/usr/share/pyshared/goopy/functional.py is in python-goopy 0.1-5build1.
This file is owned by root:root, with mode 0o664.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | # Copyright (c) 2005, Google Inc.
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions are
# met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following disclaimer
# in the documentation and/or other materials provided with the
# distribution.
# * Neither the name of Google Inc. nor the names of its
# contributors may be used to endorse or promote products derived from
# this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
# A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
# OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
# SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
# LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
# DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
# THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
# (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
"""
Handy things for functional style programming.
"""
from __future__ import nested_scopes
import math as _math
def some(f, lst):
"""some(f, lst) -> true if F applied to some element of LST is true"""
for x in lst:
if f(x):
return 1
return 0
def every(f, lst):
"""every(f, lst) -> true if F applied to every element of LST is true"""
for x in lst:
if not f(x):
return 0
return 1
def find(p, lst, start=0):
"""find(p, lst, start)
Returns the first index i (>= START) where P(LST[i]) is true or
-1 if there is none.
"""
for i in xrange(start, len(lst)):
if p(lst[i]):
return i
return -1
def _remove_unhashable_duplicates(lst, key):
result = []
if key == None:
for v in lst:
if v not in result:
result.append(v)
else:
seen_keys = []
for v in lst:
this_key = key(v)
if this_key not in seen_keys:
result.append(v)
seen_keys.append(this_key)
return result
def remove_duplicates(lst, key=None):
"""
Returns a list equivalent to SEQ with repeated elements removed.
(The first occurence of each value is retained. Note that this is the
opposite of the Common Lisp default behavior.)
If KEY is provided, then repeats are detected by comparing KEY(ELEMENT)
for each element.
"""
d = {}
result = []
if key == None:
for v in lst:
try:
if not d.has_key(v):
result.append(v)
d[v] = 1
except TypeError:
return _remove_unhashable_duplicates(lst, key)
else:
for v in lst:
thiskey = key(v)
try:
if not d.has_key(thiskey):
result.append(v)
d[thiskey] = 1
except TypeError:
return _remove_unhashable_duplicates(lst, key)
return result
def transpose(seq_of_seqs):
"""
Returns the matrix transpose of SEQ_OF_SEQS as a list of tuples.
SEQ_OF_SEQS must be rectangular for this to make sense.
"""
return zip(*seq_of_seqs)
def intersection(a, b):
"""
intersection(a, b) -> list of items in both A and B
The order of the result items is unspecified.
If all items are hashable, then this algorithm is
O(size(a) + size(b)); otherwise, it is O(size(a) * size(b))
"""
try:
# Try using a dictionary.
d = {}
for x in b:
d[x] = 1
c = [x for x in a if d.has_key(x)]
except TypeError: # really want HashError
c = [x for x in a if x in b]
return c
def partition_list(f, lst):
"""Given function F and list F, return tuple (matched, nonmatched),
where matched is a list of all elements E for which F(E) is true, and
nonmatched the remainder.
"""
matched = []
nonmatched = []
for e in lst:
if f(e):
matched.append(e)
else:
nonmatched.append(e)
return matched, nonmatched
def reverse(lst):
"""reverse(lst) -> reversed copy of LST"""
lst = lst[:]
lst.reverse()
return lst
def sort(p, lst):
"""sort(p, lst) -> sorted copy of LST"""
lst = lst[:]
lst.sort(p)
return lst
def maximum(cmp, lst):
"""maximum(cmp, lst)
Returns the maximal element in non-empty list LST with elements
compared via CMP() which should return values with the same semantics
as Python's cmp(). If there are several maximal elements, the last
one is returned.
"""
if not lst:
raise ValueError, 'empty list'
maxval = lst[0]
for i in xrange(1, len(lst)):
v = lst[i]
if cmp(maxval, v) <= 0:
maxval = v
return maxval
def minimum(cmp, lst):
"""minimum(cmp, lst)
Returns the minimal element in non-empty list LST with elements
compared via CMP() which should return values with the same semantics
as Python's cmp(). If there are several minimal elements, the last
one is returned.
"""
if not lst:
raise ValueError, 'empty list'
minval = lst[0]
for i in xrange(1, len(lst)):
v = lst[i]
if cmp(minval, v) > 0:
minval = v
return minval
def sum(lst):
"""sum(lst) -> sum of numbers in LST"""
sum = 0
for v in lst:
sum += v
return sum
def first_difference(lst):
"""first_difference(lst) -> the first differences of the values in LST"""
d = []
last = None
for v in lst:
if last != None:
d.append(v - last)
last = v
return d
def mean(lst):
"""mean(lst) -> the arithmetic mean of the values in LST"""
return sum(lst) / float(len(lst))
def variance(lst):
"""variance(lst) -> variance of values in LST"""
mu = mean(lst)
sum = 0.0
for v in lst:
sum += (v - mu) ** 2
return sum / float(len(lst))
def stddev(lst):
"""stddev(lst) -> standard deviation of values in LST"""
return _math.sqrt(variance(lst))
def lebesgue_norm(p, lst):
"""l_norm(p, lst) -> Lebesgue norm with parameter P for number list LST"""
return ((sum(map(lambda x: float(abs(x)) ** p,
lst))
/ float(len(lst)))
** (1.0 / p))
def list2dict(lst):
"""list2dict(lst) -> dict mapping from LST's indices to its elements
In Python 2.2, use the dict() constructor.
"""
d = {}
for i in xrange(len(lst)):
d[i] = lst[i]
return d
def mapdict(f, d):
"""mapdict(f, d)
Return a new dict just like D, but with each value V replaced with F(V).
"""
d1 = {}
for k, v in d.items():
d1[k] = f(v)
return d1
def cyclic_pairs(lst):
"""cyclic_pairs(lst)
Returns the cyclic pairs of LST as a list of 2-tuples.
"""
n = len(lst)
assert(n >= 2)
cps = []
for i in xrange(n - 1):
cps.append((lst[i], lst[i + 1]))
cps.append((lst[n - 1], lst[0]))
return cps
def number_of_leading(p, lst):
"""number_of_leading(p, lst)
Returns the number of leading elements X of LST for which P(X) is true.
"""
i = 0
for v in lst:
if not p(v):
break
i += 1
return i
def number_of_trailing(p, lst):
"""number_of_trailing(p, lst)
Returns the number of trailing elements X of LST for which P(X) is true.
"""
n = len(lst)
for i in xrange(n - 1, -1, -1):
if not p(lst[i]):
return (n - 1) - i
return len(lst)
def flatten1(seq):
"""
Return a list with the contents of SEQ with sub-lists and tuples "exploded".
This is only done one-level deep.
"""
lst = []
for x in seq:
if type(x) is list or type(x) is tuple:
for val in x:
lst.append(val)
else:
lst.append(x)
return lst
def flatten(seq):
"""
Returns a list of the contents of seq with sublists and tuples "exploded".
The resulting list does not contain any sequences, and all inner sequences
are exploded. For example:
>>> flatten([7,(6,[5,4],3),2,1])
[7,6,5,4,3,2,1]
"""
lst = []
for el in seq:
if type(el) == list or type(el) is tuple:
lst.extend(flatten(el))
else:
lst.append(el)
return lst
|