This file is indexed.

/usr/share/pyshared/ffc/representation.py is in python-ffc 1.0.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
"""
Compiler stage 2: Code representation
-------------------------------------

This module computes intermediate representations of forms,
elements and dofmaps. For each UFC function, we extract the
data needed for code generation at a later stage.

The representation should conform strictly to the naming and
order of functions in UFC. Thus, for code generation of the
function "foo", one should only need to use the data stored
in the intermediate representation under the key "foo".
"""

# Copyright (C) 2009-2010 Anders Logg
#
# This file is part of FFC.
#
# FFC is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# FFC is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with FFC. If not, see <http://www.gnu.org/licenses/>.
#
# Modified by Marie E. Rognes 2010
# Modified by Kristian B. Oelgaard 2010
#
# First added:  2009-12-16
# Last changed: 2010-04-12

# Python modules
from itertools import chain

# Import UFL
import ufl

# FFC modules
from ffc.utils import compute_permutations, product
from ffc.log import info, error, begin, end, debug_ir, ffc_assert, warning
from ffc.fiatinterface import create_element, entities_per_dim, reference_cell
from ffc.mixedelement import MixedElement
from ffc.enrichedelement import EnrichedElement, SpaceOfReals
from ffc.quadratureelement import QuadratureElement
from ffc.cpp import set_float_formatting

# FFC specialized representation modules
from ffc import quadrature
from ffc import tensor

not_implemented = None

def compute_ir(analysis, parameters, common_cell=None):
    "Compute intermediate representation."

    begin("Compiler stage 2: Computing intermediate representation")

    # Set code generation parameters
    set_float_formatting(int(parameters["precision"]))

    # Extract data from analysis
    form_datas, elements, element_numbers = analysis

    # Compute representation of elements
    info("Computing representation of %d elements" % len(elements))
    ir_elements = [_compute_element_ir(e, i, element_numbers) \
                       for (i, e) in enumerate(elements)]

    # Compute representation of dofmaps
    info("Computing representation of %d dofmaps" % len(elements))
    ir_dofmaps = [_compute_dofmap_ir(e, i, element_numbers)
                      for (i, e) in enumerate(elements)]

    # Compute and flatten representation of integrals
    info("Computing representation of integrals")
    irs = [_compute_integral_ir(fd, i, parameters, common_cell) \
               for (i, fd) in enumerate(form_datas)]
    ir_integrals = [ir for ir in chain(*irs) if not ir is None]

    # Compute representation of forms
    info("Computing representation of forms")
    ir_forms = [_compute_form_ir(fd, i, element_numbers) \
                    for (i, fd) in enumerate(form_datas)]

    end()

    return ir_elements, ir_dofmaps, ir_integrals, ir_forms

def _compute_element_ir(ufl_element, element_id, element_numbers):
    "Compute intermediate representation of element."

    # Create FIAT element
    element = create_element(ufl_element)
    cell = ufl_element.cell()

    # Store id
    ir = {"id": element_id}

    # Compute data for each function
    ir["signature"] = repr(ufl_element)
    ir["cell_shape"] = cell.domain()
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = cell.geometric_dimension()
    ir["space_dimension"] = element.space_dimension()
    ir["value_rank"] = len(ufl_element.value_shape())
    ir["value_dimension"] = ufl_element.value_shape()
    ir["evaluate_basis"] = _evaluate_basis(element, cell)
    ir["evaluate_dof"] = _evaluate_dof(element, cell)
    ir["interpolate_vertex_values"] = _interpolate_vertex_values(element, cell)
    ir["num_sub_elements"] = ufl_element.num_sub_elements()
    ir["create_sub_element"] = _create_sub_foo(ufl_element, element_numbers)

    #debug_ir(ir, "finite_element")

    return ir

def _compute_dofmap_ir(ufl_element, element_id, element_numbers):
    "Compute intermediate representation of dofmap."

    # Create FIAT element
    element = create_element(ufl_element)
    cell = ufl_element.cell()

    # Precompute repeatedly used items
    num_dofs_per_entity = _num_dofs_per_entity(element)
    facet_dofs = _tabulate_facet_dofs(element, cell)

    # Store id
    ir = {"id": element_id}

    # Compute data for each function
    ir["signature"] = "FFC dofmap for " + repr(ufl_element)
    ir["needs_mesh_entities"] = _needs_mesh_entities(element)
    ir["init_mesh"] = _init_mesh(element)
    ir["init_cell"] = None
    ir["init_cell_finalize"] = None
    ir["topological_dimension"] = cell.topological_dimension()
    ir["geometric_dimension"] = cell.geometric_dimension()
    ir["global_dimension"] = None
    ir["local_dimension"] = element.space_dimension()
    ir["max_local_dimension"] = element.space_dimension()
    ir["num_facet_dofs"] = len(facet_dofs[0])
    ir["num_entity_dofs"] = num_dofs_per_entity
    ir["tabulate_dofs"] = _tabulate_dofs(element, cell)
    ir["tabulate_facet_dofs"] = facet_dofs
    ir["tabulate_entity_dofs"] = (element.entity_dofs(), num_dofs_per_entity)
    ir["tabulate_coordinates"] = _tabulate_coordinates(element)
    ir["num_sub_dofmaps"] = ufl_element.num_sub_elements()
    ir["create_sub_dofmap"] = _create_sub_foo(ufl_element, element_numbers)

    #debug_ir(ir, "dofmap")

    return ir

def _init_mesh(element):

    if not isinstance(element, MixedElement):
        if isinstance(element, SpaceOfReals):
            return ([], 1)
        return (_num_dofs_per_entity(element), 0)

    elements = []
    reals = []
    num_reals = 0
    for (i, e) in enumerate(element.elements()):
        if not isinstance(e, SpaceOfReals):
            elements += [e]
        else:
            num_reals += 1
    element = MixedElement(elements)
    return (_num_dofs_per_entity(element), num_reals)


def _needs_mesh_entities(element):

    # Note: The dof map for Real elements does not depend on the mesh 

    num_dofs_per_entity = _num_dofs_per_entity(element)
    if isinstance(element, SpaceOfReals):
        return [False for d in num_dofs_per_entity]
    else:
        return [d > 0 for d in num_dofs_per_entity]

def _compute_integral_ir(form_data, form_id, parameters, common_cell=None):
    "Compute intermediate represention of form integrals."

    irs = []

    # Iterate over integrals
    for (domain_type, domain_id, integrals, metadata) in form_data.integral_data:

        # Select representation
        if metadata["representation"] == "quadrature":
            r = quadrature
        elif metadata["representation"] == "tensor":
            r = tensor
        else:
            error("Unknown representation: " + str(metadata["representation"]))

        # Compute representation
        ir = r.compute_integral_ir(domain_type,
                                   domain_id,
                                   integrals,
                                   metadata,
                                   form_data,
                                   form_id,
                                   parameters,
                                   common_cell)

        # Append representation
        irs.append(ir)

    return irs

def _compute_form_ir(form_data, form_id, element_numbers):
    "Compute intermediate representation of form."

    # Store id
    ir = {"id": form_id}

    #print "check 2", element_numbers
    #print [element_numbers[e] for e in form_data.elements]

    # Compute common data
    ir["classname"] = "FooForm"
    ir["members"] = not_implemented
    ir["constructor"] = not_implemented
    ir["destructor"] = not_implemented
    ir["signature"] = repr(form_data.preprocessed_form)
    ir["rank"] = form_data.rank
    ir["num_coefficients"] = form_data.num_coefficients
    ir["num_cell_domains"] = form_data.num_cell_domains
    ir["num_exterior_facet_domains"] = form_data.num_exterior_facet_domains
    ir["num_interior_facet_domains"] = form_data.num_interior_facet_domains
    ir["create_finite_element"] = [element_numbers[e] for e in form_data.elements]
    ir["create_dofmap"] = [element_numbers[e] for e in form_data.elements]
    ir["create_cell_integral"] = _create_foo_integral("cell", form_data)
    ir["create_exterior_facet_integral"] = _create_foo_integral("exterior_facet", form_data)
    ir["create_interior_facet_integral"] = _create_foo_integral("interior_facet", form_data)

    return ir

#--- Computation of intermediate representation for non-trivial functions ---

# FIXME: Move to FiniteElement/MixedElement
def _value_size(element):
    "Compute value size of element."
    shape = element.value_shape()
    if shape == ():
        return 1
    else:
        # FIXME: KBO: Is this correct? Shouldn't it be sum() instead?
        return product(shape)

def _generate_offsets(element, offset=0):

    "Generate offsets: i.e value offset for each basis function."

    offsets = []

    if isinstance(element, MixedElement):
        for e in element.elements():
            offsets += _generate_offsets(e, offset)
            offset += _value_size(e)

    elif isinstance(element, EnrichedElement):
        for e in element.elements():
            offsets += _generate_offsets(e, offset)

    else:
        offsets = [offset]*element.space_dimension()

    return offsets

def _evaluate_dof(element, cell):
    "Compute intermediate representation of evaluate_dof."

    return {"mappings": element.mapping(),
            "value_size": _value_size(element),
            "cell_dimension": cell.geometric_dimension(),
            "dofs": [L.pt_dict for L in element.dual_basis()],
            "offsets": _generate_offsets(element)}

def _extract_elements(element):

    new_elements = []
    if isinstance(element, (MixedElement, EnrichedElement)):
        for e in element.elements():
            new_elements += _extract_elements(e)
    else:
        new_elements.append(element)
    return new_elements

def _num_components(element):
    """Compute the number of components of element, like _value_size, but
    does not support tensor elements."""
    shape = element.value_shape()
    if shape == ():
        return 1
    elif len(shape) == 1:
        return shape[0]
    else:
        error("Tensor valued elements are not supported yet: %d " % shape)

def _evaluate_basis(element, cell):
    "Compute intermediate representation for evaluate_basis."

    # Handle Mixed and EnrichedElements by extracting 'sub' elements.
    elements = _extract_elements(element)
    offsets = _generate_offsets(element)
    mappings = element.mapping()

    # Handle QuadratureElement, not supported because the basis is only defined
    # at the dof coordinates where the value is 1, so not very interesting.
    for e in elements:
        if isinstance(e, QuadratureElement):
            return "Function not supported/implemented for QuadratureElement."

    # Initialise data with 'global' values.
    data = {
          "value_size" : sum(element.value_shape() or (1,)),
          "cell_domain" : cell.domain(),
          "topological_dimension" : cell.topological_dimension(),
          "geometric_dimension" : cell.geometric_dimension(),
          "space_dimension" : element.space_dimension()
          }
    # Loop element and space dimensions to generate dof data.
    dof = 0
    dof_data = []
    for e in elements:
        for i in range(e.space_dimension()):
            num_components = _num_components(e)
            coefficients = []
            coeffs = e.get_coeffs()

            # Handle coefficients for vector valued basis elements
            # [Raviart-Thomas, Brezzi-Douglas-Marini (BDM)].
            if num_components > 1:
                for c in range(num_components):
                    coefficients.append(coeffs[i][c])
            else:
                coefficients.append(coeffs[i])

            dof_data.append(
              {
              "embedded_degree" : e.degree(),
              "coeffs" : coefficients,
              "num_components" : num_components,
              "dmats" : e.dmats(),
              "mapping" : mappings[dof],
              "offset" : offsets[dof],
              "num_expansion_members": e.get_num_members(e.degree())
              })

            dof += 1

    data["dof_data"] = dof_data

    return data

def _tabulate_coordinates(element):
    "Compute intermediate representation of tabulate_coordinates."
    if uses_integral_moments(element):
        return None
    return [L.pt_dict.keys()[0] for L in element.dual_basis()]

def _tabulate_dofs(element, cell):
    "Compute intermediate representation of tabulate_dofs."

    if isinstance(element, SpaceOfReals):
        return None

    # Extract number of enties for each dimension for this cell
    num_entities = entities_per_dim[cell.geometric_dimension()]

    # Extract number of dofs per entity for each element
    elements = all_elements(element)
    num_dofs_per_element = [_num_dofs_per_entity(e) for e in elements]

    # Extract local dof numbers per entity for each element
    all_entity_dofs = [e.entity_dofs() for e in elements]
    dofs_per_element = [[[list(dofs[dim][entity])
                          for entity in sorted(dofs[dim].keys())]
                         for dim in sorted(dofs.keys())]
                        for dofs in all_entity_dofs]

    # Check whether we need offset
    multiple_entities =  any([sum(n > 0 for n in num_dofs) - 1
                              for num_dofs in num_dofs_per_element])
    need_offset = len(elements) > 1 or multiple_entities

    num_dofs_per_element = [e.space_dimension() for e in elements]

    # Handle global "elements"
    fakes = [isinstance(e, SpaceOfReals) for e in elements]

    return (dofs_per_element, num_dofs_per_element, num_entities, need_offset, fakes)


def _tabulate_facet_dofs(element, cell):
    "Compute intermediate representation of tabulate_facet_dofs."

    # Compute incidences
    incidence = __compute_incidence(cell.geometric_dimension())

    # Get topological dimension
    D = max([pair[0][0] for pair in incidence])

    # Get the number of facets
    num_facets = cell.num_facets()

    # Find out which entities are incident to each facet
    incident = num_facets*[[]]
    for facet in range(num_facets):
        incident[facet] = [pair[1] for pair in incidence if incidence[pair] == True and pair[0] == (D - 1, facet)]

    # Make list of dofs
    facet_dofs = []
    entity_dofs = element.entity_dofs()

    for facet in range(num_facets):
        facet_dofs += [[]]
        for dim in entity_dofs:
            for entity in entity_dofs[dim]:
                if (dim, entity) in incident[facet]:
                    facet_dofs[facet] += entity_dofs[dim][entity]
        facet_dofs[facet].sort()
    return facet_dofs

def _interpolate_vertex_values(element, cell):
    "Compute intermediate representation of interpolate_vertex_values."

    # Check for QuadratureElement
    for e in all_elements(element):
        if isinstance(e, QuadratureElement):
            return "Function is not supported/implemented for QuadratureElement."

    ir = {}
    ir["cell_dim"] = cell.geometric_dimension()

    # Check whether computing the Jacobian is necessary
    mappings = element.mapping()
    ir["needs_jacobian"] = any("piola" in m for m in mappings)

    # Get vertices of reference cell
    cell = reference_cell(cell.domain())
    vertices = cell.get_vertices()

    # Compute data for each constituent element
    extract = lambda values: values[values.keys()[0]].transpose()
    ir["element_data"] = [{"value_size": _value_size(e),
                           "basis_values": extract(e.tabulate(0, vertices)),
                           "mapping": e.mapping()[0],
                           "space_dim": e.space_dimension()}
                          for e in all_elements(element)]
    return ir

def _create_sub_foo(ufl_element, element_numbers):
    "Compute intermediate representation of create_sub_element/dofmap."
    return [element_numbers[e] for e in ufl_element.sub_elements()]

def _create_foo_integral(domain_type, form_data):
    "Compute intermediate representation of create_foo_integral."
    return [domain_id for (_domain_type, domain_id, integrals, metadata) in
           form_data.integral_data if _domain_type == domain_type]

#--- Utility functions ---

# FIXME: KBO: This could go somewhere else, like in UFL?
# Also look at function naming, use single '_' for utility functions.
def all_elements(element):

    if isinstance(element, MixedElement):
        return element.elements()

    return [element]

def _num_dofs_per_entity(element):
    """
    Compute list of integers representing the number of dofs
    associated with a single mesh entity.

    Example: Lagrange of degree 3 on triangle: [1, 2, 1]
    """
    entity_dofs = element.entity_dofs()
    return [len(entity_dofs[e][0]) for e in range(len(entity_dofs.keys()))]

# These two are copied from old ffc
def __compute_incidence(D):
    "Compute which entities are incident with which"

    # Compute the incident vertices for each entity
    sub_simplices = []
    for dim in range(D + 1):
        sub_simplices += [__compute_sub_simplices(D, dim)]

    # Check which entities are incident, d0 --> d1 for d0 >= d1
    incidence = {}
    for d0 in range(0, D + 1):
        for i0 in range(len(sub_simplices[d0])):
            for d1 in range(d0 + 1):
                for i1 in range(len(sub_simplices[d1])):
                    if min([v in sub_simplices[d0][i0] for v in sub_simplices[d1][i1]]) == True:
                        incidence[((d0, i0), (d1, i1))] = True
                    else:
                        incidence[((d0, i0), (d1, i1))] = False

    return incidence

def __compute_sub_simplices(D, d):
    "Compute vertices for all sub simplices of dimension d (code taken from Exterior)"

    # Number of vertices
    num_vertices = D + 1

    # Special cases: d = 0 and d = D
    if d == 0:
        return [[i] for i in range(num_vertices)]
    elif d == D:
        return [range(num_vertices)]

    # Compute all permutations of num_vertices - (d + 1)
    permutations = compute_permutations(num_vertices - d - 1, num_vertices)

    # Iterate over sub simplices
    sub_simplices = []
    for i in range(len(permutations)):

        # Pick tuple i among permutations (non-incident vertices)
        remove = permutations[i]

        # Remove vertices, keeping d + 1 vertices
        vertices = [v for v in range(num_vertices) if not v in remove]
        sub_simplices += [vertices]

    return sub_simplices

def uses_integral_moments(element):

    integrals = set(["IntegralMoment", "FrobeniusIntegralMoment"])
    tags = set([L.get_type_tag() for L in element.dual_basis()])
    return len(integrals & tags) > 0