This file is indexed.

/usr/share/pyshared/pandas/io/data.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
"""
Module contains tools for collecting data from various remote sources


"""

import numpy as np
import datetime as dt
import urllib
import urllib2

from zipfile import ZipFile
from StringIO import StringIO

from pandas import DataFrame, read_csv

def DataReader(name, data_source=None, start=None, end=None):
    """
    Imports data from a number of online sources.

    Currently supports Yahoo! finance, St. Louis FED (FRED), and Kenneth
    French's data library.

    Parameters
    ----------
    name : str
        the name of the dataset
    data_source: str
        the data source ("yahoo", "fred", or "ff")
    start : {datetime, None}
        left boundary for range (defaults to 1/1/2010)
    end : {datetime, None}
        right boundary for range (defaults to today)

    Examples
    ----------

    # Data from Yahoo!
    gs = DataReader("GS", "yahoo")

    # Data from FRED
    vix = DataReader("VIXCLS", "fred")

    # Data from Fama/French
    ff = DataReader("F-F_Research_Data_Factors", "famafrench")
    ff = DataReader("F-F_Research_Data_Factors_weekly", "famafrench")
    ff = DataReader("6_Portfolios_2x3", "famafrench")
    ff = DataReader("F-F_ST_Reversal_Factor", "famafrench")
    """
    start, end = _sanitize_dates(start, end)

    if(data_source == "yahoo"):
        return get_data_yahoo(name=name, start=start, end=end)
    elif(data_source == "fred"):
        return get_data_fred(name=name, start=start, end=end)
    elif(data_source == "famafrench"):
        return get_data_famafrench(name=name)

def _sanitize_dates(start, end):
    from pandas.core.datetools import to_datetime
    start = to_datetime(start)
    end = to_datetime(end)
    if start is None:
        start = dt.datetime.today() - dt.timedelta(365)
    if end is None:
        end = dt.datetime.today()
    return start, end

def get_quote_yahoo(symbols):
    """ 
    Get current yahoo quote
    
    Returns a DataFrame
    """
    if not isinstance(symbols,list):
        raise TypeError, "symbols must be a list"
    # for codes see: http://www.gummy-stuff.org/Yahoo-data.htm
    codes = {'symbol':'s','last':'l1','change_pct':'p2','PE':'r','time':'t1','short_ratio':'s7'}
    request = str.join('',codes.values()) # code request string
    header = codes.keys()   
    
    data = dict(zip(codes.keys(),[[] for i in range(len(codes))]))
    
    urlStr = 'http://finance.yahoo.com/d/quotes.csv?s=%s&f=%s' % (str.join('+',symbols), request)
    
    try:
        lines = urllib2.urlopen(urlStr).readlines()
    except Exception, e:
        s = "Failed to download:\n{0}".format(e);
        print s
        return None
        
    for line in lines:
        fields = line.strip().split(',')
        #print fields
        for i,field in enumerate(fields):
            if field[0] == '"':
                data[header[i]].append( field.strip('"'))
            else:
                try:
                    data[header[i]].append(float(field))
                except ValueError:
                    data[header[i]].append(np.nan)

    idx = data.pop('symbol')
    
    return DataFrame(data,index=idx)

def get_data_yahoo(name=None, start=None, end=None):
    """
    Get historical data for the given name from yahoo.
    Date format is datetime

    Returns a DataFrame.
    """
    start, end = _sanitize_dates(start, end)

    if(name is None):
        print "Need to provide a name"
        return None

    yahoo_URL = 'http://ichart.yahoo.com/table.csv?'

    url = yahoo_URL + 's=%s' % name + \
      '&a=%s' % (start.month - 1) + \
      '&b=%s' % start.day + \
      '&c=%s' % start.year + \
      '&d=%s' % (end.month - 1) + \
      '&e=%s' % end.day + \
      '&f=%s' % end.year + \
      '&g=d' + \
      '&ignore=.csv'

    lines = urllib.urlopen(url).read()
    return read_csv(StringIO(lines), index_col=0, parse_dates=True)[::-1]

def get_data_fred(name=None, start=dt.datetime(2010, 1, 1),
                  end=dt.datetime.today()):
    """
    Get data for the given name from the St. Louis FED (FRED).
    Date format is datetime

    Returns a DataFrame.
    """
    start, end = _sanitize_dates(start, end)

    if(name is None):
        print "Need to provide a name"
        return None

    fred_URL = "http://research.stlouisfed.org/fred2/series/"

    url = fred_URL + '%s' % name + \
      '/downloaddata/%s' % name + '.csv'
    data = read_csv(urllib.urlopen(url), index_col=0, parse_dates=True)
    return data.truncate(start, end)

def get_data_famafrench(name, start=None, end=None):
    start, end = _sanitize_dates(start, end)

    # path of zip files
    zipFileURL = "http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/ftp/"

    url = urllib.urlopen(zipFileURL + name + ".zip")
    zipfile = ZipFile(StringIO(url.read()))
    data = zipfile.open(name + ".txt").readlines()

    file_edges = np.where(np.array([len(d) for d in data]) == 2)[0]

    datasets = {}
    for i in range(len(file_edges)-1):
        dataset = [d.split() for d in data[(file_edges[i] + 1):file_edges[i+1]]]
        if(len(dataset) > 10):
            ncol = np.median(np.array([len(d) for d in dataset]))
            header_index = np.where(np.array([len(d) for d in dataset]) == (ncol-1))[0][-1]
            header = dataset[header_index]
            # to ensure the header is unique
            header = [str(j + 1) + " " + header[j] for j in range(len(header))]
            index = np.array([d[0] for d in dataset[(header_index + 1):]], dtype=int)
            dataset = np.array([d[1:] for d in dataset[(header_index + 1):]], dtype=float)
            datasets[i] = DataFrame(dataset, index, columns=header)

    return datasets