This file is indexed.

/usr/share/pyshared/gdata/Crypto/PublicKey/DSA.py is in python-gdata 2.0.14-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
#
#   DSA.py : Digital Signature Algorithm
#
#  Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence.  This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#

__revision__ = "$Id: DSA.py,v 1.16 2004/05/06 12:52:54 akuchling Exp $"

from Crypto.PublicKey.pubkey import *
from Crypto.Util import number
from Crypto.Util.number import bytes_to_long, long_to_bytes
from Crypto.Hash import SHA

try:
    from Crypto.PublicKey import _fastmath
except ImportError:
    _fastmath = None

class error (Exception):
    pass

def generateQ(randfunc):
    S=randfunc(20)
    hash1=SHA.new(S).digest()
    hash2=SHA.new(long_to_bytes(bytes_to_long(S)+1)).digest()
    q = bignum(0)
    for i in range(0,20):
        c=ord(hash1[i])^ord(hash2[i])
        if i==0:
            c=c | 128
        if i==19:
            c= c | 1
        q=q*256+c
    while (not isPrime(q)):
        q=q+2
    if pow(2,159L) < q < pow(2,160L):
        return S, q
    raise error, 'Bad q value generated'

def generate(bits, randfunc, progress_func=None):
    """generate(bits:int, randfunc:callable, progress_func:callable)

    Generate a DSA key of length 'bits', using 'randfunc' to get
    random data and 'progress_func', if present, to display
    the progress of the key generation.
    """

    if bits<160:
        raise error, 'Key length <160 bits'
    obj=DSAobj()
    # Generate string S and prime q
    if progress_func:
        progress_func('p,q\n')
    while (1):
        S, obj.q = generateQ(randfunc)
        n=(bits-1)/160
        C, N, V = 0, 2, {}
        b=(obj.q >> 5) & 15
        powb=pow(bignum(2), b)
        powL1=pow(bignum(2), bits-1)
        while C<4096:
            for k in range(0, n+1):
                V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest())
            W=V[n] % powb
            for k in range(n-1, -1, -1):
                W=(W<<160L)+V[k]
            X=W+powL1
            p=X-(X%(2*obj.q)-1)
            if powL1<=p and isPrime(p):
                break
            C, N = C+1, N+n+1
        if C<4096:
            break
        if progress_func:
            progress_func('4096 multiples failed\n')

    obj.p = p
    power=(p-1)/obj.q
    if progress_func:
        progress_func('h,g\n')
    while (1):
        h=bytes_to_long(randfunc(bits)) % (p-1)
        g=pow(h, power, p)
        if 1<h<p-1 and g>1:
            break
    obj.g=g
    if progress_func:
        progress_func('x,y\n')
    while (1):
        x=bytes_to_long(randfunc(20))
        if 0 < x < obj.q:
            break
    obj.x, obj.y = x, pow(g, x, p)
    return obj

def construct(tuple):
    """construct(tuple:(long,long,long,long)|(long,long,long,long,long)):DSAobj
    Construct a DSA object from a 4- or 5-tuple of numbers.
    """
    obj=DSAobj()
    if len(tuple) not in [4,5]:
        raise error, 'argument for construct() wrong length'
    for i in range(len(tuple)):
        field = obj.keydata[i]
        setattr(obj, field, tuple[i])
    return obj

class DSAobj(pubkey):
    keydata=['y', 'g', 'p', 'q', 'x']

    def _encrypt(self, s, Kstr):
        raise error, 'DSA algorithm cannot encrypt data'

    def _decrypt(self, s):
        raise error, 'DSA algorithm cannot decrypt data'

    def _sign(self, M, K):
        if (K<2 or self.q<=K):
            raise error, 'K is not between 2 and q'
        r=pow(self.g, K, self.p) % self.q
        s=(inverse(K, self.q)*(M+self.x*r)) % self.q
        return (r,s)

    def _verify(self, M, sig):
        r, s = sig
        if r<=0 or r>=self.q or s<=0 or s>=self.q:
            return 0
        w=inverse(s, self.q)
        u1, u2 = (M*w) % self.q, (r*w) % self.q
        v1 = pow(self.g, u1, self.p)
        v2 = pow(self.y, u2, self.p)
        v = ((v1*v2) % self.p)
        v = v % self.q
        if v==r:
            return 1
        return 0

    def size(self):
        "Return the maximum number of bits that can be handled by this key."
        return number.size(self.p) - 1

    def has_private(self):
        """Return a Boolean denoting whether the object contains
        private components."""
        if hasattr(self, 'x'):
            return 1
        else:
            return 0

    def can_sign(self):
        """Return a Boolean value recording whether this algorithm can generate signatures."""
        return 1

    def can_encrypt(self):
        """Return a Boolean value recording whether this algorithm can encrypt data."""
        return 0

    def publickey(self):
        """Return a new key object containing only the public information."""
        return construct((self.y, self.g, self.p, self.q))

object=DSAobj

generate_py = generate
construct_py = construct

class DSAobj_c(pubkey):
    keydata = ['y', 'g', 'p', 'q', 'x']

    def __init__(self, key):
        self.key = key

    def __getattr__(self, attr):
        if attr in self.keydata:
            return getattr(self.key, attr)
        else:
            if self.__dict__.has_key(attr):
                self.__dict__[attr]
            else:
                raise AttributeError, '%s instance has no attribute %s' % (self.__class__, attr)

    def __getstate__(self):
        d = {}
        for k in self.keydata:
            if hasattr(self.key, k):
                d[k]=getattr(self.key, k)
        return d

    def __setstate__(self, state):
        y,g,p,q = state['y'], state['g'], state['p'], state['q']
        if not state.has_key('x'):
            self.key = _fastmath.dsa_construct(y,g,p,q)
        else:
            x = state['x']
            self.key = _fastmath.dsa_construct(y,g,p,q,x)

    def _sign(self, M, K):
        return self.key._sign(M, K)

    def _verify(self, M, (r, s)):
        return self.key._verify(M, r, s)

    def size(self):
        return self.key.size()

    def has_private(self):
        return self.key.has_private()

    def publickey(self):
        return construct_c((self.key.y, self.key.g, self.key.p, self.key.q))

    def can_sign(self):
        return 1

    def can_encrypt(self):
        return 0

def generate_c(bits, randfunc, progress_func=None):
    obj = generate_py(bits, randfunc, progress_func)
    y,g,p,q,x = obj.y, obj.g, obj.p, obj.q, obj.x
    return construct_c((y,g,p,q,x))

def construct_c(tuple):
    key = apply(_fastmath.dsa_construct, tuple)
    return DSAobj_c(key)

if _fastmath:
    #print "using C version of DSA"
    generate = generate_c
    construct = construct_c
    error = _fastmath.error