This file is indexed.

/usr/share/pyshared/ffc/quadrature/quadratureoptimization.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
# Copyright (C) 2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2010-02-08
# Last changed: 2011-01-11

# FFC modules
from ffc.log import info
from ffc.cpp import format
from ffc.quadrature.symbolics import optimise_code, BASIS, IP, GEO, CONST
from ffc.quadrature.symbolics import create_product, create_sum, create_symbol, create_fraction

def optimize_integral_ir(ir, parameters):
    "Compute optimized intermediate representation of integral."

    # FIXME: input argument "parameters" has been added to optimize_integral_ir
    # FIXME: which shadows a local parameter

    parameters = ir["optimise_parameters"]
    if parameters["optimisation"]:
        integrals  =  ir["trans_integrals"]
        domain_type = ir["domain_type"]
        num_facets =  ir["num_facets"]
        geo_consts =  ir["geo_consts"]
        psi_tables_map =  ir["psi_tables_map"]
        if domain_type == "cell":
            info("Optimising expressions for cell integral")
            if parameters["optimisation"] in ("precompute_ip_const", "precompute_basis_const"):
                _precompute_expressions(integrals, geo_consts, parameters["optimisation"])
            else:
                _simplify_expression(integrals, geo_consts, psi_tables_map)
        elif domain_type == "exterior_facet":
            for i in range(num_facets):
                info("Optimising expressions for facet integral %d" % i)
                if parameters["optimisation"] in ("precompute_ip_const", "precompute_basis_const"):
                    _precompute_expressions(integrals[i], geo_consts, parameters["optimisation"])
                else:
                    _simplify_expression(integrals[i], geo_consts, psi_tables_map)
        elif domain_type == "interior_facet":
            for i in range(num_facets):
                for j in range(num_facets):
                    info("Optimising expressions for facet integral (%d, %d)" % (i, j))
                    if parameters["optimisation"] in ("precompute_ip_const", "precompute_basis_const"):
                        _precompute_expressions(integrals[i][j], geo_consts,parameters["optimisation"])
                    else:
                        _simplify_expression(integrals[i][j], geo_consts, psi_tables_map)
        else:
            error("Unhandled domain type: " + str(domain_type))

    return ir

def _simplify_expression(integral, geo_consts, psi_tables_map):
    for points, terms, functions, ip_consts, coordinate, conditionals in integral:
        # NOTE: sorted is needed to pass the regression tests on the buildbots
        # but it might be inefficient for speed.
        # A solution could be to only compare the output of evaluating the
        # integral, not the header files.
        for loop, (data, entry_vals) in sorted(terms.iteritems()):
            t_set, u_weights, u_psi_tables, u_nzcs, basis_consts = data
            new_entry_vals = []
            psi_tables = set()
            # NOTE: sorted is needed to pass the regression tests on the buildbots
            # but it might be inefficient for speed.
            # A solution could be to only compare the output of evaluating the
            # integral, not the header files.
            for entry, val, ops in sorted(entry_vals):
                value = optimise_code(val, ip_consts, geo_consts, t_set)
                # Check if value is zero
                if value.val:
                    new_entry_vals.append((entry, value, value.ops()))
                    psi_tables.update(set([psi_tables_map[b] for b in value.get_unique_vars(BASIS)]))

            terms[loop][0][2] = psi_tables
            terms[loop][1] = new_entry_vals

def _precompute_expressions(integral, geo_consts, optimisation):
    for points, terms, functions, ip_consts, coordinate, conditionals in integral:
        for loop, (data, entry_vals) in terms.iteritems():
            t_set, u_weights, u_psi_tables, u_nzcs, basis_consts = data
            new_entry_vals = []
            for entry, val, ops in entry_vals:
                value = _extract_variables(val, basis_consts, ip_consts, geo_consts, t_set, optimisation)
                # Check if value is zero
                if value.val:
                    new_entry_vals.append((entry, value, value.ops()))
            terms[loop][1] = new_entry_vals

def _extract_variables(val, basis_consts, ip_consts, geo_consts, t_set, optimisation):
    f_G = format["geometry constant"]
    f_I = format["ip constant"]
    f_B = format["basis constant"]

    if val._prec == 0:
        return val
    elif val._prec == 1:
        if val.base_expr is None:
            return val
        new_base = _extract_variables(val.base_expr, basis_consts, ip_consts, geo_consts, t_set, optimisation)
        new_sym = create_symbol(val.v, val.t, new_base, val.base_op, val.exp, val.cond)
        new_sym.exp = val.exp
        if new_sym.t == BASIS:
            return _reduce_expression(new_sym, [], basis_consts, f_B, True)
        elif new_sym.t == IP:
            return _reduce_expression(new_sym, [], ip_consts, f_I, True)
        elif new_sym.t == GEO:
            return _reduce_expression(new_sym, [], geo_consts, f_G, True)
    # First handle child classes of product and sum.
    elif val._prec in (2, 3):
        new_vars = []
        for v in val.vrs:
            new_vars.append(_extract_variables(v, basis_consts, ip_consts, geo_consts, t_set, optimisation))
        if val._prec == 2:
            new_val = create_product(new_vars)
        if val._prec == 3:
            new_val = create_sum(new_vars)
    elif val._prec == 4:
        num = _extract_variables(val.num, basis_consts, ip_consts, geo_consts, t_set, optimisation)
        denom = _extract_variables(val.denom, basis_consts, ip_consts, geo_consts, t_set, optimisation)
        return create_fraction(num, denom)
    else:
        error("Unknown symbolic type: %s" % repr(val))

    # Sort variables of product and sum.
    b_c, i_c, g_c = [], [], []
    for v in new_val.vrs:
        if v.t == BASIS:
            if optimisation == "precompute_basis_const":
                b_c.append(v)
        elif v.t == IP:
            i_c.append(v)
        else:
            g_c.append(v)
    vrs = new_val.vrs[:]
    for v in g_c + i_c + b_c:
        vrs.remove(v)
    i_c.extend(_reduce_expression(new_val, g_c, geo_consts, f_G))
    vrs.extend(_reduce_expression(new_val, i_c, ip_consts, f_I))
    vrs.extend(_reduce_expression(new_val, b_c, basis_consts, f_B))

#    print "b_c: "
#    for b in b_c:
#        print b
#    print "basis"
#    for k,v in basis_consts.items():
#        print "k: ", k
#        print "v: ", v
#    print "geo"
#    for k,v in geo_consts.items():
#        print "k: ", k
#        print "v: ", v
#    print "ret val: ", val

    if len(vrs) > 1:
        if new_val._prec == 2:
            new_object = create_product(vrs)
        elif new_val._prec == 3:
            new_object = create_sum(vrs)
        else:
            error("Must have product or sum here: %s" % repr(new_val))
        if new_object.t == BASIS:
            if optimisation == "precompute_ip_const":
                return new_object
            elif optimisation == "precompute_basis_const":
                return _reduce_expression(new_object, [], basis_consts, f_B, True)
        elif new_object.t == IP:
            return _reduce_expression(new_object, [], ip_consts, f_I, True)
        elif new_object.t == GEO:
            return _reduce_expression(new_object, [], geo_consts, f_G, True)
    return vrs[0]

#    if new_val._prec == 2:
#        if len(vrs) > 1:
#            new_prod = create_product(vrs)
#            if new_prod.t == BASIS:
#                if optimisation == "precompute_ip_const":
#                    return new_prod
#                elif optimisation == "precompute_basis_const":
#                    return _reduce_expression(new_prod, [], basis_consts, f_B, True)
#            elif new_prod.t == IP:
#                return _reduce_expression(new_prod, [], ip_consts, f_I, True)
#            elif new_prod.t == GEO:
#                return _reduce_expression(new_prod, [], geo_consts, f_G, True)
#        return vrs[0]
#    elif new_val._prec == 3:
#        if len(vrs) > 1:
#            new_sum = create_sum(vrs)
#            if new_sum.t == BASIS:
#                return new_sum
##                return _reduce_expression(new_sum, [], basis_consts, f_B, True)
#            elif new_sum.t == IP:
#                return _reduce_expression(new_sum, [], ip_consts, f_I, True)
#            elif new_sum.t == GEO:
#                return _reduce_expression(new_sum, [], geo_consts, f_G, True)
#        return vrs[0]
#    else:
#        error("Must have product or sum here: %s" % repr(new_val))

def _reduce_expression(expr, symbols, const_dict, f_name, use_expr_type=False):
    if use_expr_type:
        if expr not in const_dict:
            const_dict[expr] = len(const_dict)
        return create_symbol(f_name(const_dict[expr]), expr.t)
    # Only something to be done if we have more than one symbol.
    if len(symbols) > 1:
        sym_type = symbols[0].t
        # Create new symbol.
        if expr._prec == 2:
            new_sym = create_product(symbols)
        elif expr._prec == 3:
            new_sym = create_sum(symbols)
        if new_sym not in const_dict:
            const_dict[new_sym] = len(const_dict)
        s = create_symbol(f_name(const_dict[new_sym]), sym_type)
        return [s]
    return symbols