This file is indexed.

/usr/share/pyshared/ffc/plot.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
"This module provides functionality for plotting finite elements."

# Copyright (C) 2010 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2010-12-07
# Last changed: 2010-12-15

__all__ = ["plot"]

from numpy import dot, cross, array, sin, cos, pi, sqrt
from numpy.linalg import norm
import sys

from ffc.fiatinterface import create_element
from ffc.log import warning, error, info

# Import Soya3D
try:
    import soya
    from soya.sphere import Sphere
    from soya.label3d import Label3D
    from soya.sdlconst import QUIT
    _soya_imported = True
except:
    _soya_imported = False

# Colors for elements
element_colors = {"Argyris":                  (0.45, 0.70, 0.80),
                  "Arnold-Winther":           (0.00, 0.00, 1.00),
                  "Brezzi-Douglas-Marini":    (1.00, 1.00, 0.00),
                  "Crouzeix-Raviart":         (1.00, 0.25, 0.25),
                  "Discontinuous Lagrange":   (0.00, 0.25, 0.00),
                  "Hermite":                  (0.50, 1.00, 0.50),
                  "Lagrange":                 (0.00, 1.00, 0.00),
                  "Mardal-Tai-Winther":       (1.00, 0.10, 0.90),
                  "Morley":                   (0.40, 0.40, 0.40),
                  "Nedelec 1st kind H(curl)": (0.90, 0.30, 0.00),
                  "Nedelec 2nd kind H(curl)": (0.70, 0.20, 0.00),
                  "Raviart-Thomas":           (0.90, 0.60, 0.00)}

def plot(element, rotate=True):
    "Plot finite element."

    # Check if Soya3D has been imported
    if not _soya_imported:
        warning("Unable to plot element, Soya3D not available (install package python-soya).")
        return

    # Special case: plot dof notation
    if element == "notation":

        # Create model for notation
        notation = create_notation_models()

        # Render plot window
        render(notation, "Notation", 0, True, rotate)

    else:

        # Create cell model
        cell, is3d = create_cell_model(element)

        # Create dof models
        dofs, num_moments = create_dof_models(element)

        # Create title
        if element.degree() is not None:
            title = "%s of degree %d on a %s" % (element.family(), element.degree(), element.cell().domain())
        else:
            title = "%s on a %s" % (element.family(), element.cell().domain())

        # Render plot window
        render([cell] + dofs, title, num_moments, is3d, rotate)

def render(models, title, num_moments, is3d, rotate):
    "Render given list of models."

    # Note that we view from the positive z-axis, and not from the
    # negative y-axis. This should make no difference since the
    # element dofs are symmetric anyway and it plays better with
    # the default camera settings in Soya.

    # Initialize Soya
    soya.init(title)

    # Create scene
    scene = soya.World()
    scene.atmosphere = soya.Atmosphere()
    if title == "Notation":
        scene.atmosphere.bg_color = (0.0, 1.0, 0.0, 1.0)
    else:
        scene.atmosphere.bg_color = (1.0, 1.0, 1.0, 1.0)

    # Not used, need to manually handle rotation
    #label = Label3D(scene, text=str(num_moments), size=0.005)
    #label.set_xyz(1.0, 1.0, 1.0)
    #label.set_color((0.0, 0.0, 0.0, 1.0))

    # Define rotation
    if is3d:
        class RotatingBody(soya.Body):
            def advance_time(self, proportion):
                self.rotate_y(2.0 * proportion)
    else:
        class RotatingBody(soya.Body):
            def advance_time(self, proportion):
                self.rotate_z(2.0 * proportion)

    # Select type of display, rotating or not
    if rotate:
        Body = RotatingBody
    else:
        Body = soya.Body

    # Add all models
    for model in models:
        body = Body(scene, model)

    # Set light
    light = soya.Light(scene)
    if is3d:
        light.set_xyz(1.0, 5.0, 5.0)
    else:
        light.set_xyz(0.0, 0.0, 1.0)
    light.cast_shadow = 1
    light.shadow_color = (0.0, 0.0, 0.0, 0.5)

    # Set camera
    camera = soya.Camera(scene)
    camera.ortho = 0
    p = camera.position()
    if is3d:
        if rotate:
            camera.set_xyz(-20, 10, 50.0)
            camera.fov = 2.1
            p.set_xyz(0.0, 0.4, 0.0)
        else:
            camera.set_xyz(-20, 10, 50.0)
            camera.fov = 1.6
            p.set_xyz(0.3, 0.42, 0.5)
    else:
        if rotate:
            camera.set_xyz(0, 10, 50.0)
            camera.fov = 2.6
            p.set_xyz(0.0, 0.0, 0.0)
        else:
            camera.set_xyz(0, 10, 50.0)
            camera.fov = 1.7
            p.set_xyz(0.5, 0.4, 0.0)
    camera.look_at(p)
    soya.set_root_widget(camera)

    # Handle exit
    class Idler(soya.Idler):
        def end_round(self):
            for event in self.events:
                if event[0] == QUIT:
                    print "Closing plot, bye bye"
                    sys.exit(0)

    # Main loop
    idler = Idler(scene)
    idler.idle()

def tangents(n):
    "Return normalized tangent vectors for plane defined by given vector."

    # Figure out which vector to take cross product with
    eps = 1e-10
    e = array((1.0, 0.0, 0.0))
    if norm(cross(n, e)) < eps:
        e = array((0.0, 1.0, 0.0))

    # Take cross products and normalize
    t0 = cross(n, e)
    t0 = t0 / norm(t0)
    t1 = cross(n, t0)
    t1 = t1 / norm(t0)

    return t0, t1

def Cylinder(scene, p0, p1, r, color=(0.0, 0.0, 0.0, 1.0)):
    "Return model for cylinder from p0 to p1 with radius r."

    # Convert to NumPy array
    if isinstance(p0, soya.Vertex):
        p0 = array((p0.x, p0.y, p0.z))
        p1 = array((p1.x, p1.y, p1.z))
    else:
        p0 = array(p0)
        p1 = array(p1)

    # Get tangent vectors for plane
    n = p0 - p1
    n = n / norm(n)
    t0, t1 = tangents(n)

    # Traverse the circles
    num_steps = 10
    dtheta = 2.0*pi / float(num_steps)
    for i in range(num_steps):

        # Compute coordinates for square
        dx0 = cos(i*dtheta)*t0 + sin(i*dtheta)*t1
        dx1 = cos((i + 1)*dtheta)*t0 + sin((i + 1)*dtheta)*t1
        x0 = p0 + r*dx0
        x1 = p0 + r*dx1
        x2 = p1 + r*dx0
        x3 = p1 + r*dx1

        # Cover square by two triangles
        v0 = soya.Vertex(scene, x0[0], x0[1], x0[2], diffuse=color)
        v1 = soya.Vertex(scene, x1[0], x1[1], x1[2], diffuse=color)
        v2 = soya.Vertex(scene, x2[0], x2[1], x2[2], diffuse=color)
        v3 = soya.Vertex(scene, x3[0], x3[1], x3[2], diffuse=color)
        f0 = soya.Face(scene, (v0, v1, v2))
        f1 = soya.Face(scene, (v1, v2, v3))
        f0.double_sided = 1
        f1.double_sided = 1

    # Extract model
    model = scene.to_model()

    return model

def Cone(scene, p0, p1, r, color=(0.0, 0.0, 0.0, 1.0)):
    "Return model for cone from p0 to p1 with radius r."

    # Convert to NumPy array
    if isinstance(p0, soya.Vertex):
        p0 = array((p0.x, p0.y, p0.z))
        p1 = array((p1.x, p1.y, p1.z))
    else:
        p0 = array(p0)
        p1 = array(p1)

    # Get tangent vectors for plane
    n = p0 - p1
    n = n / norm(n)
    t0, t1 = tangents(n)

    # Traverse the circles
    num_steps = 10
    dtheta = 2.0*pi / float(num_steps)
    v2 = soya.Vertex(scene, p1[0], p1[1], p1[2], diffuse=color)
    for i in range(num_steps):

        # Compute coordinates for bottom of face
        dx0 = cos(i*dtheta)*t0 + sin(i*dtheta)*t1
        dx1 = cos((i + 1)*dtheta)*t0 + sin((i + 1)*dtheta)*t1
        x0 = p0 + r*dx0
        x1 = p0 + r*dx1

        # Create face
        v0 = soya.Vertex(scene, x0[0], x0[1], x0[2], diffuse=color)
        v1 = soya.Vertex(scene, x1[0], x1[1], x1[2], diffuse=color)
        f  = soya.Face(scene, (v0, v1, v2))
        f.double_sided = 1

    # Extract model
    model = scene.to_model()

    return model

def Arrow(scene, x, n, center=False):
    "Return model for arrow from x in direction n."

    # Convert to Numpy arrays
    x = array(x)
    n = array(n)

    # Get tangents
    t0, t1 = tangents(n)

    # Dimensions for arrow
    L = 0.3
    l = 0.35*L
    r = 0.04*L
    R = 0.125*L

    # Center arrow
    if center:
        print "Centering!"
        x -= 0.5*(L + l)*n

    # Create cylinder and cone
    cylinder = Cylinder(scene, x, x + L*n, r)
    cone = Cone(scene, x + L*n, x + (L + l)*n, R)

    # Extract model
    return scene.to_model()

def UnitTetrahedron(color=(0.0, 1.0, 0.0, 0.5)):
    "Return model for unit tetrahedron."

    info("Plotting unit tetrahedron")

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Create vertices
    v0 = soya.Vertex(scene, 0.0, 0.0, 0.0, diffuse=color)
    v1 = soya.Vertex(scene, 1.0, 0.0, 0.0, diffuse=color)
    v2 = soya.Vertex(scene, 0.0, 1.0, 0.0, diffuse=color)
    v3 = soya.Vertex(scene, 0.0, 0.0, 1.0, diffuse=color)

    # Create edges
    e0 = Cylinder(scene, v0, v1, 0.007)
    e1 = Cylinder(scene, v0, v2, 0.007)
    e2 = Cylinder(scene, v0, v3, 0.007)
    e3 = Cylinder(scene, v1, v2, 0.007)
    e4 = Cylinder(scene, v1, v3, 0.007)
    e5 = Cylinder(scene, v2, v3, 0.007)

    # Create faces
    f0 = soya.Face(scene, (v1, v2, v3))
    f1 = soya.Face(scene, (v0, v2, v3))
    f2 = soya.Face(scene, (v0, v1, v3))
    f3 = soya.Face(scene, (v0, v1, v2))

    # Make faces double sided
    f0.double_sided = 1
    f1.double_sided = 1
    f2.double_sided = 1
    f3.double_sided = 1

    # Extract model
    model = scene.to_model()

    return model

def UnitTriangle(color=(0.0, 1.0, 0.0, 0.5)):
    "Return model for unit tetrahedron."

    info("Plotting unit triangle")

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Create vertice
    v0 = soya.Vertex(scene, 0.0, 0.0, 0.0, diffuse=color)
    v1 = soya.Vertex(scene, 1.0, 0.0, 0.0, diffuse=color)
    v2 = soya.Vertex(scene, 0.0, 1.0, 0.0, diffuse=color)

    # Create edges
    e0 = Cylinder(scene, v0, v1, 0.007)
    e1 = Cylinder(scene, v0, v2, 0.007)
    e2 = Cylinder(scene, v1, v2, 0.007)

    # Create face
    f = soya.Face(scene, (v0, v1, v2))

    # Make face double sided
    f.double_sided = 1

    # Extract model
    model = scene.to_model()

    return model

def PointEvaluation(x):
    "Return model for point evaluation at given point."

    info("Plotting dof: point evaluation at x = %s" % str(x))

    # Make sure point is 3D
    x = to3d(x)

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Define material (color) for the sphere
    material = soya.Material()
    material.diffuse = (0.0, 0.0, 0.0, 1.0)

    # Create sphere
    sphere = Sphere(scene, material=material)

    # Scale and moveand move to coordinate
    sphere.scale(0.05, 0.05, 0.05)
    p = sphere.position()
    p.set_xyz(x[0], x[1], x[2])
    sphere.move(p)

    # Extract model
    model = scene.to_model()

    return model

def PointDerivative(x):
    "Return model for evaluation of derivatives at given point."

    info("Plotting dof: point derivative at x = %s" % str(x))

    # Make sure point is 3D
    x = to3d(x)

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Define material (color) for the sphere
    material = soya.Material()
    material.diffuse = (0.0, 0.0, 0.0, 0.2)

    # Create sphere
    sphere = Sphere(scene, material=material)

    # Scale and moveand move to coordinate
    sphere.scale(0.1, 0.1, 0.1)
    p = sphere.position()
    p.set_xyz(x[0], x[1], x[2])
    sphere.move(p)

    # Extract model
    model = scene.to_model()

    return model

def PointSecondDerivative(x):
    "Return model for evaluation of second derivatives at given point."

    info("Plotting dof: point derivative at x = %s" % str(x))

    # Make sure point is 3D
    x = to3d(x)

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Define material (color) for the sphere
    material = soya.Material()
    material.diffuse = (0.0, 0.0, 0.0, 0.05)

    # Create sphere
    sphere = Sphere(scene, material=material)

    # Scale and moveand move to coordinate
    sphere.scale(0.15, 0.15, 0.15)
    p = sphere.position()
    p.set_xyz(x[0], x[1], x[2])
    sphere.move(p)

    # Extract model
    model = scene.to_model()

    return model

def DirectionalEvaluation(x, n, flip=False, center=False):
    "Return model for directional evaluation at given point in given direction."

    info("Plotting dof: directional evaluation at x = %s in direction n = %s" % (str(x), str(n)))

    # Make sure points are 3D
    x = to3d(x)
    n = to3d(n)

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Normalize
    n = array(n)
    n = 0.75 * n / norm(n)

    # Flip normal if necessary
    if flip and not pointing_outwards(x, n):
        info("Flipping direction of arrow so it points outward.")
        n = -n

    # Create arrow
    arrow = Arrow(scene, x, n, center)

    # Extract model
    model = scene.to_model()

    return model

def DirectionalDerivative(x, n):
    "Return model for directional derivative at given point in given direction."

    info("Plotting dof: directional derivative at x = %s in direction n = %s" % (str(x), str(n)))

    # Make sure points are 3D
    x = to3d(x)
    n = to3d(n)

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Normalize
    n = array(n)
    n = 0.75 * n / norm(n)

    # Create line
    line = Cylinder(scene, x - 0.07*n, x + 0.07*n, 0.005)

    # Extract model
    model = scene.to_model()

    return model

def IntegralMoment(domain, num_moments, x=None):
    "Return model for integral moment for given element."

    info("Plotting dof: integral moment")

    # Set position
    if x is None and domain == "triangle":
        a = 1.0 / (2 + sqrt(2)) # this was a fun exercise
        x = (a, a, 0.0)
    elif x is None:
        a = 1.0 / (3 + sqrt(3)) # so was this
        x = (a, a, a)

    # Make sure point is 3D
    x = to3d(x)

    # Fancy scaling of radius and color
    r = 1.0 / (num_moments + 5)
    if num_moments % 2 == 0:
        c = 1.0
    else:
        c = 0.0

    # Create separate scene (since we will extract a model, not render)
    scene = soya.World()

    # Define material (color) for the sphere
    material = soya.Material()
    material.diffuse = (c, c, c, 0.7)

    # Create sphere
    sphere = Sphere(scene, material=material)

    # Scale and moveand move to coordinate
    sphere.scale(r, r, r)
    p = sphere.position()
    p.set_xyz(x[0], x[1], x[2])
    sphere.move(p)

    # Extract model
    model = scene.to_model()

    return model

def create_cell_model(element):
    "Create Soya3D model for cell."

    # Get color
    family = element.family()
    if not family in element_colors:
        warning("Don't know a good color for elements of type '%s', using default color." % family)
        family = "Lagrange"
    color = element_colors[family]
    color = (color[0], color[1], color[2], 0.7)

    # Create model based on domain type
    domain = element.cell().domain()
    if domain == "triangle":
        return UnitTriangle(color), False
    elif domain == "tetrahedron":
        return UnitTetrahedron(color), True

    error("Unable to plot element, unhandled cell type: %s" % str(domain))

def create_dof_models(element):
    "Create Soya3D models for dofs."

    # Flags for whether to flip and center arrows
    directional = {"PointScaledNormalEval": (True,  False),
                   "PointEdgeTangent":      (False, True),
                   "PointFaceTangent":      (False, True)}

    # Elements not supported fully by FIAT
    unsupported = {"Argyris":            argyris_dofs,
                   "Arnold-Winther":     arnold_winther_dofs,
                   "Hermite":            hermite_dofs,
                   "Mardal-Tai-Winther": mardal_tai_winther_dofs,
                   "Morley":             morley_dofs}

    # Check if element is supported
    family = element.family()
    if not family in unsupported:
        # Create FIAT element and get dofs
        fiat_element = create_element(element)
        dofs = [(dof.get_type_tag(), dof.get_point_dict()) for dof in fiat_element.dual_basis()]

    else:

        # Bybass FIAT and set the dofs ourselves
        dofs = unsupported[family](element)

    # Iterate over dofs and add models
    models = []
    num_moments = 0
    for (dof_type, L) in dofs:

        # Check type of dof
        if dof_type == "PointEval":

            # Point evaluation, just get point
            points = L.keys()
            if not len(points) == 1:
                error("Strange dof, single point expected.")
            x = points[0]

            # Generate model
            models.append(PointEvaluation(x))

        elif dof_type == "PointDeriv":

            # Evaluation of derivatives at point
            points = L.keys()
            if not len(points) == 1:
                error("Strange dof, single point expected.")
            x = points[0]

            # Generate model
            models.append(PointDerivative(x))

        elif dof_type == "PointSecondDeriv":

            # Evaluation of derivatives at point
            points = L.keys()
            if not len(points) == 1:
                error("Strange dof, single point expected.")
            x = points[0]

            # Generate model
            models.append(PointSecondDerivative(x))

        elif dof_type in directional:

            # Normal evaluation, get point and normal
            points = L.keys()
            if not len(points) == 1:
                error("Strange dof, single point expected.")
            x = points[0]
            n = [xx[0] for xx in L[x]]

            # Generate model
            flip, center = directional[dof_type]
            models.append(DirectionalEvaluation(x, n, flip, center))

        elif dof_type == "PointNormalDeriv":

            # Evaluation of derivatives at point
            points = L.keys()
            if not len(points) == 1:
                error("Strange dof, single point expected.")
            x = points[0]
            n = [xx[0] for xx in L[x]]

            # Generate model
            models.append(DirectionalDerivative(x, n))

        elif dof_type in ("FrobeniusIntegralMoment", "IntegralMoment", "ComponentPointEval"):

            # Generate model
            models.append(IntegralMoment(element.cell().domain(), num_moments))

            # Count the number of integral moments
            num_moments += 1

        else:
            error("Unable to plot dof, unhandled dof type: %s" % str(dof_type))

    return models, num_moments

def create_notation_models():
    "Create Soya 3D models for notation."

    models = []

    y = 1.3
    dy = -0.325

    # Create model for evaluation
    models.append(PointEvaluation([0, y]))
    y += dy

    # Create model for derivative evaluation
    models.append(PointDerivative([0, y]))
    models.append(PointDerivative([0, y]))
    models.append(PointDerivative([0, y]))
    y += dy

    # Create model for second derivative evaluation
    models.append(PointSecondDerivative([0, y]))
    models.append(PointSecondDerivative([0, y]))
    models.append(PointSecondDerivative([0, y]))
    y += dy

    # Create model for directional evaluation
    models.append(DirectionalEvaluation([0, y], [1, 1], False, True))
    y += dy

    # Create model for directional evaluation
    models.append(DirectionalDerivative([0, y], [1, 1]))
    y += dy

    # Create model for integral moments
    models.append(IntegralMoment("tetrahedron", 0, [0, y]))
    models.append(IntegralMoment("tetrahedron", 1, [0, y]))
    models.append(IntegralMoment("tetrahedron", 2, [0, y]))

    return models

def pointing_outwards(x, n):
    "Check if n is pointing inwards, used for flipping dofs."
    eps = 1e-10
    x = array(x) + 0.1*array(n)
    return x[0] < -eps or x[1] < -eps or x[2] < -eps or x[2] > 1.0 - x[0] - x[1] + eps

def to3d(x):
    "Make sure point is 3D."
    if len(x) == 2:
        x = (x[0], x[1], 0.0)
    return x

def arnold_winther_dofs(element):
    "Special fix for Arnold-Winther elements until Rob fixes in FIAT."

    if not element.cell().domain() == "triangle":
        error("Unable to plot element, only know how to plot Mardal-Tai-Winther on triangles.")

    return [("PointEval",        {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointEval",        {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointScaledNormalEval", {(1.0/5, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(2.0/5, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(3.0/5, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(4.0/5, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(4.0/5, 1.0/5.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(3.0/5, 2.0/5.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(2.0/5, 3.0/5.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(1.0/5, 4.0/5.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   1.0/5.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   2.0/5.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   3.0/5.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   4.0/5.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("IntegralMoment", None),
            ("IntegralMoment", None),
            ("IntegralMoment", None)]

def argyris_dofs(element):
    "Special fix for Hermite elements until Rob fixes in FIAT."

    if not element.degree() == 5:
        error("Unable to plot element, only know how to plot quintic Argyris elements.")

    if not element.cell().domain() == "triangle":
        error("Unable to plot element, only know how to plot Argyris on triangles.")

    return [("PointEval",        {(0.0, 0.0): [ (1.0, ()) ]}),
            ("PointEval",        {(1.0, 0.0): [ (1.0, ()) ]}),
            ("PointEval",        {(0.0, 1.0): [ (1.0, ()) ]}),
            ("PointDeriv",       {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointDeriv",       {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointDeriv",       {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointDeriv",       {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointDeriv",       {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointDeriv",       {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof twice
            ("PointSecondDeriv", {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointSecondDeriv", {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
            ("PointNormalDeriv", {(0.5, 0.0): [ (0.0, (0,)), (-1.0,  (1,))]}),
            ("PointNormalDeriv", {(0.5, 0.5): [ (1.0, (0,)), ( 1.0,  (1,))]}),
            ("PointNormalDeriv", {(0.0, 0.5): [(-1.0, (0,)), ( 0.0,  (1,))]})]

def hermite_dofs(element):
    "Special fix for Hermite elements until Rob fixes in FIAT."

    dofs_2d = [("PointEval",  {(0.0, 0.0): [ (1.0, ()) ]}),
               ("PointEval",  {(1.0, 0.0): [ (1.0, ()) ]}),
               ("PointEval",  {(0.0, 1.0): [ (1.0, ()) ]}),
               ("PointDeriv", {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointDeriv", {(0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointDeriv", {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointDeriv", {(1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointDeriv", {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointDeriv", {(0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof twice
               ("PointEval",  {(1.0/3, 1.0/3): [ (1.0, ()) ]})]

    dofs_3d = [("PointEval",  {(0.0, 0.0, 0.0): [ (1.0, ()) ]}),
               ("PointEval",  {(1.0, 0.0, 0.0): [ (1.0, ()) ]}),
               ("PointEval",  {(0.0, 1.0, 0.0): [ (1.0, ()) ]}),
               ("PointEval",  {(0.0, 0.0, 1.0): [ (1.0, ()) ]}),
               ("PointDeriv", {(0.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(1.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(1.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(1.0, 0.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 1.0, 0.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointDeriv", {(0.0, 0.0, 1.0): [ (1.0, ()) ]}), # hack, same dof three times
               ("PointEval",  {(1.0/3, 1.0/3, 1.0/3): [ (1.0, ()) ]}),
               ("PointEval",  {(0.0,   1.0/3, 1.0/3): [ (1.0, ()) ]}),
               ("PointEval",  {(1.0/3, 0.0,   1.0/3): [ (1.0, ()) ]}),
               ("PointEval",  {(1.0/3, 1.0/3, 0.0):   [ (1.0, ()) ]})]

    if element.cell().domain() == "triangle":
        return dofs_2d
    else:
        return dofs_3d

def mardal_tai_winther_dofs(element):
    "Special fix for Mardal-Tai-Winther elements until Rob fixes in FIAT."

    if not element.cell().domain() == "triangle":
        error("Unable to plot element, only know how to plot Mardal-Tai-Winther on triangles.")

    return [("PointScaledNormalEval", {(1.0/3, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(2.0/3, 0.0):     [  (0.0, (0,)), (-1.0, (1,))]}),
            ("PointScaledNormalEval", {(2.0/3, 1.0/3.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(1.0/3, 2.0/3.0): [  (1.0, (0,)),  (1.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   1.0/3.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointScaledNormalEval", {(0.0,   2.0/3.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointEdgeTangent", {(0.5, 0.0): [ (-1.0, (0,)),  (0.0, (1,))]}),
            ("PointEdgeTangent", {(0.5, 0.5): [ (-1.0, (0,)),  (1.0, (1,))]}),
            ("PointEdgeTangent", {(0.0, 0.5): [  (0.0, (0,)), (-1.0, (1,))]})]

def morley_dofs(element):
    "Special fix for Morley elements until Rob fixes in FIAT."

    if not element.cell().domain() == "triangle":
        error("Unable to plot element, only know how to plot Morley on triangles.")

    return [("PointEval",        {(0.0, 0.0): [ (1.0, ()) ]}),
            ("PointEval",        {(1.0, 0.0): [ (1.0, ()) ]}),
            ("PointEval",        {(0.0, 1.0): [ (1.0, ()) ]}),
            ("PointNormalDeriv", {(0.5, 0.0): [ (0.0, (0,)), (-1.0,  (1,))]}),
            ("PointNormalDeriv", {(0.5, 0.5): [ (1.0, (0,)), ( 1.0,  (1,))]}),
            ("PointNormalDeriv", {(0.0, 0.5): [(-1.0, (0,)), ( 0.0,  (1,))]})]