This file is indexed.

/usr/share/pyshared/ffc/quadrature/symbolics.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
"This file contains functions to optimise the code generated for quadrature representation."

# Copyright (C) 2009-2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2009-07-12
# Last changed: 2011-01-21

# FFC modules
from ffc.log import debug, error
from ffc.cpp import format

# TODO: Use proper errors, not just RuntimeError.
# TODO: Change all if value == 0.0 to something more safe.

# Some basic variables.
BASIS = 0
IP  = 1
GEO = 2
CONST = 3
type_to_string = {BASIS:"BASIS", IP:"IP",GEO:"GEO", CONST:"CONST"}

# Functions and dictionaries for cache implementation.
# Increases speed and should also reduce memory consumption.
_float_cache = {}
def create_float(val):
    if val in _float_cache:
#        print "found %f in cache" %val
        return _float_cache[val]
    float_val = FloatValue(val)
    _float_cache[val] = float_val
    return float_val

_symbol_cache = {}
def create_symbol(variable, symbol_type, base_expr=None, base_op=0, expo=None, cond=()):
    key = (variable, symbol_type, base_expr, base_op, expo, cond)
    if key in _symbol_cache:
#        print "found %s in cache" %variable
        return _symbol_cache[key]
    symbol = Symbol(variable, symbol_type, base_expr, base_op, expo, cond)
    _symbol_cache[key] = symbol
    return symbol

_product_cache = {}
def create_product(variables):
    # NOTE: If I switch on the sorted line, it might be possible to find more
    # variables in the cache, but it adds some overhead so I don't think it
    # pays off. The member variables are also sorted in the classes
    # (Product and Sum) so the list 'variables' is probably already sorted.
#    key = tuple(sorted(variables))
    key = tuple(variables)
    if key in _product_cache:
#        print "found %s in cache" %str(key)
#        print "found product in cache"
        return _product_cache[key]
    product = Product(key)
    _product_cache[key] = product
    return product

_sum_cache = {}
def create_sum(variables):
    # NOTE: If I switch on the sorted line, it might be possible to find more
    # variables in the cache, but it adds some overhead so I don't think it
    # pays off. The member variables are also sorted in the classes
    # (Product and Sum) so the list 'variables' is probably already sorted.
#    key = tuple(sorted(variables))
    key = tuple(variables)
    if key in _sum_cache:
#        print "found %s in cache" %str(key)
#        print "found sum in cache"
        return _sum_cache[key]
    s = Sum(key)
    _sum_cache[key] = s
    return s

_fraction_cache = {}
def create_fraction(num, denom):
    key = (num, denom)
    if key in _fraction_cache:
#        print "found %s in cache" %str(key)
#        print "found fraction in cache"
        return _fraction_cache[key]
    fraction = Fraction(num, denom)
    _fraction_cache[key] = fraction
    return fraction

# NOTE: We use commented print for debug, since debug will make the code run slower.
def generate_aux_constants(constant_decl, name, var_type, print_ops=False):
    "A helper tool to generate code for constant declarations."
    format_comment = format["comment"]
    code = []
    append = code.append
    ops = 0
    for num, expr in sorted([(v, k) for k, v in constant_decl.iteritems()]):
#        debug("expr orig: " + str(expr))
#        print "\nnum: ", num
#        print "expr orig: " + repr(expr)
#        print "expr exp: " + str(expr.expand())
        # Expand and reduce expression (If we don't already get reduced expressions.)
        expr = expr.expand().reduce_ops()
#        debug("expr opt:  " + str(expr))
#        print "expr opt:  " + str(expr)
        if print_ops:
            op = expr.ops()
            ops += op
            append(format_comment("Number of operations: %d" %op))
            append(var_type(name(num), str(expr)))
            append("")
        else:
            ops += expr.ops()
            append(var_type(name(num), str(expr)))

    return (ops, code)

# NOTE: We use commented print for debug, since debug will make the code run slower.
def optimise_code(expr, ip_consts, geo_consts, trans_set):
    """Optimise a given expression with respect to, basis functions,
    integration points variables and geometric constants.
    The function will update the dictionaries ip_const and geo_consts with new
    declarations and update the trans_set (used transformations)."""

#    print "expr: ", repr(expr)

    format_G  = format["geometry constant"]
#    format_ip = format["integration points"]
    format_I  = format["ip constant"]
    trans_set_update = trans_set.update

    # Return constant symbol if expanded value is zero.
    exp_expr = expr.expand()
    if exp_expr.val == 0.0:
        return create_float(0)

    # Reduce expression with respect to basis function variable.
    basis_expressions = exp_expr.reduce_vartype(BASIS)

    # If we had a product instance we'll get a tuple back so embed in list.
    if not isinstance(basis_expressions, list):
        basis_expressions = [basis_expressions]

    basis_vals = []
    # Process each instance of basis functions.
    for basis, ip_expr in basis_expressions:
        # Get the basis and the ip expression.
#        debug("\nbasis\n" + str(basis))
#        debug("ip_epxr\n" + str(ip_expr))
#        print "\nbasis\n" + str(basis)
#        print "ip_epxr\n" + str(ip_expr)
#        print "ip_epxr\n" + repr(ip_expr)
#        print "ip_epxr\n" + repr(ip_expr.expand())

        # If we have no basis (like functionals) create a const.
        if not basis:
            basis = create_float(1)
        # NOTE: Useful for debugging to check that terms where properly reduced.
#        if Product([basis, ip_expr]).expand() != expr.expand():
#            prod = Product([basis, ip_expr]).expand()
#            print "prod == sum: ", isinstance(prod, Sum)
#            print "expr == sum: ", isinstance(expr, Sum)

#            print "prod.vrs: ", prod.vrs
#            print "expr.vrs: ", expr.vrs
#            print "expr.vrs = prod.vrs: ", expr.vrs == prod.vrs

#            print "equal: ", prod == expr

#            print "\nprod:    ", prod
#            print "\nexpr:    ", expr
#            print "\nbasis:   ", basis
#            print "\nip_expr: ", ip_expr
#            error("Not equal")

        # If the ip expression doesn't contain any operations skip remainder.
#        if not ip_expr:
        if not ip_expr or ip_expr.val == 0.0:
            basis_vals.append(basis)
            continue
        if not ip_expr.ops() > 0:
            basis_vals.append(create_product([basis, ip_expr]))
            continue

        # Reduce the ip expressions with respect to IP variables.
        ip_expressions = ip_expr.expand().reduce_vartype(IP)

        # If we had a product instance we'll get a tuple back so embed in list.
        if not isinstance(ip_expressions, list):
            ip_expressions = [ip_expressions]

#        # Debug code to check that reduction didn't screw up anything
#        for ip in ip_expressions:
#            ip_dec, geo = ip
#            print "geo: ", geo
#            print "ip_dec: ", ip_dec
#        vals = []
#        for ip in ip_expressions:
#            ip_dec, geo = ip
#            if ip_dec and geo:
#                vals.append(Product([ip_dec, geo]))
#            elif geo:
#                vals.append(geo)
#            elif ip_dec:
#                vals.append(ip_dec)

#        if Sum(vals).expand() != ip_expr.expand():
##        if Sum([Product([ip, geo]) for ip, geo in ip_expressions]).expand() != ip_expr.expand():
#            print "\nip_expr: ", repr(ip_expr)
##            print "\nip_expr: ", str(ip_expr)
##            print "\nip_dec: ", repr(ip_dec)
##            print "\ngeo: ", repr(geo)
#            for ip in ip_expressions:
#                ip_dec, geo = ip
#                print "geo: ", geo
#                print "ip_dec: ", ip_dec
#            error("Not equal")

        ip_vals = []
        # Loop ip expressions.
        for ip in sorted(ip_expressions):
            ip_dec, geo = ip
#            debug("\nip_dec: " + str(ip_dec))
#            debug("\ngeo: " + str(geo))
#            print "\nip_dec: " + repr(ip_dec)
#            print "\ngeo: " + repr(geo)
#            print "exp:  ", geo.expand()
#            print "val:  ", geo.expand().val
#            print "repx: ", repr(geo.expand())
            # NOTE: Useful for debugging to check that terms where properly reduced.
#            if Product([ip_dec, geo]).expand() != ip_expr.expand():
#                print "\nip_expr: ", repr(ip_expr)
#                print "\nip_dec: ", repr(ip_dec)
#                print "\ngeo: ", repr(geo)
#                error("Not equal")

            # Update transformation set with those values that might be embedded in IP terms.
#            if ip_dec:
            if ip_dec and ip_dec.val != 0.0:
                trans_set_update(map(lambda x: str(x), ip_dec.get_unique_vars(GEO)))

            # Append and continue if we did not have any geo values.
#            if not geo:
            if not geo or geo.val == 0.0:
                if ip_dec and ip_dec.val != 0.0:
                    ip_vals.append(ip_dec)
                continue

            # Update the transformation set with the variables in the geo term.
            trans_set_update(map(lambda x: str(x), geo.get_unique_vars(GEO)))

            # Only declare auxiliary geo terms if we can save operations.
#            geo = geo.expand().reduce_ops()
            if geo.ops() > 0:
#                debug("geo: " + str(geo))
#                print "geo: " + str(geo)
                # If the geo term is not in the dictionary append it.
#                if not geo in geo_consts:
                if not geo in geo_consts:
                    geo_consts[geo] = len(geo_consts)

                # Substitute geometry expression.
                geo = create_symbol(format_G(geo_consts[geo]), GEO)

            # If we did not have any ip_declarations use geo, else create a
            # product and append to the list of ip_values.
#            if not ip_dec:
            if not ip_dec or ip_dec.val == 0.0:
                ip_dec = geo
            else:
                ip_dec = create_product([ip_dec, geo])
            ip_vals.append(ip_dec)

        # Create sum of ip expressions to multiply by basis.
        if len(ip_vals) > 1:
            ip_expr = create_sum(ip_vals)
        elif ip_vals:
            ip_expr = ip_vals.pop()

        # If we can save operations by declaring it as a constant do so, if it
        # is not in IP dictionary, add it and use new name.
#        ip_expr = ip_expr.expand().reduce_ops()
#        if ip_expr.ops() > 0:
        if ip_expr.ops() > 0 and ip_expr.val != 0.0:
#            if not ip_expr in ip_consts:
            if not ip_expr in ip_consts:
                ip_consts[ip_expr] = len(ip_consts)

            # Substitute ip expression.
#            ip_expr = create_symbol(format_G + format_ip + str(ip_consts[ip_expr]), IP)
            ip_expr = create_symbol(format_I(ip_consts[ip_expr]), IP)

        # Multiply by basis and append to basis vals.
#        prod = create_product([basis, ip_expr])
#        if prod.expand().val != 0.0:
#            basis_vals.append(prod)
        basis_vals.append(create_product([basis, ip_expr]))

    # Return (possible) sum of basis values.
    if len(basis_vals) > 1:
        return create_sum(basis_vals)
    elif basis_vals:
        return basis_vals[0]
    # Where did the values go?
    error("Values disappeared.")

from floatvalue import FloatValue
from symbol     import Symbol
from product    import Product
from sumobj     import Sum
from fraction   import Fraction