This file is indexed.

/usr/share/pyshared/networkx/algorithms/flow/maxflow.py is in python-networkx 1.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
# -*- coding: utf-8 -*-
"""
Maximum flow (and minimum cut) algorithms on capacitated graphs.
"""

__author__ = """Loïc Séguin-C. <loicseguin@gmail.com>"""
# Copyright (C) 2010 Loïc Séguin-C. <loicseguin@gmail.com>
# All rights reserved.
# BSD license.

import networkx as nx

__all__ = ['ford_fulkerson',
           'ford_fulkerson_flow',
           'max_flow',
           'min_cut']


def _create_auxiliary_digraph(G, capacity='capacity'):
    """Initialize an auxiliary digraph and dict of infinite capacity
    edges for a given graph G.
    Ignore edges with capacity <= 0.
    """
    auxiliary = nx.DiGraph()
    auxiliary.add_nodes_from(G)
    inf_capacity_flows = {}
    if nx.is_directed(G):
        for edge in G.edges(data = True):
            if capacity in edge[2]:
                if edge[2][capacity] > 0:
                    auxiliary.add_edge(*edge)
            else:
                auxiliary.add_edge(*edge)
                inf_capacity_flows[(edge[0], edge[1])] = 0
    else:
        for edge in G.edges(data = True):
            if capacity in edge[2]:
                if edge[2][capacity] > 0:
                    auxiliary.add_edge(*edge)
                    auxiliary.add_edge(edge[1], edge[0], edge[2])
            else:
                auxiliary.add_edge(*edge)
                auxiliary.add_edge(edge[1], edge[0], edge[2])
                inf_capacity_flows[(edge[0], edge[1])] = 0
                inf_capacity_flows[(edge[1], edge[0])] = 0

    return auxiliary, inf_capacity_flows


def _create_flow_dict(G, H, inf_capacity_flows, capacity='capacity'):
    """Creates the flow dict of dicts on G corresponding to the
    auxiliary digraph H and infinite capacity edges flows
    inf_capacity_flows.
    """
    flow = dict([(u, {}) for u in G])

    if G.is_directed():
        for u, v in G.edges_iter():
            if H.has_edge(u, v):
                if capacity in G[u][v]:
                    flow[u][v] = max(0, G[u][v][capacity] - H[u][v][capacity])
                elif G.has_edge(v, u) and not capacity in G[v][u]:
                    flow[u][v] = max(0, inf_capacity_flows[(u, v)] -
                                     inf_capacity_flows[(v, u)])
                else:
                    flow[u][v] = max(0, H[v].get(u, {}).get(capacity, 0) -
                                     G[v].get(u, {}).get(capacity, 0))
            else:
                flow[u][v] = G[u][v][capacity]

    else: # undirected
        for u, v in G.edges_iter():
            if H.has_edge(u, v):
                if capacity in G[u][v]:
                    flow[u][v] = abs(G[u][v][capacity] - H[u][v][capacity])
                else:
                    flow[u][v] = abs(inf_capacity_flows[(u, v)] -
                                     inf_capacity_flows[(v, u)])
            else:
                flow[u][v] = abs(G[u][v][capacity] - H[v][u][capacity])
            flow[v][u] = flow[u][v]

    return flow


def ford_fulkerson(G, s, t, capacity='capacity'):
    """Find a maximum single-commodity flow using the Ford-Fulkerson
    algorithm.
    
    This algorithm uses Edmonds-Karp-Dinitz path selection rule which
    guarantees a running time of O(nm^2) for n nodes and m edges.


    Parameters
    ----------
    G : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    s : node
        Source node for the flow.

    t : node
        Sink node for the flow.

    capacity: string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    Returns
    -------
    flow_value : integer, float
        Value of the maximum flow, i.e., net outflow from the source.

    flow_dict : dictionary
        Dictionary of dictionaries keyed by nodes such that
        flow_dict[u][v] is the flow edge (u, v).

    Raises
    ------
    NetworkXError
        The algorithm does not support MultiGraph and MultiDiGraph. If
        the input graph is an instance of one of these two classes, a
        NetworkXError is raised.

    NetworkXUnbounded
        If the graph has a path of infinite capacity, the value of a 
        feasible flow on the graph is unbounded above and the function
        raises a NetworkXUnbounded.

    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.DiGraph()
    >>> G.add_edge('x','a', capacity=3.0)
    >>> G.add_edge('x','b', capacity=1.0)
    >>> G.add_edge('a','c', capacity=3.0)
    >>> G.add_edge('b','c', capacity=5.0)
    >>> G.add_edge('b','d', capacity=4.0)
    >>> G.add_edge('d','e', capacity=2.0)
    >>> G.add_edge('c','y', capacity=2.0)
    >>> G.add_edge('e','y', capacity=3.0)
    >>> flow, F = nx.ford_fulkerson(G, 'x', 'y')
    >>> flow
    3.0
    """
    if G.is_multigraph():
        raise nx.NetworkXError(
                'MultiGraph and MultiDiGraph not supported (yet).')

    if s not in G:
        raise nx.NetworkXError('node %s not in graph'%s)
    if t not in G:
        raise nx.NetworkXError('node %s not in graph'%t)

    auxiliary, inf_capacity_flows = _create_auxiliary_digraph(G,
                                                        capacity=capacity)
    flow_value = 0   # Initial feasible flow.

    # As long as there is an (s, t)-path in the auxiliary digraph, find
    # the shortest (with respect to the number of arcs) such path and
    # augment the flow on this path.
    while True:
        try:
            path_nodes = nx.bidirectional_shortest_path(auxiliary, s, t)
        except nx.NetworkXNoPath:
            break

        # Get the list of edges in the shortest path.
        path_edges = list(zip(path_nodes[:-1], path_nodes[1:]))

        # Find the minimum capacity of an edge in the path.
        try:
            path_capacity = min([auxiliary[u][v][capacity]
                                for u, v in path_edges
                                if capacity in auxiliary[u][v]])
        except ValueError: 
            # path of infinite capacity implies no max flow
            raise nx.NetworkXUnbounded(
                    "Infinite capacity path, flow unbounded above.")
        
        flow_value += path_capacity

        # Augment the flow along the path.
        for u, v in path_edges:
            edge_attr = auxiliary[u][v]
            if capacity in edge_attr:
                edge_attr[capacity] -= path_capacity
                if edge_attr[capacity] == 0:
                    auxiliary.remove_edge(u, v)
            else:
                inf_capacity_flows[(u, v)] += path_capacity

            if auxiliary.has_edge(v, u):
                if capacity in auxiliary[v][u]:
                    auxiliary[v][u][capacity] += path_capacity
            else:
                auxiliary.add_edge(v, u, {capacity: path_capacity})
    
    flow_dict = _create_flow_dict(G, auxiliary, inf_capacity_flows,
                                  capacity=capacity)
    return flow_value, flow_dict


def ford_fulkerson_flow(G, s, t, capacity='capacity'):
    """Return a maximum flow for a single-commodity flow problem.

    Parameters
    ----------
    G : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    s : node
        Source node for the flow.

    t : node
        Sink node for the flow.

    capacity: string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    Returns
    -------
    flow_dict : dictionary
        Dictionary of dictionaries keyed by nodes such that
        flow_dict[u][v] is the flow edge (u, v).

    Raises
    ------
    NetworkXError
        The algorithm does not support MultiGraph and MultiDiGraph. If
        the input graph is an instance of one of these two classes, a
        NetworkXError is raised.

    NetworkXUnbounded
        If the graph has a path of infinite capacity, the value of a 
        feasible flow on the graph is unbounded above and the function
        raises a NetworkXUnbounded.

    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.DiGraph()
    >>> G.add_edge('x','a', capacity=3.0)
    >>> G.add_edge('x','b', capacity=1.0)
    >>> G.add_edge('a','c', capacity=3.0)
    >>> G.add_edge('b','c', capacity=5.0)
    >>> G.add_edge('b','d', capacity=4.0)
    >>> G.add_edge('d','e', capacity=2.0)
    >>> G.add_edge('c','y', capacity=2.0)
    >>> G.add_edge('e','y', capacity=3.0)
    >>> F = nx.ford_fulkerson_flow(G, 'x', 'y')
    >>> for u, v in G.edges_iter():
    ...     print('(%s, %s) %.2f' % (u, v, F[u][v]))
    ... 
    (a, c) 2.00
    (c, y) 2.00
    (b, c) 0.00
    (b, d) 1.00
    (e, y) 1.00
    (d, e) 1.00
    (x, a) 2.00
    (x, b) 1.00
    """
    return ford_fulkerson(G, s, t, capacity=capacity)[1]


def max_flow(G, s, t, capacity='capacity'):
    """Find the value of a maximum single-commodity flow.
    
    Parameters
    ----------
    G : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    s : node
        Source node for the flow.

    t : node
        Sink node for the flow.

    capacity: string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    Returns
    -------
    flow_value : integer, float
        Value of the maximum flow, i.e., net outflow from the source.

    Raises
    ------
    NetworkXError
        The algorithm does not support MultiGraph and MultiDiGraph. If
        the input graph is an instance of one of these two classes, a
        NetworkXError is raised.

    NetworkXUnbounded
        If the graph has a path of infinite capacity, the value of a 
        feasible flow on the graph is unbounded above and the function
        raises a NetworkXUnbounded.

    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.DiGraph()
    >>> G.add_edge('x','a', capacity=3.0)
    >>> G.add_edge('x','b', capacity=1.0)
    >>> G.add_edge('a','c', capacity=3.0)
    >>> G.add_edge('b','c', capacity=5.0)
    >>> G.add_edge('b','d', capacity=4.0)
    >>> G.add_edge('d','e', capacity=2.0)
    >>> G.add_edge('c','y', capacity=2.0)
    >>> G.add_edge('e','y', capacity=3.0)
    >>> flow = nx.max_flow(G, 'x', 'y')
    >>> flow
    3.0
    """
    return ford_fulkerson(G, s, t, capacity=capacity)[0]


def min_cut(G, s, t, capacity='capacity'):
    """Compute the value of a minimum (s, t)-cut.

    Use the max-flow min-cut theorem, i.e., the capacity of a minimum
    capacity cut is equal to the flow value of a maximum flow.

    Parameters
    ----------
    G : NetworkX graph
        Edges of the graph are expected to have an attribute called
        'capacity'. If this attribute is not present, the edge is
        considered to have infinite capacity.

    s : node
        Source node for the flow.

    t : node
        Sink node for the flow.

    capacity: string
        Edges of the graph G are expected to have an attribute capacity
        that indicates how much flow the edge can support. If this
        attribute is not present, the edge is considered to have
        infinite capacity. Default value: 'capacity'.

    Returns
    -------
    cutValue : integer, float
        Value of the minimum cut.
    
    Raises
    ------
    NetworkXUnbounded
        If the graph has a path of infinite capacity, all cuts have
        infinite capacity and the function raises a NetworkXError.
    
    Examples
    --------
    >>> import networkx as nx
    >>> G = nx.DiGraph()
    >>> G.add_edge('x','a', capacity = 3.0)
    >>> G.add_edge('x','b', capacity = 1.0)
    >>> G.add_edge('a','c', capacity = 3.0)
    >>> G.add_edge('b','c', capacity = 5.0)
    >>> G.add_edge('b','d', capacity = 4.0)
    >>> G.add_edge('d','e', capacity = 2.0)
    >>> G.add_edge('c','y', capacity = 2.0)
    >>> G.add_edge('e','y', capacity = 3.0)
    >>> nx.min_cut(G, 'x', 'y')
    3.0
    """

    try:
        return ford_fulkerson(G, s, t, capacity=capacity)[0]
    except nx.NetworkXUnbounded:
        raise nx.NetworkXUnbounded(
                "Infinite capacity path, no minimum cut.")