/usr/share/pyshared/ffc/quadrature/symbolics.py is in python-ffc 1.0.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 | "This file contains functions to optimise the code generated for quadrature representation."
# Copyright (C) 2009-2010 Kristian B. Oelgaard
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added: 2009-07-12
# Last changed: 2011-01-21
# FFC modules
from ffc.log import debug, error
from ffc.cpp import format
# TODO: Use proper errors, not just RuntimeError.
# TODO: Change all if value == 0.0 to something more safe.
# Some basic variables.
BASIS = 0
IP = 1
GEO = 2
CONST = 3
type_to_string = {BASIS:"BASIS", IP:"IP",GEO:"GEO", CONST:"CONST"}
# Functions and dictionaries for cache implementation.
# Increases speed and should also reduce memory consumption.
_float_cache = {}
def create_float(val):
if val in _float_cache:
# print "found %f in cache" %val
return _float_cache[val]
float_val = FloatValue(val)
_float_cache[val] = float_val
return float_val
_symbol_cache = {}
def create_symbol(variable, symbol_type, base_expr=None, base_op=0, expo=None, cond=()):
key = (variable, symbol_type, base_expr, base_op, expo, cond)
if key in _symbol_cache:
# print "found %s in cache" %variable
return _symbol_cache[key]
symbol = Symbol(variable, symbol_type, base_expr, base_op, expo, cond)
_symbol_cache[key] = symbol
return symbol
_product_cache = {}
def create_product(variables):
# NOTE: If I switch on the sorted line, it might be possible to find more
# variables in the cache, but it adds some overhead so I don't think it
# pays off. The member variables are also sorted in the classes
# (Product and Sum) so the list 'variables' is probably already sorted.
# key = tuple(sorted(variables))
key = tuple(variables)
if key in _product_cache:
# print "found %s in cache" %str(key)
# print "found product in cache"
return _product_cache[key]
product = Product(key)
_product_cache[key] = product
return product
_sum_cache = {}
def create_sum(variables):
# NOTE: If I switch on the sorted line, it might be possible to find more
# variables in the cache, but it adds some overhead so I don't think it
# pays off. The member variables are also sorted in the classes
# (Product and Sum) so the list 'variables' is probably already sorted.
# key = tuple(sorted(variables))
key = tuple(variables)
if key in _sum_cache:
# print "found %s in cache" %str(key)
# print "found sum in cache"
return _sum_cache[key]
s = Sum(key)
_sum_cache[key] = s
return s
_fraction_cache = {}
def create_fraction(num, denom):
key = (num, denom)
if key in _fraction_cache:
# print "found %s in cache" %str(key)
# print "found fraction in cache"
return _fraction_cache[key]
fraction = Fraction(num, denom)
_fraction_cache[key] = fraction
return fraction
# NOTE: We use commented print for debug, since debug will make the code run slower.
def generate_aux_constants(constant_decl, name, var_type, print_ops=False):
"A helper tool to generate code for constant declarations."
format_comment = format["comment"]
code = []
append = code.append
ops = 0
for num, expr in sorted([(v, k) for k, v in constant_decl.iteritems()]):
# debug("expr orig: " + str(expr))
# print "\nnum: ", num
# print "expr orig: " + repr(expr)
# print "expr exp: " + str(expr.expand())
# Expand and reduce expression (If we don't already get reduced expressions.)
expr = expr.expand().reduce_ops()
# debug("expr opt: " + str(expr))
# print "expr opt: " + str(expr)
if print_ops:
op = expr.ops()
ops += op
append(format_comment("Number of operations: %d" %op))
append(var_type(name(num), str(expr)))
append("")
else:
ops += expr.ops()
append(var_type(name(num), str(expr)))
return (ops, code)
# NOTE: We use commented print for debug, since debug will make the code run slower.
def optimise_code(expr, ip_consts, geo_consts, trans_set):
"""Optimise a given expression with respect to, basis functions,
integration points variables and geometric constants.
The function will update the dictionaries ip_const and geo_consts with new
declarations and update the trans_set (used transformations)."""
# print "expr: ", repr(expr)
format_G = format["geometry constant"]
# format_ip = format["integration points"]
format_I = format["ip constant"]
trans_set_update = trans_set.update
# Return constant symbol if expanded value is zero.
exp_expr = expr.expand()
if exp_expr.val == 0.0:
return create_float(0)
# Reduce expression with respect to basis function variable.
basis_expressions = exp_expr.reduce_vartype(BASIS)
# If we had a product instance we'll get a tuple back so embed in list.
if not isinstance(basis_expressions, list):
basis_expressions = [basis_expressions]
basis_vals = []
# Process each instance of basis functions.
for basis, ip_expr in basis_expressions:
# Get the basis and the ip expression.
# debug("\nbasis\n" + str(basis))
# debug("ip_epxr\n" + str(ip_expr))
# print "\nbasis\n" + str(basis)
# print "ip_epxr\n" + str(ip_expr)
# print "ip_epxr\n" + repr(ip_expr)
# print "ip_epxr\n" + repr(ip_expr.expand())
# If we have no basis (like functionals) create a const.
if not basis:
basis = create_float(1)
# NOTE: Useful for debugging to check that terms where properly reduced.
# if Product([basis, ip_expr]).expand() != expr.expand():
# prod = Product([basis, ip_expr]).expand()
# print "prod == sum: ", isinstance(prod, Sum)
# print "expr == sum: ", isinstance(expr, Sum)
# print "prod.vrs: ", prod.vrs
# print "expr.vrs: ", expr.vrs
# print "expr.vrs = prod.vrs: ", expr.vrs == prod.vrs
# print "equal: ", prod == expr
# print "\nprod: ", prod
# print "\nexpr: ", expr
# print "\nbasis: ", basis
# print "\nip_expr: ", ip_expr
# error("Not equal")
# If the ip expression doesn't contain any operations skip remainder.
# if not ip_expr:
if not ip_expr or ip_expr.val == 0.0:
basis_vals.append(basis)
continue
if not ip_expr.ops() > 0:
basis_vals.append(create_product([basis, ip_expr]))
continue
# Reduce the ip expressions with respect to IP variables.
ip_expressions = ip_expr.expand().reduce_vartype(IP)
# If we had a product instance we'll get a tuple back so embed in list.
if not isinstance(ip_expressions, list):
ip_expressions = [ip_expressions]
# # Debug code to check that reduction didn't screw up anything
# for ip in ip_expressions:
# ip_dec, geo = ip
# print "geo: ", geo
# print "ip_dec: ", ip_dec
# vals = []
# for ip in ip_expressions:
# ip_dec, geo = ip
# if ip_dec and geo:
# vals.append(Product([ip_dec, geo]))
# elif geo:
# vals.append(geo)
# elif ip_dec:
# vals.append(ip_dec)
# if Sum(vals).expand() != ip_expr.expand():
## if Sum([Product([ip, geo]) for ip, geo in ip_expressions]).expand() != ip_expr.expand():
# print "\nip_expr: ", repr(ip_expr)
## print "\nip_expr: ", str(ip_expr)
## print "\nip_dec: ", repr(ip_dec)
## print "\ngeo: ", repr(geo)
# for ip in ip_expressions:
# ip_dec, geo = ip
# print "geo: ", geo
# print "ip_dec: ", ip_dec
# error("Not equal")
ip_vals = []
# Loop ip expressions.
for ip in sorted(ip_expressions):
ip_dec, geo = ip
# debug("\nip_dec: " + str(ip_dec))
# debug("\ngeo: " + str(geo))
# print "\nip_dec: " + repr(ip_dec)
# print "\ngeo: " + repr(geo)
# print "exp: ", geo.expand()
# print "val: ", geo.expand().val
# print "repx: ", repr(geo.expand())
# NOTE: Useful for debugging to check that terms where properly reduced.
# if Product([ip_dec, geo]).expand() != ip_expr.expand():
# print "\nip_expr: ", repr(ip_expr)
# print "\nip_dec: ", repr(ip_dec)
# print "\ngeo: ", repr(geo)
# error("Not equal")
# Update transformation set with those values that might be embedded in IP terms.
# if ip_dec:
if ip_dec and ip_dec.val != 0.0:
trans_set_update(map(lambda x: str(x), ip_dec.get_unique_vars(GEO)))
# Append and continue if we did not have any geo values.
# if not geo:
if not geo or geo.val == 0.0:
if ip_dec and ip_dec.val != 0.0:
ip_vals.append(ip_dec)
continue
# Update the transformation set with the variables in the geo term.
trans_set_update(map(lambda x: str(x), geo.get_unique_vars(GEO)))
# Only declare auxiliary geo terms if we can save operations.
# geo = geo.expand().reduce_ops()
if geo.ops() > 0:
# debug("geo: " + str(geo))
# print "geo: " + str(geo)
# If the geo term is not in the dictionary append it.
# if not geo in geo_consts:
if not geo in geo_consts:
geo_consts[geo] = len(geo_consts)
# Substitute geometry expression.
geo = create_symbol(format_G(geo_consts[geo]), GEO)
# If we did not have any ip_declarations use geo, else create a
# product and append to the list of ip_values.
# if not ip_dec:
if not ip_dec or ip_dec.val == 0.0:
ip_dec = geo
else:
ip_dec = create_product([ip_dec, geo])
ip_vals.append(ip_dec)
# Create sum of ip expressions to multiply by basis.
if len(ip_vals) > 1:
ip_expr = create_sum(ip_vals)
elif ip_vals:
ip_expr = ip_vals.pop()
# If we can save operations by declaring it as a constant do so, if it
# is not in IP dictionary, add it and use new name.
# ip_expr = ip_expr.expand().reduce_ops()
# if ip_expr.ops() > 0:
if ip_expr.ops() > 0 and ip_expr.val != 0.0:
# if not ip_expr in ip_consts:
if not ip_expr in ip_consts:
ip_consts[ip_expr] = len(ip_consts)
# Substitute ip expression.
# ip_expr = create_symbol(format_G + format_ip + str(ip_consts[ip_expr]), IP)
ip_expr = create_symbol(format_I(ip_consts[ip_expr]), IP)
# Multiply by basis and append to basis vals.
# prod = create_product([basis, ip_expr])
# if prod.expand().val != 0.0:
# basis_vals.append(prod)
basis_vals.append(create_product([basis, ip_expr]))
# Return (possible) sum of basis values.
if len(basis_vals) > 1:
return create_sum(basis_vals)
elif basis_vals:
return basis_vals[0]
# Where did the values go?
error("Values disappeared.")
from floatvalue import FloatValue
from symbol import Symbol
from product import Product
from sumobj import Sum
from fraction import Fraction
|