This file is indexed.

/usr/share/pyshared/ffc/fiatinterface.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
# Copyright (C) 2009-2010 Kristian B. Oelgaard and Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Garth N. Wells, 2009.
# Modified by Marie Rognes, 2009-2010.
#
# First added:  2009-03-06
# Last changed: 2011-01-13

# Python modules
from numpy import array

# UFL and FIAT modules
import ufl
import FIAT

# FFC modules
from ffc.log import debug, error
from ffc.quadratureelement import QuadratureElement as FFCQuadratureElement

from ffc.mixedelement import MixedElement
from ffc.restrictedelement import RestrictedElement
from ffc.enrichedelement import EnrichedElement, SpaceOfReals

# Dictionary mapping from domain (cell) to dimension
from ufl.geometry import domain2dim

# Mapping from dimension to number of mesh sub-entities. (In principle,
# ufl.geometry.domain2num_facets contains the same information, but
# with string keys.)
entities_per_dim = {1: [2, 1], 2: [3, 3, 1], 3: [4, 6, 4, 1]}

# Cache for computed elements
_cache = {}

def reference_cell(dim):
    if isinstance(dim, int):
        return FIAT.ufc_simplex(dim)
    else:
        return FIAT.ufc_simplex(domain2dim[dim])

def create_element(ufl_element):

    # Create element signature for caching (just use UFL element)
    element_signature = ufl_element

    # Check cache
    if element_signature in _cache:
        debug("Reusing element from cache")
        return _cache[element_signature]

    # Create regular FIAT finite element
    if isinstance(ufl_element, ufl.FiniteElement):
        element = _create_fiat_element(ufl_element)

    # Create mixed element (implemented by FFC)
    elif isinstance(ufl_element, ufl.MixedElement):
        elements = _extract_elements(ufl_element)
        element = MixedElement(elements)

    # Create element union (implemented by FFC)
    elif isinstance(ufl_element, ufl.EnrichedElement):
        elements = [create_element(e) for e in ufl_element._elements]
        element = EnrichedElement(elements)

    # Create restricted element(implemented by FFC)
    elif isinstance(ufl_element, ufl.RestrictedElement):
        element = _create_restricted_element(ufl_element)

    else:
        error("Cannot handle this element type: %s" % str(ufl_element))

    # Store in cache
    _cache[element_signature] = element

    return element

def _create_fiat_element(ufl_element):
    "Create FIAT element corresponding to given finite element."

    # Get element data
    family = ufl_element.family()
    cell = ufl_element.cell()
    degree = ufl_element.degree()

    # Handle the space of the constant
    if family == "Real":
        dg0_element = ufl.FiniteElement("DG", cell, 0)
        constant = _create_fiat_element(dg0_element)
        return SpaceOfReals(constant)

    # FIXME: AL: Should this really be here?
    # Handle QuadratureElement
    if family == "Quadrature":
        return FFCQuadratureElement(ufl_element)

    # Create FIAT cell
    fiat_cell = reference_cell(cell.domain())

    # Handle Bubble element as RestrictedElement of P_{k} to interior
    if family == "Bubble":
        V = FIAT.supported_elements["Lagrange"](fiat_cell, degree)
        dim = cell.geometric_dimension()
        return RestrictedElement(V, _indices(V, "interior", dim), None)

    # Check if finite element family is supported by FIAT
    if not family in FIAT.supported_elements:
        error("Sorry, finite element of type \"%s\" are not supported by FIAT.", family)

    # Create FIAT finite element
    ElementClass = FIAT.supported_elements[family]
    if degree is None:
        element = ElementClass(fiat_cell)
    else:
        element = ElementClass(fiat_cell, degree)

    return element

def create_quadrature(shape, num_points):
    """
    Generate quadrature rule (points, weights) for given shape with
    num_points points in each direction.
    """

    # FIXME: KBO: Can this be handled more elegantly?
    if isinstance(shape, int) and shape == 0 or domain2dim[shape] == 0:
        return ([()], array([1.0,]))

    quad_rule = FIAT.make_quadrature(reference_cell(shape), num_points)
    return quad_rule.get_points(), quad_rule.get_weights()

def map_facet_points(points, facet):
    """
    Map points from the e (UFC) reference simplex of dimension d - 1
    to a given facet on the (UFC) reference simplex of dimension d.
    This may be used to transform points tabulated for example on the
    2D reference triangle to points on a given facet of the reference
    tetrahedron.
    """

    # Special case, don't need to map coordinates on vertices
    dim = len(points[0]) + 1
    if dim == 1:
        return [[(0.0,), (1.0,)][facet]]

    # Vertex coordinates
    vertex_coordinates = \
        {1: ((0.,), (1.,)),
         2: ((0., 0.), (1., 0.), (0., 1.)),
         3: ((0., 0., 0.), (1., 0., 0.),(0., 1., 0.), (0., 0., 1))}

    # Facet vertices
    facet_vertices = \
        {2: ((1, 2), (0, 2), (0, 1)),
         3: ((1, 2, 3), (0, 2, 3), (0, 1, 3), (0, 1, 2))}

    # Compute coordinates and map
    coordinates = [vertex_coordinates[dim][v] for v in facet_vertices[dim][facet]]
    new_points = []
    for point in points:
        w = (1.0 - sum(point),) + tuple(point)
        x = tuple(sum([w[i]*array(coordinates[i]) for i in range(len(w))]))
        new_points += [x]

    return new_points

def _extract_elements(ufl_element, domain=None):
    "Recursively extract un-nested list of (component) elements."

    elements = []
    if isinstance(ufl_element, ufl.MixedElement):
        for sub_element in ufl_element.sub_elements():
            elements += _extract_elements(sub_element, domain)
        return elements

    # Handle restricted elements since they might be mixed elements too.
    if isinstance(ufl_element, ufl.RestrictedElement):
        base_element = ufl_element.element()
        restriction = ufl_element.domain_restriction()
        return _extract_elements(base_element, restriction)

    if domain:
        ufl_element = ufl.RestrictedElement(ufl_element, domain)

    elements += [create_element(ufl_element)]

    return elements

def _create_restricted_element(ufl_element):
    "Create an FFC representation for an UFL RestrictedElement."

    if not isinstance(ufl_element, ufl.RestrictedElement):
        error("create_restricted_element expects an ufl.RestrictedElement")

    base_element = ufl_element.element()
    domain = ufl_element.domain_restriction()

    # If simple element -> create RestrictedElement from fiat_element
    if isinstance(base_element, ufl.FiniteElement):
        element = _create_fiat_element(base_element)
        return RestrictedElement(element, _indices(element, domain), domain)

    # If restricted mixed element -> convert to mixed restricted element
    if isinstance(base_element, ufl.MixedElement):
        elements = _extract_elements(base_element, domain)
        return MixedElement(elements)

    error("Cannot create restricted element from %s" % str(ufl_element))

def _indices(element, domain, dim=0):
    "Extract basis functions indices that correspond to domain."

    # FIXME: The domain argument in FFC/UFL needs to be re-thought and
    # cleaned-up.

    # If domain is "interior", pick basis functions associated with
    # cell.
    if domain == "interior" and dim:
        return element.entity_dofs()[dim][0]

    # If domain is a ufl.Cell, pick basis functions associated with
    # the topological degree of the domain and of all lower
    # dimensions.
    if isinstance(domain, ufl.Cell):
        dim = domain.topological_dimension()
        entity_dofs = element.entity_dofs()
        indices = []
        for dim in range(domain.topological_dimension() + 1):
            entities = entity_dofs[dim]
            for (entity, index) in entities.iteritems():
                indices += index
        return indices

    # Just extract all indices to make handling in RestrictedElement
    # uniform.
    elif isinstance(domain, ufl.Measure):
        indices = []
        entity_dofs = element.entity_dofs()
        for dim, entities in entity_dofs.items():
            for entity, index in entities.items():
                indices += index
        return indices

    else:
        error("Restriction to domain: %s, is not supported." % repr(domain))