This file is indexed.

/usr/share/pyshared/ffc/quadrature/sumobj.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
"This file implements a class to represent a sum."

# Copyright (C) 2009-2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2009-07-12
# Last changed: 2011-11-25

# FFC modules.
from ffc.log import error
from ffc.cpp import format

# FFC quadrature modules.
from symbolics import create_float
from symbolics import create_product
from symbolics import create_sum
from symbolics import create_fraction
from expr import Expr

#global ind
#ind = ""
class Sum(Expr):
    __slots__ = ("vrs", "_expanded", "_reduced")
    def __init__(self, variables):
        """Initialise a Sum object, it derives from Expr and contains the
        additional variables:

        vrs       - list, a list of variables.
        _expanded - object, an expanded object of self, e.g.,
                    self = 'x + x'-> self._expanded = 2*x (a product).
        _reduced  - object, a reduced object of self, e.g.,
                    self = '2*x + x*y'-> self._reduced = x*(2 + y) (a product).
        NOTE: self._prec = 3."""

        # Initialise value, list of variables, class, expanded and reduced.
        self.val = 1.0
        self.vrs = []
        self._prec = 3
        self._expanded = False
        self._reduced = False

        # Get epsilon
        EPS = format["epsilon"]
        # Process variables if we have any.
        if variables:
            # Loop variables and remove nested Sums and collect all floats in
            # 1 variable. We don't collect [x, x, x] into 3*x to avoid creating
            # objects, instead we do this when expanding the object.
            float_val = 0.0
            for var in variables:
                # Skip zero terms.
                if abs(var.val) < EPS:
                    continue
                elif var._prec == 0: # float
                    float_val += var.val
                    continue
                elif var._prec == 3: # sum
                    # Loop and handle variables of nested sum.
                    for v in var.vrs:
                        if abs(v.val) < EPS:
                            continue
                        elif v._prec == 0: # float
                            float_val += v.val
                            continue
                        self.vrs.append(v)
                    continue
                self.vrs.append(var)

            # Only create new float if value is different from 0.
            if abs(float_val) > EPS:
                self.vrs.append(create_float(float_val))

        # If we don't have any variables the sum is zero.
        else:
            self.val = 0.0
            self.vrs = [create_float(0)]

        # Handle zero value.
        if not self.vrs:
            self.val = 0.0
            self.vrs = [create_float(0)]

        # Type is equal to the smallest type in both lists.
        self.t = min([v.t for v in self.vrs])


        # Sort variables, (for representation).
        self.vrs.sort()

        # Compute the representation now, such that we can use it directly
        # in the __eq__ and __ne__ methods (improves performance a bit, but
        # only when objects are cached).
        self._repr = "Sum([%s])" % ", ".join([v._repr for v in self.vrs])

        # Use repr as hash value.
        self._hash = hash(self._repr)

    # Print functions.
    def __str__(self):
        "Simple string representation which will appear in the generated code."
        # First add all the positive variables using plus, then add all
        # negative variables.
        s = format["add"]([str(v) for v in self.vrs if not v.val < 0]) +\
            "".join([str(v) for v in self.vrs if v.val < 0])
        # Group only if we have more that one variable.
        if len(self.vrs) > 1:
            return format["grouping"](s)
        return s

    # Binary operators.
    def __add__(self, other):
        "Addition by other objects."
        # Return a new sum
        return create_sum([self, other])

    def __sub__(self, other):
        "Subtract other objects."
        # Return a new sum
        return create_sum([self, create_product([FloatValue(-1), other])])

    def __mul__(self, other):
        "Multiplication by other objects."
        # If product will be zero.
        if self.val == 0.0 or other.val == 0.0:
            return create_float(0)

        # NOTE: We expect expanded sub-expressions with no nested operators.
        # Create list of new products using the '*' operator
        # TODO: Is this efficient?
        new_prods = [v*other for v in self.vrs]

        # Remove zero valued terms.
        # TODO: Can this still happen?
        new_prods = [v for v in new_prods if v.val != 0.0]

        # Create new sum.
        if not new_prods:
            return create_float(0)
        elif len(new_prods) > 1:
            # Expand sum to collect terms.
            return create_sum(new_prods).expand()
        # TODO: Is it necessary to call expand?
        return new_prods[0].expand()

    def __div__(self, other):
        "Division by other objects."
        # If division is illegal (this should definitely not happen).
        if other.val == 0.0:
            error("Division by zero.")

        # If fraction will be zero.
        if self.val == 0.0:
            return create_float(0)

        # NOTE: assuming that we get expanded variables.
        # If other is a Sum we can only return a fraction.
        # TODO: We could check for equal sums if Sum.__eq__ could be trusted.
        # As it is now (2*x + y) == (3*x + y), which works for the other things I do.
        # NOTE: Expect that other is expanded i.e., x + x -> 2*x which can be handled.
        # TODO: Fix (1 + y) / (x + x*y) -> 1 / x
        # Will this be handled when reducing operations on a fraction?
        if other._prec == 3: # sum
            return create_fraction(self, other)

        # NOTE: We expect expanded sub-expressions with no nested operators.
        # Create list of new products using the '*' operator.
        # TODO: Is this efficient?
        new_fracs = [v/other for v in self.vrs]

        # Remove zero valued terms.
        # TODO: Can this still happen?
        new_fracs = [v for v in new_fracs if v.val != 0.0]

        # Create new sum.
        # TODO: No need to call expand here, using the '/' operator should have
        # taken care of this.
        if not new_fracs:
            return create_float(0)
        elif len(new_fracs) > 1:
            return create_sum(new_fracs)
        return new_fracs[0]

    # Public functions.
    def expand(self):
        "Expand all members of the sum."

        # If sum is already expanded, simply return the expansion.
        if self._expanded:
            return self._expanded

        # TODO: This function might need some optimisation.

        # Sort variables into symbols, products and fractions (add floats
        # directly to new list, will be handled later). Add fractions if
        # possible else add to list.
        new_variables = []
        syms = []
        prods = []
        frac_groups = {}
        # TODO: Rather than using '+', would it be more efficient to collect
        # the terms first?
        for var in self.vrs:
            exp = var.expand()
            # TODO: Should we also group fractions, or put this in a separate function?
            if exp._prec in (0, 4): # float or frac
                new_variables.append(exp)
            elif exp._prec == 1: # sym
                syms.append(exp)
            elif exp._prec == 2: # prod
                prods.append(exp)
            elif exp._prec == 3: # sum
                for v in exp.vrs:
                    if v._prec in (0, 4): # float or frac
                        new_variables.append(v)
                    elif v._prec == 1: # sym
                        syms.append(v)
                    elif v._prec == 2: # prod
                        prods.append(v)

        # Sort all variables in groups: [2*x, -7*x], [(x + y), (2*x + 4*y)] etc.
        # First handle product in order to add symbols if possible.
        prod_groups = {}
        for v in prods:
            if v.get_vrs() in prod_groups:
                prod_groups[v.get_vrs()] += v
            else:
                prod_groups[v.get_vrs()] = v

        sym_groups = {}
        # Loop symbols and add to appropriate groups.
        for v in syms:
            # First try to add to a product group.
            if (v,) in prod_groups:
                prod_groups[(v,)] += v
            # Then to other symbols.
            elif v in sym_groups:
                sym_groups[v] += v
            # Create a new entry in the symbols group.
            else:
                sym_groups[v] = v

        # Loop groups and add to new variable list.
        for k,v in sym_groups.iteritems():
            new_variables.append(v)
        for k,v in prod_groups.iteritems():
            new_variables.append(v)
#        for k,v in frac_groups.iteritems():
#            new_variables.append(v)
#            append(v)

        if len(new_variables) > 1:
            # Return new sum (will remove multiple instances of floats during construction).
            self._expanded = create_sum(sorted(new_variables))
            return self._expanded
        elif new_variables:
            # If we just have one variable left, return it since it is already expanded.
            self._expanded = new_variables[0]
            return self._expanded
        error("Where did the variables go?")

    def get_unique_vars(self, var_type):
        "Get unique variables (Symbols) as a set."
        # Loop all variables of self update the set.
        var = set()
        for v in self.vrs:
            var.update(v.get_unique_vars(var_type))
        return var

    def get_var_occurrences(self):
        """Determine the number of minimum number of times all variables occurs
        in the expression. Returns a dictionary of variables and the number of
        times they occur. x*x + x returns {x:1}, x + y returns {}."""
        # NOTE: This function is only used if the numerator of a Fraction is a Sum.

        # Get occurrences in first expression.
        d0 = self.vrs[0].get_var_occurrences()
        for var in self.vrs[1:]:
            # Get the occurrences.
            d = var.get_var_occurrences()
            # Delete those variables in d0 that are not in d.
            for k, v in d0.items():
                if not k in d:
                    del d0[k]
            # Set the number of occurrences equal to the smallest number.
            for k, v in d.iteritems():
                if k in d0:
                    d0[k] = min(d0[k], v)
        return d0

    def ops(self):
        "Return number of operations to compute value of sum."
        # Subtract one operation as it only takes n-1 ops to sum n members.
        op = -1

        # Add the number of operations from sub-expressions.
        for v in self.vrs:
            #  +1 for the +/- symbol.
            op += v.ops() + 1
        return op

    def reduce_ops(self):
        "Reduce the number of operations needed to evaluate the sum."
#        global ind
#        ind += " "
#        print "\n%sreduce_ops, start" % ind

        if self._reduced:
            return self._reduced
        # NOTE: Assuming that sum has already been expanded.
        # TODO: Add test for this and handle case if it is not.

        # TODO: The entire function looks expensive, can it be optimised?

        # TODO: It is not necessary to create a new Sum if we do not have more
        # than one Fraction.
        # First group all fractions in the sum.
        new_sum = _group_fractions(self)
        if new_sum._prec != 3: # sum
            self._reduced = new_sum.reduce_ops()
            return self._reduced
        # Loop all variables of the sum and collect the number of common
        # variables that can be factored out.
        common_vars = {}
        for var in new_sum.vrs:
            # Get dictonary of occurrences and add the variable and the number
            # of occurrences to common dictionary.
            for k, v in var.get_var_occurrences().iteritems():
#                print
#                print ind + "var: ", var
#                print ind + "k: ", k
#                print ind + "v: ", v
                if k in common_vars:
                    common_vars[k].append((v, var))
                else:
                    common_vars[k] = [(v, var)]
#        print
#        print "common vars: "
#        for k,v in common_vars.items():
#            print "k: ", k
#            print "v: ", v
#        print
        # Determine the maximum reduction for each variable
        # sorted as: {(x*x*y, x*y*z, 2*y):[2, [y]]}.
        terms_reductions = {}
        for k, v in sorted(common_vars.iteritems()):
#            print
#            print ind + "k: ", k
#            print ind + "v: ", v
            # If the number of expressions that can be reduced is only one
            # there is nothing to be done.
            if len(v) > 1:
                # TODO: Is there a better way to compute the reduction gain
                # and the number of occurrences we should remove?

                # Get the list of number of occurences of 'k' in expressions
                # in 'v'.
                occurrences = [t[0] for t in v]

                # Determine the favorable number of occurences and an estimate
                # of the maximum reduction for current variable.
                fav_occur = 0
                reduc = 0
                for i in set(occurrences):
                    # Get number of terms that has a number of occcurences equal
                    # to or higher than the current number.
                    num_terms = len([o for o in occurrences if o >= i])

                    # An estimate of the reduction in operations is:
                    # (number_of_terms - 1) * number_occurrences.
                    new_reduc = (num_terms-1)*i
                    if new_reduc > reduc:
                        reduc = new_reduc
                        fav_occur = i

                # Extract the terms of v where the number of occurrences is
                # equal to or higher than the most favorable number of occurrences.
                terms = sorted([t[1] for t in v if t[0] >= fav_occur])

                # We need to reduce the expression with the favorable number of
                # occurrences of the current variable.
                red_vars = [k]*fav_occur

                # If the list of terms is already present in the dictionary,
                # add the reduction count and the variables.
                if tuple(terms) in terms_reductions:
                    terms_reductions[tuple(terms)][0] += reduc
                    terms_reductions[tuple(terms)][1] += red_vars
                else:
                    terms_reductions[tuple(terms)] = [reduc, red_vars]
#        print "\nterms_reductions: "
#        for k,v in terms_reductions.items():
#            print "k: ", create_sum(k)
#            print "v: ", v
#        print "red: self: ", self
        if terms_reductions:
            # Invert dictionary of terms.
            reductions_terms = dict([((v[0], tuple(v[1])), k) for k, v in terms_reductions.iteritems()])

            # Create a sorted list of those variables that give the highest
            # reduction.
            sorted_reduc_var = [k for k, v in reductions_terms.iteritems()]
#            print
#            print ind + "raw"
#            for k in sorted_reduc_var:
#                print ind, k[0], k[1]
            sorted_reduc_var.sort()
#            sorted_reduc_var.sort(lambda x, y: cmp(x[0], y[0]))
            sorted_reduc_var.reverse()
#            print ind + "sorted"
#            for k in sorted_reduc_var:
#                print ind, k[0], k[1]

            # Create a new dictionary of terms that should be reduced, if some
            # terms overlap, only pick the one which give the highest reduction to
            # ensure that a*x*x + b*x*x + x*x*y + 2*y -> x*x*(a + b + y) + 2*y NOT 
            # x*x*(a + b) + y*(2 + x*x).
            reduction_vars = {}
            rejections = {}
            for var in sorted_reduc_var:
                terms = reductions_terms[var]
                if _overlap(terms, reduction_vars) or _overlap(terms, rejections):
                    rejections[var[1]] = terms
                else:
                    reduction_vars[var[1]] = terms

#            print "\nreduction_vars: "
#            for k,v in reduction_vars.items():
#                print "k: ", k
#                print "v: ", v

            # Reduce each set of terms with appropriate variables.
            all_reduced_terms = []
            reduced_expressions = []
            for reduc_var, terms in sorted(reduction_vars.iteritems()):

                # Add current terms to list of all variables that have been reduced.
                all_reduced_terms += list(terms)

                # Create variable that we will use to reduce the terms.
                reduction_var = None
                if len(reduc_var) > 1:
                    reduction_var = create_product(list(reduc_var))
                else:
                    reduction_var = reduc_var[0]

                # Reduce all terms that need to be reduced.
                reduced_terms = [t.reduce_var(reduction_var) for t in terms]

                # Create reduced expression.
                reduced_expr = None
                if len(reduced_terms) > 1:
                    # Try to reduce the reduced terms further.
                    reduced_expr = create_product([reduction_var, create_sum(reduced_terms).reduce_ops()])
                else:
                    reduced_expr = create_product(reduction_var, reduced_terms[0])

                # Add reduced expression to list of reduced expressions.
                reduced_expressions.append(reduced_expr)

            # Create list of terms that should not be reduced.
            dont_reduce_terms = []
            for v in new_sum.vrs:
                if not v in all_reduced_terms:
                    dont_reduce_terms.append(v)

            # Create expression from terms that was not reduced.
            not_reduced_expr = None
            if dont_reduce_terms and len(dont_reduce_terms) > 1:
                # Try to reduce the remaining terms that were not reduced at first.
                not_reduced_expr = create_sum(dont_reduce_terms).reduce_ops()
            elif dont_reduce_terms:
                not_reduced_expr = dont_reduce_terms[0]

            # Create return expression.
            if not_reduced_expr:
                self._reduced = create_sum(reduced_expressions + [not_reduced_expr])
            elif len(reduced_expressions) > 1:
                self._reduced = create_sum(reduced_expressions)
            else:
                self._reduced = reduced_expressions[0]
#            # NOTE: Only switch on for debugging.
#            if not self._reduced.expand() == self.expand():
#                print reduced_expressions[0]
#                print reduced_expressions[0].expand()
#                print "self: ", self
#                print "red:  ", repr(self._reduced)
#                print "self.exp: ", self.expand()
#                print "red.exp:  ", self._reduced.expand()
#                error("Reduced expression is not equal to original expression.")
            return self._reduced

        # Return self if we don't have any variables for which we can reduce
        # the sum.
        self._reduced = self
        return self._reduced

    def reduce_vartype(self, var_type):
        """Reduce expression with given var_type. It returns a list of tuples
        [(found, remain)], where 'found' is an expression that only has variables
        of type == var_type. If no variables are found, found=(). The 'remain'
        part contains the leftover after division by 'found' such that:
        self = Sum([f*r for f,r in self.reduce_vartype(Type)])."""
        found = {}
#        print "\nself: ", self
        # Loop members and reduce them by vartype.
        for v in self.vrs:
#            print "v: ", v
#            print "red: ", v.reduce_vartype(var_type)
#            red = v.reduce_vartype(var_type)
#            f, r = v.reduce_vartype(var_type)
#            print "len red: ", len(red)
#            print "red: ", red
#            if len(red) == 2:
#                f, r = red
#            else:
#                raise RuntimeError
            for f, r in v.reduce_vartype(var_type):
                if f in found:
                    found[f].append(r)
                else:
                    found[f] = [r]

        # Create the return value.
        returns = []
        for f, r in found.iteritems():
            if len(r) > 1:
                # Use expand to group expressions.
#                r = create_sum(r).expand()
                r = create_sum(r)
            elif r:
                r = r.pop()
            returns.append((f, r))
        return returns

def _overlap(l, d):
    "Check if a member in list l is in the value (list) of dictionary d."
    for m in l:
        for k, v in d.iteritems():
            if m in v:
                return True
    return False

def _group_fractions(expr):
    "Group Fractions in a Sum: 2/x + y/x -> (2 + y)/x."
    if expr._prec != 3: # sum
        return expr

    # Loop variables and group those with common denominator.
    not_frac = []
    fracs = {}
    for v in expr.vrs:
        if v._prec == 4: # frac
            if v.denom in fracs:
                fracs[v.denom][1].append(v.num)
                fracs[v.denom][0] += 1
            else:
                fracs[v.denom] = [1, [v.num], v]
            continue
        not_frac.append(v)
    if not fracs:
        return expr

    # Loop all fractions and create new ones using an appropriate numerator.
    for k, v in sorted(fracs.iteritems()):
        if v[0] > 1:
            # TODO: Is it possible to avoid expanding the Sum?
            # I think we have to because x/a + 2*x/a -> 3*x/a.
            not_frac.append(create_fraction(create_sum(v[1]).expand(), k))
        else:
            not_frac.append(v[2])

    # Create return value.
    if len(not_frac) > 1:
        return create_sum(not_frac)
    return not_frac[0]

from floatvalue import FloatValue
from symbol     import Symbol
from product    import Product
from fraction   import Fraction