This file is indexed.

/usr/share/pyshared/pandas/io/pytables.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
"""
High level interface to PyTables for reading and writing pandas data structures
to disk
"""

# pylint: disable-msg=E1101,W0613,W0603

from datetime import datetime, date
import time

import numpy as np
from pandas import Series, TimeSeries, DataFrame, Panel, Index, MultiIndex
from pandas.core.common import adjoin
import pandas.core.common as com
import pandas._tseries as lib

# reading and writing the full object in one go
_TYPE_MAP = {
    Series     : 'series',
    TimeSeries : 'series',
    DataFrame  : 'frame',
    Panel  : 'wide'
}

_NAME_MAP = {
    'series' : 'Series',
    'time_series' : 'TimeSeries',
    'frame' : 'DataFrame',
    'frame_table' : 'DataFrame (Table)',
    'wide' : 'Panel',
    'wide_table' : 'Panel (Table)',
    'long' : 'LongPanel',
    # legacy h5 files
    'Series' : 'Series',
    'TimeSeries' : 'TimeSeries',
    'DataFrame' : 'DataFrame',
    'DataMatrix' : 'DataMatrix'
}

# legacy handlers
_LEGACY_MAP = {
    'Series' : 'legacy_series',
    'TimeSeries' : 'legacy_series',
    'DataFrame' : 'legacy_frame',
    'DataMatrix' : 'legacy_frame',
    'WidePanel' : 'wide_table',
}

# oh the troubles to reduce import time
_table_mod = None
def _tables():
    global _table_mod
    if _table_mod is None:
        import tables
        _table_mod = tables
    return _table_mod

class HDFStore(object):
    """
    dict-like IO interface for storing pandas objects in PyTables
    format.

    DataFrame and Panel can be stored in Table format, which is slower to
    read and write but can be searched and manipulated more like an SQL
    table. See HDFStore.put for more information

    Parameters
    ----------
    path : string
        File path to HDF5 file
    mode : {'a', 'w', 'r', 'r+'}, default 'a'

        ``'r'``
            Read-only; no data can be modified.
        ``'w'``
            Write; a new file is created (an existing file with the same
            name would be deleted).
        ``'a'``
            Append; an existing file is opened for reading and writing,
            and if the file does not exist it is created.
        ``'r+'``
            It is similar to ``'a'``, but the file must already exist.
    complevel : int, 1-9, default 0
            If a complib is specified compression will be applied
            where possible
    complib : {'zlib', 'bzip2', 'lzo', 'blosc', None}, default None
            If complevel is > 0 apply compression to objects written
            in the store wherever possible
    fletcher32 : bool, default False
            If applying compression use the fletcher32 checksum

    Examples
    --------
    >>> store = HDFStore('test.h5')
    >>> store['foo'] = bar   # write to HDF5
    >>> bar = store['foo']   # retrieve
    >>> store.close()
    """
    _quiet = False

    def __init__(self, path, mode='a', complevel=None, complib=None,
                 fletcher32=False):
        try:
            import tables as _
        except ImportError: # pragma: no cover
            raise Exception('HDFStore requires PyTables')

        self.path = path
        self.mode = mode
        self.handle = None
        self.complevel = complevel
        self.complib = complib
        self.fletcher32 = fletcher32
        self.filters = None
        self.open(mode=mode, warn=False)

    def __getitem__(self, key):
        return self.get(key)

    def __setitem__(self, key, value):
        self.put(key, value)

    def __len__(self):
        return len(self.handle.root._v_children)

    def __repr__(self):
        output = '%s\nFile path: %s\n' % (type(self), self.path)

        if len(self) > 0:
            keys = []
            values = []
            for k, v in sorted(self.handle.root._v_children.iteritems()):
                kind = v._v_attrs.pandas_type

                keys.append(str(k))
                values.append(_NAME_MAP[kind])

            output += adjoin(5, keys, values)
        else:
            output += 'Empty'

        return output

    def keys(self):
        """
        Return a (potentially unordered) list of the keys corresponding to the
        objects stored in the HDFStore
        """
        return self.handle.root._v_children.keys()

    def open(self, mode='a', warn=True):
        """
        Open the file in the specified mode

        Parameters
        ----------
        mode : {'a', 'w', 'r', 'r+'}, default 'a'
            See HDFStore docstring or tables.openFile for info about modes
        """
        self.mode = mode
        if warn and mode == 'w': # pragma: no cover
            while True:
                response = raw_input("Re-opening as mode='w' will delete the "
                                     "current file. Continue (y/n)?")
                if response == 'y':
                    break
                elif response == 'n':
                    return
        if self.handle is not None and self.handle.isopen:
            self.handle.close()

        if self.complib is not None:
            if self.complevel is None:
                self.complevel = 9
            self.filters = _tables().Filters(self.complevel,
                                             self.complib,
                                             fletcher32=self.fletcher32)

        self.handle = _tables().openFile(self.path, self.mode)

    def close(self):
        """
        Close the PyTables file handle
        """
        self.handle.close()

    def flush(self):
        """
        Force all buffered modifications to be written to disk
        """
        self.handle.flush()

    def get(self, key):
        """
        Retrieve pandas object stored in file

        Parameters
        ----------
        key : object

        Returns
        -------
        obj : type of object stored in file
        """
        try:
            group = getattr(self.handle.root, key)
            return self._read_group(group)
        except AttributeError:
            raise

    def select(self, key, where=None):
        """
        Retrieve pandas object stored in file, optionally based on where
        criteria

        Parameters
        ----------
        key : object
        where : list, optional

           Must be a list of dict objects of the following forms. Selection can
           be performed on the 'index' or 'column' fields.

           Comparison op
               {'field' : 'index',
                'op'    : '>=',
                'value' : value}

           Match single value
               {'field' : 'index',
                'value' : v1}

           Match a set of values
               {'field' : 'index',
                'value' : [v1, v2, v3]}

        """
        group = getattr(self.handle.root, key, None)
        if 'table' not in group._v_attrs.pandas_type:
            raise Exception('can only select on objects written as tables')
        if group is not None:
            return self._read_group(group, where)

    def put(self, key, value, table=False, append=False,
            compression=None):
        """
        Store object in HDFStore

        Parameters
        ----------
        key : object
        value : {Series, DataFrame, Panel}
        table : boolean, default False
            Write as a PyTables Table structure which may perform worse but
            allow more flexible operations like searching / selecting subsets of
            the data
        append : boolean, default False
            For table data structures, append the input data to the existing
            table
        compression : {None, 'blosc', 'lzo', 'zlib'}, default None
            Use a compression algorithm to compress the data
            If None, the compression settings specified in the ctor will
            be used.
        """
        self._write_to_group(key, value, table=table, append=append,
                             comp=compression)

    def _get_handler(self, op, kind):
        return getattr(self,'_%s_%s' % (op, kind))

    def remove(self, key, where=None):
        """
        Remove pandas object partially by specifying the where condition

        Parameters
        ----------
        key : string
            Node to remove or delete rows from
        where : list
            For Table node, delete specified rows. See HDFStore.select for more
            information

        Parameters
        ----------
        key : object
        """
        if where is None:
            self.handle.removeNode(self.handle.root, key, recursive=True)
        else:
            group = getattr(self.handle.root, key,None)
            if group is not None:
                self._delete_from_table(group, where)

    def append(self, key, value):
        """
        Append to Table in file. Node must already exist and be Table
        format.

        Parameters
        ----------
        key : object
        value : {Series, DataFrame, Panel}

        Notes
        -----
        Does *not* check if data being appended overlaps with existing
        data in the table, so be careful
        """
        self._write_to_group(key, value, table=True, append=True)

    def _write_to_group(self, key, value, table=False, append=False,
                        comp=None):
        root = self.handle.root
        if key not in root._v_children:
            group = self.handle.createGroup(root, key)
        else:
            group = getattr(root, key)

        kind = _TYPE_MAP[type(value)]
        if table or (append and _is_table_type(group)):
            kind = '%s_table' % kind
            handler = self._get_handler(op='write', kind=kind)
            wrapper = lambda value: handler(group, value, append=append,
                                            comp=comp)
        else:
            if append:
                raise ValueError('Can only append to Tables')
            if comp:
                raise ValueError('Compression only supported on Tables')

            handler = self._get_handler(op='write', kind=kind)
            wrapper = lambda value: handler(group, value)

        wrapper(value)
        group._v_attrs.pandas_type = kind

    def _write_series(self, group, series):
        self._write_index(group, 'index', series.index)
        self._write_array(group, 'values', series.values)
        group._v_attrs.name = series.name

    def _write_frame(self, group, df):
        self._write_block_manager(group, df._data)

    def _read_frame(self, group, where=None):
        return DataFrame(self._read_block_manager(group))

    def _write_block_manager(self, group, data):
        if not data.is_consolidated():
            data = data.consolidate()

        group._v_attrs.ndim = data.ndim
        for i, ax in enumerate(data.axes):
            self._write_index(group, 'axis%d' % i, ax)

        # Supporting mixed-type DataFrame objects...nontrivial
        nblocks = len(data.blocks)
        group._v_attrs.nblocks = nblocks
        for i in range(nblocks):
            blk = data.blocks[i]
            self._write_index(group, 'block%d_items' % i, blk.items)
            self._write_array(group, 'block%d_values' % i, blk.values)

    def _read_block_manager(self, group):
        from pandas.core.internals import BlockManager, make_block

        ndim = group._v_attrs.ndim
        nblocks = group._v_attrs.nblocks

        axes = []
        for i in xrange(ndim):
            ax = self._read_index(group, 'axis%d' % i)
            axes.append(ax)

        items = axes[0]
        blocks = []
        for i in range(group._v_attrs.nblocks):
            blk_items = self._read_index(group, 'block%d_items' % i)
            values = _read_array(group, 'block%d_values' % i)
            blk = make_block(values, blk_items, items)
            blocks.append(blk)

        return BlockManager(blocks, axes)

    def _write_frame_table(self, group, df, append=False, comp=None):
        mat = df.values
        values = mat.reshape((1,) + mat.shape)

        if df._is_mixed_type:
            raise Exception('Cannot currently store mixed-type DataFrame '
                            'objects in Table format')

        self._write_table(group, items=['value'],
                          index=df.index, columns=df.columns,
                          values=values, append=append, compression=comp)

    def _write_wide(self, group, panel):
        panel._consolidate_inplace()
        self._write_block_manager(group, panel._data)

    def _read_wide(self, group, where=None):
        return Panel(self._read_block_manager(group))

    def _write_wide_table(self, group, panel, append=False, comp=None):
        self._write_table(group, items=panel.items, index=panel.major_axis,
                          columns=panel.minor_axis, values=panel.values,
                          append=append, compression=comp)

    def _read_wide_table(self, group, where=None):
        return self._read_panel_table(group, where)

    def _write_index(self, group, key, index):
        if len(index) == 0:
            raise ValueError('Can not write empty structure, axis length was 0')

        if isinstance(index, MultiIndex):
            setattr(group._v_attrs, '%s_variety' % key, 'multi')
            self._write_multi_index(group, key, index)
        else:
            setattr(group._v_attrs, '%s_variety' % key, 'regular')
            converted, kind, _ = _convert_index(index)
            self._write_array(group, key, converted)
            node = getattr(group, key)
            node._v_attrs.kind = kind
            node._v_attrs.name = index.name

    def _read_index(self, group, key):
        variety = getattr(group._v_attrs, '%s_variety' % key)

        if variety == 'multi':
            return self._read_multi_index(group, key)
        elif variety == 'regular':
            _, index = self._read_index_node(getattr(group, key))
            return index
        else:  # pragma: no cover
            raise Exception('unrecognized index variety: %s' % variety)

    def _write_multi_index(self, group, key, index):
        setattr(group._v_attrs, '%s_nlevels' % key, index.nlevels)

        for i, (lev, lab, name) in enumerate(zip(index.levels,
                                                 index.labels,
                                                 index.names)):
            # write the level
            conv_level, kind, _ = _convert_index(lev)
            level_key = '%s_level%d' % (key, i)
            self._write_array(group, level_key, conv_level)
            node = getattr(group, level_key)
            node._v_attrs.kind = kind
            node._v_attrs.name = name

            # write the name
            setattr(node._v_attrs, '%s_name%d' % (key, i), name)

            # write the labels
            label_key = '%s_label%d' % (key, i)
            self._write_array(group, label_key, lab)

    def _read_multi_index(self, group, key):
        nlevels = getattr(group._v_attrs, '%s_nlevels' % key)

        levels = []
        labels = []
        names = []
        for i in range(nlevels):
            level_key = '%s_level%d' % (key, i)
            name, lev = self._read_index_node(getattr(group, level_key))
            levels.append(lev)
            names.append(name)

            label_key = '%s_label%d' % (key, i)
            lab = getattr(group, label_key)[:]
            labels.append(lab)

        return MultiIndex(levels=levels, labels=labels, names=names)

    def _read_index_node(self, node):
        data = node[:]
        kind = node._v_attrs.kind
        name = None

        if 'name' in node._v_attrs:
            name = node._v_attrs.name

        index = Index(_unconvert_index(data, kind))
        index.name = name

        return name, index

    def _write_array(self, group, key, value):
        if key in group:
            self.handle.removeNode(group, key)

        if self.filters is not None:
            atom = None
            try:
                # get the atom for this datatype
                atom = _tables().Atom.from_dtype(value.dtype)
            except ValueError:
                pass

            if atom is not None:
                # create an empty chunked array and fill it from value
                ca = self.handle.createCArray(group, key, atom,
                                              value.shape,
                                              filters=self.filters)
                ca[:] = value
                return

        if value.dtype == np.object_:
            vlarr = self.handle.createVLArray(group, key,
                                              _tables().ObjectAtom())
            vlarr.append(value)
        else:
            self.handle.createArray(group, key, value)

    def _write_table(self, group, items=None, index=None, columns=None,
                     values=None, append=False, compression=None):
        """ need to check for conform to the existing table:
            e.g. columns should match """
        # create dict of types
        index_converted, index_kind, index_t = _convert_index(index)
        columns_converted, cols_kind, col_t = _convert_index(columns)

        # create the table if it doesn't exist (or get it if it does)
        if not append:
            if 'table' in group:
                self.handle.removeNode(group, 'table')

        if 'table' not in group:
            # create the table
            desc = {'index'  : index_t,
                    'column' : col_t,
                    'values' : _tables().FloatCol(shape=(len(values)))}

            options = {'name' : 'table',
                       'description' : desc}

            if compression:
                complevel = self.complevel
                if complevel is None:
                    complevel = 9
                filters = _tables().Filters(complevel=complevel,
                                            complib=compression,
                                            fletcher32=self.fletcher32)
                options['filters'] = filters
            elif self.filters is not None:
                options['filters'] = self.filters

            table = self.handle.createTable(group, **options)
        else:
            # the table must already exist
            table = getattr(group, 'table', None)

        # add kinds
        table._v_attrs.index_kind = index_kind
        table._v_attrs.columns_kind = cols_kind
        if append:
            existing_fields = getattr(table._v_attrs,'fields',None)
            if (existing_fields is not None and
                existing_fields != list(items)):
                raise Exception("appended items do not match existing items"
                                " in table!")
        # this depends on creation order of the table
        table._v_attrs.fields = list(items)

        # add the rows
        try:
            for i, index in enumerate(index_converted):
                for c, col in enumerate(columns_converted):
                    v = values[:, i, c]

                    # don't store the row if all values are np.nan
                    if np.isnan(v).all():
                        continue

                    row = table.row
                    row['index'] = index
                    row['column'] = col

                    # create the values array
                    row['values'] = v
                    row.append()
            self.handle.flush()
        except (ValueError), detail: # pragma: no cover
            print "value_error in _write_table -> %s" % str(detail)
            try:
                self.handle.flush()
            except Exception:
                pass
            raise

    def _read_group(self, group, where=None):
        kind = group._v_attrs.pandas_type
        kind = _LEGACY_MAP.get(kind, kind)
        handler = self._get_handler(op='read', kind=kind)
        return handler(group, where)

    def _read_series(self, group, where=None):
        index = self._read_index(group, 'index')
        values = _read_array(group, 'values')
        name = getattr(group._v_attrs, 'name', None)
        return Series(values, index=index, name=name)

    def _read_legacy_series(self, group, where=None):
        index = self._read_index_legacy(group, 'index')
        values = _read_array(group, 'values')
        return Series(values, index=index)

    def _read_legacy_frame(self, group, where=None):
        index = self._read_index_legacy(group, 'index')
        columns = self._read_index_legacy(group, 'columns')
        values = _read_array(group, 'values')
        return DataFrame(values, index=index, columns=columns)

    def _read_index_legacy(self, group, key):
        node = getattr(group, key)
        data = node[:]
        kind = node._v_attrs.kind

        return _unconvert_index_legacy(data, kind)

    def _read_frame_table(self, group, where=None):
        return self._read_panel_table(group, where)['value']

    def _read_panel_table(self, group, where=None):
        from pandas.core.index import unique_int64, Factor
        from pandas.core.common import _asarray_tuplesafe
        from pandas.core.internals import BlockManager
        from pandas.core.reshape import block2d_to_block3d

        table = getattr(group, 'table')

        # create the selection
        sel = Selection(table, where)
        sel.select()
        fields = table._v_attrs.fields

        columns = _maybe_convert(sel.values['column'],
                                 table._v_attrs.columns_kind)
        index = _maybe_convert(sel.values['index'],
                               table._v_attrs.index_kind)
        values = sel.values['values']

        major = Factor(index)
        minor = Factor(columns)

        J, K = len(major.levels), len(minor.levels)
        key = major.labels * K + minor.labels

        if len(unique_int64(key)) == len(key):
            sorter, _ = lib.groupsort_indexer(key, J * K)

            # the data need to be sorted
            sorted_values = values.take(sorter, axis=0)
            major_labels = major.labels.take(sorter)
            minor_labels = minor.labels.take(sorter)

            block = block2d_to_block3d(sorted_values, fields, (J, K),
                                       major_labels, minor_labels)

            mgr = BlockManager([block], [block.items,
                                         major.levels, minor.levels])
            wp = Panel(mgr)
        else:
            if not self._quiet:  # pragma: no cover
                print ('Duplicate entries in table, taking most recently '
                       'appended')

            # reconstruct
            long_index = MultiIndex.from_arrays([index, columns])
            lp = DataFrame(values, index=long_index, columns=fields)

            # need a better algorithm
            tuple_index = long_index.get_tuple_index()
            index_map = lib.map_indices_object(tuple_index)

            unique_tuples = lib.fast_unique(tuple_index)
            unique_tuples = _asarray_tuplesafe(unique_tuples)

            indexer = lib.merge_indexer_object(unique_tuples, index_map)

            new_index = long_index.take(indexer)
            new_values = lp.values.take(indexer, axis=0)

            lp = DataFrame(new_values, index=new_index, columns=lp.columns)
            wp = lp.to_panel()

        if sel.column_filter:
            new_minor = sorted(set(wp.minor_axis) & sel.column_filter)
            wp = wp.reindex(minor=new_minor)
        return wp

    def _delete_from_table(self, group, where = None):
        table = getattr(group, 'table')

        # create the selection
        s = Selection(table,where)
        s.select_coords()

        # delete the rows in reverse order
        l = list(s.values)
        l.reverse()
        for c in l:
            table.removeRows(c)
        self.handle.flush()
        return len(s.values)

def _convert_index(index):
    # Let's assume the index is homogeneous
    values = np.asarray(index)

    if isinstance(values[0], (datetime, date)):
        if isinstance(values[0], datetime):
            kind = 'datetime'
        else:
            kind = 'date'
        converted = np.array([time.mktime(v.timetuple()) for v in values],
                             dtype=np.int64)
        return converted, kind, _tables().Time64Col()
    elif isinstance(values[0], basestring):
        converted = np.array(list(values), dtype=np.str_)
        itemsize = converted.dtype.itemsize
        return converted, 'string', _tables().StringCol(itemsize)
    elif com.is_integer(values[0]):
        # take a guess for now, hope the values fit
        atom = _tables().Int64Col()
        return np.asarray(values, dtype=np.int64), 'integer', atom
    elif com.is_float(values[0]):
        atom = _tables().Float64Col()
        return np.asarray(values, dtype=np.float64), 'float', atom
    else: # pragma: no cover
        atom = _tables().ObjectAtom()
        return np.asarray(values, dtype='O'), 'object', atom

def _read_array(group, key):
    import tables
    node = getattr(group, key)
    data = node[:]

    if isinstance(node, tables.VLArray):
        return data[0]
    else:
        return data

def _unconvert_index(data, kind):
    if kind == 'datetime':
        index = np.array([datetime.fromtimestamp(v) for v in data],
                         dtype=object)
    elif kind == 'date':
        index = np.array([date.fromtimestamp(v) for v in data],
                         dtype=object)

    elif kind in ('string', 'integer', 'float'):
        index = np.array(data)
    elif kind == 'object':
        index = np.array(data[0])
    else: # pragma: no cover
        raise ValueError('unrecognized index type %s' % kind)
    return index

def _unconvert_index_legacy(data, kind, legacy=False):
    if kind == 'datetime':
        index = lib.array_to_datetime(data)
    elif kind in ('string', 'integer'):
        index = np.array(data, dtype=object)
    else: # pragma: no cover
        raise ValueError('unrecognized index type %s' % kind)
    return index

def _maybe_convert(values, val_kind):
    if _need_convert(val_kind):
        conv = _get_converter(val_kind)
        # conv = np.frompyfunc(conv, 1, 1)
        values = conv(values)
    return values

def _get_converter(kind):
    if kind == 'datetime':
        return lib.convert_timestamps
    else: # pragma: no cover
        raise ValueError('invalid kind %s' % kind)

def _need_convert(kind):
    if kind == 'datetime':
        return True
    return False

def _is_table_type(group):
    try:
        return 'table' in group._v_attrs.pandas_type
    except AttributeError:
        # new node, e.g.
        return False

class Selection(object):
    """
    Carries out a selection operation on a tables.Table object.

    Parameters
    ----------
    table : tables.Table
    where : list of dicts of the following form

        Comparison op
           {'field' : 'index',
            'op'    : '>=',
            'value' : value}

        Match single value
           {'field' : 'index',
            'value' : v1}

        Match a set of values
           {'field' : 'index',
            'value' : [v1, v2, v3]}
    """
    def __init__(self, table, where=None):
        self.table = table
        self.where = where
        self.column_filter = None
        self.the_condition = None
        self.conditions = []
        self.values = None
        if where:
            self.generate(where)

    def generate(self, where):
        # and condictions
        for c in where:
            op = c.get('op',None)
            value = c['value']
            field = c['field']

            if field == 'index' and isinstance(value, datetime):
                value = time.mktime(value.timetuple())
                self.conditions.append('(%s %s %s)' % (field,op,value))
            else:
                self.generate_multiple_conditions(op,value,field)

        if len(self.conditions):
            self.the_condition = '(' + ' & '.join(self.conditions) + ')'

    def generate_multiple_conditions(self, op, value, field):

        if op and op == 'in' or isinstance(value, (list, np.ndarray)):
            if len(value) <= 61:
                l = '(' + ' | '.join([ "(%s == '%s')" % (field,v)
                                       for v in value ]) + ')'
                self.conditions.append(l)
            else:
                self.column_filter = set(value)
        else:
            if op is None:
                op = '=='
            self.conditions.append('(%s %s "%s")' % (field,op,value))

    def select(self):
        """
        generate the selection
        """
        if self.the_condition:
            self.values = self.table.readWhere(self.the_condition)

        else:
            self.values = self.table.read()

    def select_coords(self):
        """
        generate the selection
        """
        self.values = self.table.getWhereList(self.the_condition)