This file is indexed.

/usr/share/pyshared/networkx/algorithms/shortest_paths/generic.py is in python-networkx 1.6-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
# -*- coding: utf-8 -*-
"""
Compute the shortest paths and path lengths between nodes in the graph.

These algorithms work with undirected and directed graphs.

For directed graphs the paths can be computed in the reverse
order by first flipping the edge orientation using R=G.reverse(copy=False).

"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
#    Copyright (C) 2004-2010 by 
#    Aric Hagberg <hagberg@lanl.gov>
#    Dan Schult <dschult@colgate.edu>
#    Pieter Swart <swart@lanl.gov>
#    All rights reserved.
#    BSD license.

__all__ = ['shortest_path',
           'shortest_path_length',
           'average_shortest_path_length',
           'has_path']

import networkx as nx

def has_path(G, source ,target):
    """Return true if G has a path from source to target. 
    False otherwise.

    Parameters
    ----------
    G : NetworkX graph

    source : node
       Starting node for path.  

    target : node
       Ending node for path.  
    """
    try:
        sp = nx.shortest_path(G,source, target)
    except nx.NetworkXNoPath:
        return False
    return True

def shortest_path(G, source=None, target=None, weight=None):
    """Compute shortest paths in the graph.

    Parameters
    ----------
    G : NetworkX graph

    source : node, optional
       Starting node for path.  
       If not specified compute shortest paths for all connected node pairs.

    target : node, optional 
       Ending node for path.  
       If not specified compute shortest paths for every node reachable 
       from the source.

    weight : None or string, optional (default = None)
       If None, every edge has weight/distance/cost 1.
       If a string, use this edge attribute as the edge weight.
       Any edge attribute not present defaults to 1.

    Returns
    -------
    path: list or dictionary
        If the source and target are both specified return a single list
        of nodes in a shortest path.
        If only the source is specified return a dictionary keyed by
        targets with a list of nodes in a shortest path.
        If neither the source or target is specified return a dictionary 
        of dictionaries with path[source][target]=[list of nodes in path].

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> print(nx.shortest_path(G,source=0,target=4))
    [0, 1, 2, 3, 4]
    >>> p=nx.shortest_path(G,source=0) # target not specified
    >>> p[4]
    [0, 1, 2, 3, 4]
    >>> p=nx.shortest_path(G) # source,target not specified
    >>> p[0][4]
    [0, 1, 2, 3, 4]

    Notes
    -----
    There may be more than one shortest path between a source and target.
    This returns only one of them.

    For digraphs this returns a shortest directed path.  
    To find paths in the reverse direction use G.reverse(copy=False)
    first to flip the edge orientation.

    See Also
    --------
    all_pairs_shortest_path()
    all_pairs_dijkstra_path()
    single_source_shortest_path()
    single_source_dijkstra_path()

    """
    if source is None:
        if target is None:
            if weight is None:
                paths=nx.all_pairs_shortest_path(G)
            else:
                paths=nx.all_pairs_dijkstra_path(G,weight=weight)
        else:
            raise nx.NetworkXError(\
                "Target given but no source specified.")
    else: # source specified
        if target is None:
            if weight is None:
                paths=nx.single_source_shortest_path(G,source)
            else:
                paths=nx.single_source_dijkstra_path(G,source,weight=weight)
        else:
            # shortest source-target path
            if weight is None:
                paths=nx.bidirectional_shortest_path(G,source,target)
            else:
                paths=nx.dijkstra_path(G,source,target,weight)

    return paths


def shortest_path_length(G, source=None, target=None, weight=None):
    """Compute shortest path lengths in the graph.
    
    This function can compute the single source shortest path
    lengths by specifying only the source or all pairs shortest
    path lengths by specifying neither the source or target.

    Parameters
    ----------
    G : NetworkX graph

    source : node, optional
       Starting node for path.  
       If not specified compute shortest path lengths for all 
       connected node pairs.

    target : node, optional 
       Ending node for path.  
       If not specified compute shortest path lengths for every 
       node reachable from the source.

    weight : None or string, optional (default = None)
       If None, every edge has weight/distance/cost 1.
       If a string, use this edge attribute as the edge weight.
       Any edge attribute not present defaults to 1.

    Returns
    -------
    length : number, or container of numbers
        If the source and target are both specified return a
        single number for the shortest path.
        If only the source is specified return a dictionary keyed by
        targets with a the shortest path as keys.
        If neither the source or target is specified return a dictionary 
        of dictionaries with length[source][target]=value.

    Raises
    ------
    NetworkXNoPath
        If no path exists between source and target.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> print(nx.shortest_path_length(G,source=0,target=4))
    4
    >>> p=nx.shortest_path_length(G,source=0) # target not specified
    >>> p[4]
    4
    >>> p=nx.shortest_path_length(G) # source,target not specified
    >>> p[0][4]
    4

    Notes
    -----
    For digraphs this returns the shortest directed path.
    To find path lengths in the reverse direction use G.reverse(copy=False)
    first to flip the edge orientation.

    See Also
    --------
    all_pairs_shortest_path_length()
    all_pairs_dijkstra_path_length()
    single_source_shortest_path_length()
    single_source_dijkstra_path_length()

    """
    if source is None:
        if target is None:
            if weight is None:
                paths=nx.all_pairs_shortest_path_length(G)
            else:
                paths=nx.all_pairs_dijkstra_path_length(G, weight=weight)
        else:
            raise nx.NetworkXError(\
                "Target given but no source specified.")
    else: # source specified
        if target is None:
            if weight is None:
                paths=nx.single_source_shortest_path_length(G,source)
            else:
                paths=nx.single_source_dijkstra_path_length(G,source,weight=weight)
        else:
            # shortest source-target path
            if weight is None:
                p=nx.bidirectional_shortest_path(G,source,target)
                paths=len(p)-1
            else:
                paths=nx.dijkstra_path_length(G,source,target,weight)
    return paths

        

def average_shortest_path_length(G, weight=None):
    r"""Return the average shortest path length.

    The average shortest path length is

    .. math::

       a =\sum_{s,t \in V} \frac{d(s, t)}{n(n-1)}

    where `V` is the set of nodes in `G`,
    `d(s, t)` is the shortest path from `s` to `t`,
    and `n` is the number of nodes in `G`.

    Parameters
    ----------
    G : NetworkX graph

    weight : None or string, optional (default = None)
       If None, every edge has weight/distance/cost 1.
       If a string, use this edge attribute as the edge weight.
       Any edge attribute not present defaults to 1.

    Raises
    ------
    NetworkXError:
       if the graph is not connected.

    Examples
    --------
    >>> G=nx.path_graph(5)
    >>> print(nx.average_shortest_path_length(G))
    2.0

    For disconnected graphs you can compute the average shortest path
    length for each component:
    >>> G=nx.Graph([(1,2),(3,4)])
    >>> for g in nx.connected_component_subgraphs(G): 
    ...     print(nx.average_shortest_path_length(g))
    1.0
    1.0

    """
    if G.is_directed():
        if not nx.is_weakly_connected(G):
            raise nx.NetworkXError("Graph is not connected.")
    else:
        if not nx.is_connected(G):
            raise nx.NetworkXError("Graph is not connected.")
    avg=0.0
    if weight is None:
        for node in G:
            path_length=nx.single_source_shortest_path_length(G, node)
            avg += sum(path_length.values())
    else:
        for node in G:
            path_length=nx.single_source_dijkstra_path_length(G, node, weight=weight)
            avg += sum(path_length.values())
    n=len(G)
    return avg/(n*(n-1))