This file is indexed.

/usr/share/pyshared/gdata/Crypto/PublicKey/qNEW.py is in python-gdata 2.0.14-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#
#   qNEW.py : The q-NEW signature algorithm.
#
#  Part of the Python Cryptography Toolkit
#
# Distribute and use freely; there are no restrictions on further
# dissemination and usage except those imposed by the laws of your
# country of residence.    This software is provided "as is" without
# warranty of fitness for use or suitability for any purpose, express
# or implied. Use at your own risk or not at all.
#

__revision__ = "$Id: qNEW.py,v 1.8 2003/04/04 15:13:35 akuchling Exp $"

from Crypto.PublicKey import pubkey
from Crypto.Util.number import *
from Crypto.Hash import SHA

class error (Exception):
    pass

HASHBITS = 160   # Size of SHA digests

def generate(bits, randfunc, progress_func=None):
    """generate(bits:int, randfunc:callable, progress_func:callable)

    Generate a qNEW key of length 'bits', using 'randfunc' to get
    random data and 'progress_func', if present, to display
    the progress of the key generation.
    """
    obj=qNEWobj()

    # Generate prime numbers p and q.  q is a 160-bit prime
    # number.  p is another prime number (the modulus) whose bit
    # size is chosen by the caller, and is generated so that p-1
    # is a multiple of q.
    #
    # Note that only a single seed is used to
    # generate p and q; if someone generates a key for you, you can
    # use the seed to duplicate the key generation.  This can
    # protect you from someone generating values of p,q that have
    # some special form that's easy to break.
    if progress_func:
        progress_func('p,q\n')
    while (1):
        obj.q = getPrime(160, randfunc)
        #           assert pow(2, 159L)<obj.q<pow(2, 160L)
        obj.seed = S = long_to_bytes(obj.q)
        C, N, V = 0, 2, {}
        # Compute b and n such that bits-1 = b + n*HASHBITS
        n= (bits-1) / HASHBITS
        b= (bits-1) % HASHBITS ; powb=2L << b
        powL1=pow(long(2), bits-1)
        while C<4096:
            # The V array will contain (bits-1) bits of random
            # data, that are assembled to produce a candidate
            # value for p.
            for k in range(0, n+1):
                V[k]=bytes_to_long(SHA.new(S+str(N)+str(k)).digest())
            p = V[n] % powb
            for k in range(n-1, -1, -1):
                p= (p << long(HASHBITS) )+V[k]
            p = p+powL1         # Ensure the high bit is set

            # Ensure that p-1 is a multiple of q
            p = p - (p % (2*obj.q)-1)

            # If p is still the right size, and it's prime, we're done!
            if powL1<=p and isPrime(p):
                break

            # Otherwise, increment the counter and try again
            C, N = C+1, N+n+1
        if C<4096:
            break   # Ended early, so exit the while loop
        if progress_func:
            progress_func('4096 values of p tried\n')

    obj.p = p
    power=(p-1)/obj.q

    # Next parameter: g = h**((p-1)/q) mod p, such that h is any
    # number <p-1, and g>1.  g is kept; h can be discarded.
    if progress_func:
        progress_func('h,g\n')
    while (1):
        h=bytes_to_long(randfunc(bits)) % (p-1)
        g=pow(h, power, p)
        if 1<h<p-1 and g>1:
            break
    obj.g=g

    # x is the private key information, and is
    # just a random number between 0 and q.
    # y=g**x mod p, and is part of the public information.
    if progress_func:
        progress_func('x,y\n')
    while (1):
        x=bytes_to_long(randfunc(20))
        if 0 < x < obj.q:
            break
    obj.x, obj.y=x, pow(g, x, p)

    return obj

# Construct a qNEW object
def construct(tuple):
    """construct(tuple:(long,long,long,long)|(long,long,long,long,long)
    Construct a qNEW object from a 4- or 5-tuple of numbers.
    """
    obj=qNEWobj()
    if len(tuple) not in [4,5]:
        raise error, 'argument for construct() wrong length'
    for i in range(len(tuple)):
        field = obj.keydata[i]
        setattr(obj, field, tuple[i])
    return obj

class qNEWobj(pubkey.pubkey):
    keydata=['p', 'q', 'g', 'y', 'x']

    def _sign(self, M, K=''):
        if (self.q<=K):
            raise error, 'K is greater than q'
        if M<0:
            raise error, 'Illegal value of M (<0)'
        if M>=pow(2,161L):
            raise error, 'Illegal value of M (too large)'
        r=pow(self.g, K, self.p) % self.q
        s=(K- (r*M*self.x % self.q)) % self.q
        return (r,s)
    def _verify(self, M, sig):
        r, s = sig
        if r<=0 or r>=self.q or s<=0 or s>=self.q:
            return 0
        if M<0:
            raise error, 'Illegal value of M (<0)'
        if M<=0 or M>=pow(2,161L):
            return 0
        v1 = pow(self.g, s, self.p)
        v2 = pow(self.y, M*r, self.p)
        v = ((v1*v2) % self.p)
        v = v % self.q
        if v==r:
            return 1
        return 0

    def size(self):
        "Return the maximum number of bits that can be handled by this key."
        return 160

    def has_private(self):
        """Return a Boolean denoting whether the object contains
        private components."""
        return hasattr(self, 'x')

    def can_sign(self):
        """Return a Boolean value recording whether this algorithm can generate signatures."""
        return 1

    def can_encrypt(self):
        """Return a Boolean value recording whether this algorithm can encrypt data."""
        return 0

    def publickey(self):
        """Return a new key object containing only the public information."""
        return construct((self.p, self.q, self.g, self.y))

object = qNEWobj