This file is indexed.

/usr/share/pyshared/ffc/quadrature_schemes.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
"""Quadrature schemes on cells

This module generates quadrature schemes on reference cells that integrate
exactly a polynomial of a given degree using a specified scheme. The
UFC definition of a reference cell is used.

Scheme options are:

  scheme="default"

  scheme="canonical" (collapsed Gauss scheme supplied by FIAT)

Background on the schemes:

  Keast rules for tetrahedra:
    Keast, P. Moderate-degree tetrahedral quadrature formulas, Computer
    Methods in Applied Mechanics and Engineering 55(3):339-348, 1986.
    http://dx.doi.org/10.1016/0045-7825(86)90059-9
"""

# Copyright (C) 2011 Garth N. Wells
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# First added:  2011-04-19
# Last changed: 2011-04-19

# NumPy
from numpy import array, arange, float64

# UFL
import ufl

# FFC modules
from ffc.log import debug, error
from ffc.fiatinterface import reference_cell
from ffc.fiatinterface import create_quadrature as fiat_create_quadrature

# Dictionary mapping from domain (cell) to dimension
from ufl.geometry import domain2dim

def create_quadrature(shape, degree, scheme="default"):
    """
    Generate quadrature rule (points, weights) for given shape
    that will integrate an polynomial of order 'degree' exactly.
    """

    # FIXME: KBO: Can this be handled more elegantly?
    # Handle point case
    if isinstance(shape, int) and shape == 0 or domain2dim[shape] == 0:
        return ([()], array([1.0,]))

    if scheme == "default":
        if shape == "tetrahedron":
            return _tetrahedron_scheme(degree)
        elif shape == "triangle":
            return _triangle_scheme(degree)
        else:
          return _fiat_scheme(shape, degree)
    elif scheme == "canonical":
        return _fiat_scheme(shape, degree)
    else:
        error("Unknown quadrature scheme: %s." % scheme)

def _fiat_scheme(shape, degree):
    """Get quadrature scheme from FIAT interface"""

    # Number of points per axis for exact integration
    num_points_per_axis = (degree + 1 + 1) / 2

    # Create and return FIAT quadrature rulet
    return fiat_create_quadrature(shape, num_points_per_axis)


def _triangle_scheme(degree):
    """Return a quadrature scheme on a triangle of specified order. Falls
    back on canonical rule for higher orders."""

    if degree == 0 or degree == 1:
        # Scheme from Zienkiewicz and Taylor, 1 point, degree of precision 1
        x = array([ [1.0/3.0, 1.0/3.0] ])
        w = array([0.5])
    elif degree == 2:
        # Scheme from Strang and Fix, 3 points, degree of precision 2
        x = array([ [1.0/6.0, 1.0/6.0],
                          [1.0/6.0, 2.0/3.0],
                          [2.0/3.0, 1.0/6.0] ])
        w = arange(3, dtype=float64)
        w[:] = 1.0/6.0
    elif degree == 3:
        # Scheme from Strang and Fix, 6 points, degree of precision 3
        x = array([ [0.659027622374092, 0.231933368553031],
                    [0.659027622374092, 0.109039009072877],
                    [0.231933368553031, 0.659027622374092],
                    [0.231933368553031, 0.109039009072877],
                    [0.109039009072877, 0.659027622374092],
                    [0.109039009072877, 0.231933368553031] ])
        w = arange(6, dtype=float64)
        w[:] = 1.0/12.0
    elif degree == 4:
        # Scheme from Strang and Fix, 6 points, degree of precision 4
        x = array([ [0.816847572980459, 0.091576213509771],
                    [0.091576213509771, 0.816847572980459],
                    [0.091576213509771, 0.091576213509771],
                    [0.108103018168070, 0.445948490915965],
                    [0.445948490915965, 0.108103018168070],
                    [0.445948490915965, 0.445948490915965] ])
        w = arange(6, dtype=float64)
        w[0:3] = 0.109951743655322
        w[3:6] = 0.223381589678011
        w = w/2.0
    elif degree == 5:
        # Scheme from Strang and Fix, 7 points, degree of precision 5
        x = array([ [0.33333333333333333, 0.33333333333333333],
                    [0.79742698535308720, 0.10128650732345633],
                    [0.10128650732345633, 0.79742698535308720],
                    [0.10128650732345633, 0.10128650732345633],
                    [0.05971587178976981, 0.47014206410511505],
                    [0.47014206410511505, 0.05971587178976981],
                    [0.47014206410511505, 0.47014206410511505] ])
        w = arange(7, dtype=float64)
        w[0]   = 0.22500000000000000
        w[1:4] = 0.12593918054482717
        w[4:7] = 0.13239415278850616
        w = w/2.0
    elif degree == 6:
        # Scheme from Strang and Fix, 12 points, degree of precision 6
        x = array([ [0.873821971016996, 0.063089014491502],
                    [0.063089014491502, 0.873821971016996],
                    [0.063089014491502, 0.063089014491502],
                    [0.501426509658179, 0.249286745170910],
                    [0.249286745170910, 0.501426509658179],
                    [0.249286745170910, 0.249286745170910],
                    [0.636502499121399, 0.310352451033785],
                    [0.636502499121399, 0.053145049844816],
                    [0.310352451033785, 0.636502499121399],
                    [0.310352451033785, 0.053145049844816],
                    [0.053145049844816, 0.636502499121399],
                    [0.053145049844816, 0.310352451033785] ])
        w = arange(12, dtype=float64)
        w[0:3]  = 0.050844906370207
        w[3:6]  = 0.116786275726379
        w[6:12] = 0.082851075618374
        w = w/2.0
    else:
        # Get canonical scheme
        x, w = _fiat_scheme("triangle", degree)

    # Return scheme
    return x, w


def _tetrahedron_scheme(degree):
    """Return a quadrature scheme on a tetrahedron of specified
    degree. Falls back on canonical rule for higher orders"""

    if degree == 0 or degree == 1:
        # Scheme from Zienkiewicz and Taylor, 1 point, degree of precision 1
        x = array([ [1.0/4.0, 1.0/4.0, 1.0/4.0] ])
        w = array([1.0/6.0])
    elif degree == 2:
        # Scheme from Zienkiewicz and Taylor, 4 points, degree of precision 2
        a, b = 0.585410196624969, 0.138196601125011
        x = array([ [a, b, b],
                    [b, a, b],
                    [b, b, a],
                    [b, b, b] ])
        w = arange(4, dtype=float64)
        w[:] = 1.0/24.0
    elif degree == 3:
        # Scheme from Zienkiewicz and Taylor, 5 points, degree of precision 3
        # Note: this scheme has a negative weight
        x = array([ [0.2500000000000000, 0.2500000000000000, 0.2500000000000000],
                    [0.5000000000000000, 0.1666666666666666, 0.1666666666666666],
                    [0.1666666666666666, 0.5000000000000000, 0.1666666666666666],
                    [0.1666666666666666, 0.1666666666666666, 0.5000000000000000],
                    [0.1666666666666666, 0.1666666666666666, 0.1666666666666666] ])
        w = arange(5, dtype=float64)
        w[0]   = -0.8
        w[1:5] =  0.45
        w = w/6.0
    elif degree == 4:
        # Keast rule, 14 points, degree of precision 4
        # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html
        # (KEAST5)
        x = array([ [0.0000000000000000, 0.5000000000000000, 0.5000000000000000],
                    [0.5000000000000000, 0.0000000000000000, 0.5000000000000000],
                    [0.5000000000000000, 0.5000000000000000, 0.0000000000000000],
                    [0.5000000000000000, 0.0000000000000000, 0.0000000000000000],
                    [0.0000000000000000, 0.5000000000000000, 0.0000000000000000],
                    [0.0000000000000000, 0.0000000000000000, 0.5000000000000000],
                    [0.6984197043243866, 0.1005267652252045, 0.1005267652252045],
                    [0.1005267652252045, 0.1005267652252045, 0.1005267652252045],
                    [0.1005267652252045, 0.1005267652252045, 0.6984197043243866],
                    [0.1005267652252045, 0.6984197043243866, 0.1005267652252045],
                    [0.0568813795204234, 0.3143728734931922, 0.3143728734931922],
                    [0.3143728734931922, 0.3143728734931922, 0.3143728734931922],
                    [0.3143728734931922, 0.3143728734931922, 0.0568813795204234],
                    [0.3143728734931922, 0.0568813795204234, 0.3143728734931922] ])
        w = arange(14, dtype=float64)
        w[0:6]   = 0.0190476190476190
        w[6:10]  = 0.0885898247429807
        w[10:14] = 0.1328387466855907
        w = w/6.0
    elif degree == 5:
        # Keast rule, 15 points, degree of precision 5
        # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html
        # (KEAST6)
        x = array([ [0.2500000000000000, 0.2500000000000000, 0.2500000000000000],
                    [0.0000000000000000, 0.3333333333333333, 0.3333333333333333],
                    [0.3333333333333333, 0.3333333333333333, 0.3333333333333333],
                    [0.3333333333333333, 0.3333333333333333, 0.0000000000000000],
                    [0.3333333333333333, 0.0000000000000000, 0.3333333333333333],
                    [0.7272727272727273, 0.0909090909090909, 0.0909090909090909],
                    [0.0909090909090909, 0.0909090909090909, 0.0909090909090909],
                    [0.0909090909090909, 0.0909090909090909, 0.7272727272727273],
                    [0.0909090909090909, 0.7272727272727273, 0.0909090909090909],
                    [0.4334498464263357, 0.0665501535736643, 0.0665501535736643],
                    [0.0665501535736643, 0.4334498464263357, 0.0665501535736643],
                    [0.0665501535736643, 0.0665501535736643, 0.4334498464263357],
                    [0.0665501535736643, 0.4334498464263357, 0.4334498464263357],
                    [0.4334498464263357, 0.0665501535736643, 0.4334498464263357],
                    [0.4334498464263357, 0.4334498464263357, 0.0665501535736643] ])
        w = arange(15, dtype=float64)
        w[0]    = 0.1817020685825351
        w[1:5]  = 0.0361607142857143
        w[5:9]  = 0.0698714945161738
        w[9:15] = 0.0656948493683187
        w = w/6.0
    elif degree == 6:
        # Keast rule, 24 points, degree of precision 6
        # Values taken from http://people.sc.fsu.edu/~jburkardt/datasets/quadrature_rules_tet/quadrature_rules_tet.html
        # (KEAST7)
        x = array([ [0.3561913862225449, 0.2146028712591517, 0.2146028712591517],
                    [0.2146028712591517, 0.2146028712591517, 0.2146028712591517],
                    [0.2146028712591517, 0.2146028712591517, 0.3561913862225449],
                    [0.2146028712591517, 0.3561913862225449, 0.2146028712591517],
                    [0.8779781243961660, 0.0406739585346113, 0.0406739585346113],
                    [0.0406739585346113, 0.0406739585346113, 0.0406739585346113],
                    [0.0406739585346113, 0.0406739585346113, 0.8779781243961660],
                    [0.0406739585346113, 0.8779781243961660, 0.0406739585346113],
                    [0.0329863295731731, 0.3223378901422757, 0.3223378901422757],
                    [0.3223378901422757, 0.3223378901422757, 0.3223378901422757],
                    [0.3223378901422757, 0.3223378901422757, 0.0329863295731731],
                    [0.3223378901422757, 0.0329863295731731, 0.3223378901422757],
                    [0.2696723314583159, 0.0636610018750175, 0.0636610018750175],
                    [0.0636610018750175, 0.2696723314583159, 0.0636610018750175],
                    [0.0636610018750175, 0.0636610018750175, 0.2696723314583159],
                    [0.6030056647916491, 0.0636610018750175, 0.0636610018750175],
                    [0.0636610018750175, 0.6030056647916491, 0.0636610018750175],
                    [0.0636610018750175, 0.0636610018750175, 0.6030056647916491],
                    [0.0636610018750175, 0.2696723314583159, 0.6030056647916491],
                    [0.2696723314583159, 0.6030056647916491, 0.0636610018750175],
                    [0.6030056647916491, 0.0636610018750175, 0.2696723314583159],
                    [0.0636610018750175, 0.6030056647916491, 0.2696723314583159],
                    [0.2696723314583159, 0.0636610018750175, 0.6030056647916491],
                    [0.6030056647916491, 0.2696723314583159, 0.0636610018750175] ])
        w = arange(24, dtype=float64)
        w[0:4]   = 0.0399227502581679
        w[4:8]   = 0.0100772110553207
        w[8:12]  = 0.0553571815436544
        w[12:24] = 0.0482142857142857
        w = w/6.0
    else:
        # Get canonical scheme
        x, w =  _fiat_scheme("tetrahedron", degree)

    # Return scheme
    return x, w