This file is indexed.

/usr/share/pyshared/pandas/core/nanops.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import sys

import numpy as np

from pandas.core.common import isnull, notnull
import pandas.core.common as com
import pandas._tseries as lib

try:
    import bottleneck as bn
    _USE_BOTTLENECK = True
except ImportError:  # pragma: no cover
    _USE_BOTTLENECK = False

def _bottleneck_switch(bn_name, alt, **kwargs):
    try:
        bn_func = getattr(bn, bn_name)
    except (AttributeError, NameError):  # pragma: no cover
        bn_func = None
    def f(values, axis=None, skipna=True):
        try:
            if _USE_BOTTLENECK and skipna and values.dtype != np.object_:
                result = bn_func(values, axis=axis, **kwargs)
                # prefer to treat inf/-inf as NA
                if _has_infs(result):
                    result = alt(values, axis=axis, skipna=skipna, **kwargs)
            else:
                result = alt(values, axis=axis, skipna=skipna, **kwargs)
        except Exception:
            result = alt(values, axis=axis, skipna=skipna, **kwargs)

        return result

    return f

def _has_infs(result):
    if isinstance(result, np.ndarray):
        if result.dtype == 'f8':
            return lib.has_infs_f8(result)
        elif result.dtype == 'f4':
            return lib.has_infs_f4(result)
        else:  # pragma: no cover
            raise TypeError('Only suppose float32/64 here')
    else:
        return np.isinf(result) or np.isneginf(result)

def _nansum(values, axis=None, skipna=True):
    mask = isnull(values)

    if skipna and not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, 0)

    the_sum = values.sum(axis)
    the_sum = _maybe_null_out(the_sum, axis, mask)

    return the_sum

def _nanmean(values, axis=None, skipna=True):
    mask = isnull(values)

    if skipna and not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, 0)

    the_sum = _ensure_numeric(values.sum(axis))
    count = _get_counts(mask, axis)

    if axis is not None:
        the_mean = the_sum / count
        ct_mask = count == 0
        if ct_mask.any():
            the_mean[ct_mask] = np.nan
    else:
        the_mean = the_sum / count if count > 0 else np.nan
    return the_mean

def _nanmedian(values, axis=None, skipna=True):
    def get_median(x):
        mask = notnull(x)
        if not skipna and not mask.all():
            return np.nan
        return lib.median(x[mask])

    if values.dtype != np.float64:
        values = values.astype('f8')

    if values.ndim > 1:
        return np.apply_along_axis(get_median, axis, values)
    else:
        return get_median(values)

def _nanvar(values, axis=None, skipna=True, ddof=1):
    mask = isnull(values)

    if axis is not None:
        count = (values.shape[axis] - mask.sum(axis)).astype(float)
    else:
        count = float(values.size - mask.sum())

    if skipna:
        values = values.copy()
        np.putmask(values, mask, 0)

    X = _ensure_numeric(values.sum(axis))
    XX = _ensure_numeric((values ** 2).sum(axis))
    return (XX - X ** 2 / count) / (count - ddof)

def _nanmin(values, axis=None, skipna=True):
    mask = isnull(values)
    if skipna and not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, np.inf)
    # numpy 1.6.1 workaround in Python 3.x
    if (values.dtype == np.object_
        and sys.version_info[0] >= 3):  # pragma: no cover
        import __builtin__
        if values.ndim > 1:
            apply_ax = axis if axis is not None else 0
            result = np.apply_along_axis(__builtin__.min, apply_ax, values)
        else:
            result = __builtin__.min(values)
    else:
        result = values.min(axis)

    return _maybe_null_out(result, axis, mask)

def _nanmax(values, axis=None, skipna=True):
    mask = isnull(values)
    if skipna and not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, -np.inf)
    # numpy 1.6.1 workaround in Python 3.x
    if (values.dtype == np.object_
        and sys.version_info[0] >= 3):  # pragma: no cover
        import __builtin__

        if values.ndim > 1:
            apply_ax = axis if axis is not None else 0
            result = np.apply_along_axis(__builtin__.max, apply_ax, values)
        else:
            result = __builtin__.max(values)
    else:
        result = values.max(axis)
    return _maybe_null_out(result, axis, mask)

def nanargmax(values, axis=None, skipna=True):
    """
    Returns -1 in the NA case
    """
    mask = -np.isfinite(values)
    if not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, -np.inf)
    result = values.argmax(axis)
    result = _maybe_arg_null_out(result, axis, mask, skipna)
    return result

def nanargmin(values, axis=None, skipna=True):
    """
    Returns -1 in the NA case
    """
    mask = -np.isfinite(values)
    if not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        np.putmask(values, mask, np.inf)
    result = values.argmin(axis)
    result = _maybe_arg_null_out(result, axis, mask, skipna)
    return result

nansum = _bottleneck_switch('nansum', _nansum)
nanmean = _bottleneck_switch('nanmean', _nanmean)
nanmedian = _bottleneck_switch('nanmedian', _nanmedian)
nanvar = _bottleneck_switch('nanvar', _nanvar, ddof=1)
nanmin = _bottleneck_switch('nanmin', _nanmin)
nanmax = _bottleneck_switch('nanmax', _nanmax)

def nanskew(values, axis=None, skipna=True):
    if not isinstance(values.dtype.type, np.floating):
        values = values.astype('f8')

    mask = isnull(values)
    count = _get_counts(mask, axis)

    if skipna:
        values = values.copy()
        np.putmask(values, mask, 0)

    A = values.sum(axis) / count
    B = (values ** 2).sum(axis) / count - A ** 2
    C = (values ** 3).sum(axis) / count - A ** 3 - 3 * A * B

    # floating point error
    B = _zero_out_fperr(B)
    C = _zero_out_fperr(C)

    result = ((np.sqrt((count ** 2 - count)) * C) /
              ((count - 2) * np.sqrt(B) ** 3))

    if isinstance(result, np.ndarray):
        result = np.where(B == 0, 0, result)
        result[count < 3] = np.nan
        return result
    else:
        result = 0 if B == 0 else result
        if count < 3:
            return np.nan
        return result

def nanprod(values, axis=None, skipna=True):
    mask = isnull(values)
    if skipna and not issubclass(values.dtype.type, np.integer):
        values = values.copy()
        values[mask] = 1
    result = values.prod(axis)
    return _maybe_null_out(result, axis, mask)

def _maybe_arg_null_out(result, axis, mask, skipna):
    # helper function for nanargmin/nanargmax
    if axis is None:
        if skipna:
            if mask.all():
                result = -1
        else:
            if mask.any():
                result = -1
    else:
        if skipna:
            na_mask = mask.all(axis)
        else:
            na_mask = mask.any(axis)
        if na_mask.any():
            result[na_mask] = -1
    return result

def _get_counts(mask, axis):
    if axis is not None:
        count = (mask.shape[axis] - mask.sum(axis)).astype(float)
    else:
        count = float(mask.size - mask.sum())

    return count

def _maybe_null_out(result, axis, mask):
    if axis is not None:
        null_mask = (mask.shape[axis] - mask.sum(axis)) == 0
        if null_mask.any():
            result = result.astype('f8')
            result[null_mask] = np.nan
    else:
        null_mask = mask.size - mask.sum()
        if null_mask == 0:
            result = np.nan

    return result

def _zero_out_fperr(arg):
    if isinstance(arg, np.ndarray):
        return np.where(np.abs(arg) < 1e-14, 0, arg)
    else:
        return 0 if np.abs(arg) < 1e-14 else arg

def nancorr(a, b, method='pearson'):
    """
    a, b: ndarrays
    """
    assert(len(a) == len(b))

    valid = notnull(a) & notnull(b)
    if not valid.all():
        a = a[valid]
        b = b[valid]

    if len(a) == 0:
        return np.nan

    f = get_corr_func(method)
    return f(a, b)

def get_corr_func(method):
    if method in ['kendall', 'spearman']:
        from scipy.stats import kendalltau, spearmanr

    def _pearson(a, b):
        return np.corrcoef(a, b)[0, 1]
    def _kendall(a, b):
        return kendalltau(a, b)[0]
    def _spearman(a, b):
        return spearmanr(a, b)[0]

    _cor_methods = {
        'pearson' : _pearson,
        'kendall' : _kendall,
        'spearman' : _spearman
    }
    return _cor_methods[method]

def nancov(a, b):
    assert(len(a) == len(b))

    valid = notnull(a) & notnull(b)
    if not valid.all():
        a = a[valid]
        b = b[valid]

    if len(a) == 0:
        return np.nan

    return np.cov(a, b)[0, 1]

def _ensure_numeric(x):
    if isinstance(x, np.ndarray):
        if x.dtype == np.object_:
            x = x.astype(np.float64)
    elif not (com.is_float(x) or com.is_integer(x)):
        try:
            x = float(x)
        except Exception:
            raise TypeError('Could not convert %s to numeric' % str(x))

    return x

# NA-friendly array comparisons

import operator

def make_nancomp(op):
    def f(x, y):
        xmask = isnull(x)
        ymask = isnull(y)
        mask = xmask | ymask

        result = op(x, y)

        if mask.any():
            if result.dtype == np.bool_:
                result = result.astype('O')
            np.putmask(result, mask, np.nan)

        return result
    return f

nangt = make_nancomp(operator.gt)
nange = make_nancomp(operator.ge)
nanlt = make_nancomp(operator.lt)
nanle = make_nancomp(operator.le)
naneq = make_nancomp(operator.eq)
nanne = make_nancomp(operator.ne)

def unique1d(values):
    """
    Hash table-based unique
    """
    if issubclass(values.dtype.type, np.floating):
        if values.dtype != np.float64:
            values = values.astype(np.float64)
        table = lib.Float64HashTable(len(values))
        uniques = np.array(table.unique(values), dtype=np.float64)
    elif issubclass(values.dtype.type, np.integer):
        if values.dtype != np.int64:
            values = values.astype(np.int64)
        table = lib.Int64HashTable(len(values))
        uniques = np.array(table.unique(values), dtype=np.int64)
    else:
        if not values.dtype == np.object_:
            values = values.astype(np.object_)
        table = lib.PyObjectHashTable(len(values))
        uniques = lib.list_to_object_array(table.unique(values))
        uniques = lib.maybe_convert_objects(uniques)
    return uniques