + 2.0*x + y + z )
# factor2 = (0.5*(y+z))**2
# factor3 = 0.5 * ( 1 + 2.0 * y + z )
# factor4 = 0.5 * ( 1 - z )
# factor5 = factor4 ** 2
fac1 = create_product([float_0_5, float_2 + float_2*symbol_x + symbol_y + symbol_z])
fac2 = create_product([float_0_25, symbol_y + symbol_z, symbol_y + symbol_z])
fac3 = create_product([float_0_5, float_1 + float_2*symbol_y + symbol_z])
fac4 = create_product([float_0_5, float_1 - symbol_z])
code += [f_decl(f_double, str(f1), fac1)]
code += [f_decl(f_double, str(f2), fac2)]
code += [f_decl(f_double, str(f3), fac3)]
code += [f_decl(f_double, str(f4), fac4)]
code += [f_decl(f_double, str(f5), f4*f4)]
code += ["", f_comment("Compute basisvalues.")]
# The initial value basisvalue 0 is always 1.0.
# FIAT_NEW code
# for ii in range( results.shape[1] ):
# results[0,ii] = 1.0 + apts[ii,0]-apts[ii,0]+apts[ii,1]-apts[ii,1]
code += [f_assign(f_component(f_basisvalue, 0), f_float(1.0))]
# Only continue if the embedded degree is larger than zero.
if embedded_degree > 0:
# The initial value of basisfunction 1 is equal to f1.
# FIAT_NEW code
# results[idx(1,0),:] = f1
code += [f_assign(f_component(f_basisvalue, 1), str(f1))]
# NOTE: KBO: The order of the loops is VERY IMPORTANT!!
# Only active is embedded_degree > 1
if embedded_degree > 1:
# FIAT_NEW code (loop 1 in FIAT).
# for p in range(1,n):
# a1 = ( 2.0 * p + 1.0 ) / ( p + 1.0 )
# a2 = p / (p + 1.0)
# results[idx(p+1,0,0)] = a1 * factor1 * results[idx(p,0,0)] \
# -a2 * factor2 * results[ idx(p-1,0,0) ]
for r in range(1, embedded_degree):
rr = _idx3d((r + 1), 0, 0)
ss = _idx3d(r, 0, 0)
tt = _idx3d((r - 1), 0, 0)
A = (2*r + 1.0)/(r + 1)
B = r/(r + 1.0)
assign_to = f_component(f_basisvalue, rr)
assign_from = f_sub([f_mul([f_float(A), str(f1), f_component(f_basisvalue, ss)]), f_mul([f_float(B), str(f2), f_component(f_basisvalue, tt)])])
code += [f_assign(assign_to, assign_from)]
# FIAT_NEW code (loop 2 in FIAT).
# q = 1
# for p in range(0,n):
# results[idx(p,1,0)] = results[idx(p,0,0)] \
# * ( p * (1.0 + y) + ( 2.0 + 3.0 * y + z ) / 2 )
for r in range(0, embedded_degree):
rr = _idx3d(r, 1, 0)
ss = _idx3d(r, 0, 0)
assign_to = f_component(f_basisvalue, rr)
term0 = f_mul([f_float(0.5), f_group(f_add([f_float(2), f_mul([f_float(3), str(symbol_y)]), str(symbol_z)]))])
if r == 0:
assign_from = f_mul([term0, f_component(f_basisvalue, ss)])
else:
term1 = f_mul([f_float(r), f_group(f_add([f_float(1), str(symbol_y)]))])
assign_from = f_mul([f_group(f_add([term0, term1])), f_component(f_basisvalue, ss)])
code += [f_assign(assign_to, assign_from)]
# Only active is embedded_degree > 1.
if embedded_degree > 1:
# FIAT_NEW code (loop 3 in FIAT).
# for p in range(0,n-1):
# for q in range(1,n-p):
# (aq,bq,cq) = jrc(2*p+1,0,q)
# qmcoeff = aq * factor3 + bq * factor4
# qm1coeff = cq * factor5
# results[idx(p,q+1,0)] = qmcoeff * results[idx(p,q,0)] \
# - qm1coeff * results[idx(p,q-1,0)]
for r in range(0, embedded_degree - 1):
for s in range(1, embedded_degree - r):
rr = _idx3d(r, (s + 1), 0)
ss = _idx3d(r, s, 0)
tt = _idx3d(r, s - 1, 0)
(A, B, C) = _jrc(2*r + 1, 0, s)
assign_to = f_component(f_basisvalue, rr)
term0 = f_mul([f_group(f_add([f_mul([f_float(A), str(f3)]), f_mul([f_float(B), str(f4)])])), f_component(f_basisvalue, ss)])
term1 = f_mul([f_float(C), str(f5), f_component(f_basisvalue, tt)])
assign_from = f_sub([term0, term1])
code += [f_assign(assign_to, assign_from)]
# FIAT_NEW code (loop 4 in FIAT).
# now handle r=1
# for p in range(n):
# for q in range(n-p):
# results[idx(p,q,1)] = results[idx(p,q,0)] \
# * ( 1.0 + p + q + ( 2.0 + q + p ) * z )
for r in range(0, embedded_degree):
for s in range(0, embedded_degree - r):
rr = _idx3d(r, s, 1)
ss = _idx3d(r, s, 0)
assign_to = f_component(f_basisvalue, rr)
A = f_add([f_mul([f_float(2 + r + s), str(symbol_z)]), f_float(1 + r + s)])
assign_from = f_mul([f_group(A), f_component(f_basisvalue, ss)])
code += [f_assign(assign_to, assign_from)]
# Only active is embedded_degree > 1.
if embedded_degree > 1:
# FIAT_NEW code (loop 5 in FIAT).
# general r by recurrence
# for p in range(n-1):
# for q in range(0,n-p-1):
# for r in range(1,n-p-q):
# ar,br,cr = jrc(2*p+2*q+2,0,r)
# results[idx(p,q,r+1)] = \
# (ar * z + br) * results[idx(p,q,r) ] \
# - cr * results[idx(p,q,r-1) ]
for r in range(embedded_degree - 1):
for s in range(0, embedded_degree - r - 1):
for t in range(1, embedded_degree - r - s):
rr = _idx3d(r, s, ( t + 1))
ss = _idx3d(r, s, t)
tt = _idx3d(r, s, t - 1)
(A, B, C) = _jrc(2*r + 2*s + 2, 0, t)
assign_to = f_component(f_basisvalue, rr)
az_b = f_group(f_add([f_float(B), f_mul([f_float(A), str(symbol_z)])]))
assign_from = f_sub([f_mul([f_component(f_basisvalue, ss), az_b]), f_mul([f_float(C), f_component(f_basisvalue, tt)])])
code += [f_assign(assign_to, assign_from)]
# FIAT_NEW code (loop 6 in FIAT).
# for p in range(n+1):
# for q in range(n-p+1):
# for r in range(n-p-q+1):
# results[idx(p,q,r)] *= math.sqrt((p+0.5)*(p+q+1.0)*(p+q+r+1.5))
for r in range(embedded_degree + 1):
for s in range(embedded_degree - r + 1):
for t in range(embedded_degree - r - s + 1):
rr = _idx3d(r, s, t)
A = (r + 0.5)*(r + s + 1)*(r + s + t + 1.5)
assign_to = f_component(f_basisvalue, rr)
multiply_by = f_sqrt(A)
myline = f_imul(assign_to, multiply_by)
code += [myline]
else:
error("Cannot compute basis values for shape: %d" % elemet_cell_domain)
return code + [""]
|