This file is indexed.

/usr/share/pyshared/pandas/rpy/common.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
"""
Utilities for making working with rpy2 more user- and
developer-friendly.
"""

import numpy as np

import pandas as pn
import pandas.util.testing as _test

from rpy2.robjects.packages import importr
from rpy2.robjects import r
import rpy2.robjects as robj

__all__ = ['convert_robj', 'load_data']

def load_data(name, package=None, convert=True):
    if package:
        pack = importr(package)

    r.data(name)

    robj = r[name]

    if convert:
        return convert_robj(robj)
    else:
        return robj

def _rclass(obj):
    """
    Return R class name for input object
    """
    return r['class'](obj)[0]

def _is_null(obj):
    return _rclass(obj) == 'NULL'

def _convert_list(obj):
    """
    Convert named Vector to dict
    """
    values = [convert_robj(x) for x in obj]
    return dict(zip(obj.names, values))

def _convert_array(obj):
    """
    Convert Array to ndarray
    """
    # this royally sucks. "Matrices" (arrays) with dimension > 3 in R aren't
    # really matrices-- things come out Fortran order in the first two
    # dimensions. Maybe I'm wrong?

    dim = list(obj.dim)
    values = np.array(list(obj))

    if len(dim) == 3:
        arr = values.reshape(dim[-1:] + dim[:-1]).swapaxes(1, 2)


    if obj.names is not None:
        name_list = [list(x) for x in obj.names]
        if len(dim) == 2:
            return pn.DataFrame(arr, index=name_list[0], columns=name_list[1])
        elif len(dim) == 3:
            return pn.Panel(arr, items=name_list[2],
                            major_axis=name_list[0],
                            minor_axis=name_list[1])
        else:
            print 'Cannot handle dim=%d' % len(dim)
    else:
        return arr

def _convert_vector(obj):
    if isinstance(obj, robj.IntVector):
        return _convert_int_vector(obj)
    elif isinstance(obj, robj.StrVector):
        return _convert_str_vector(obj)

    return list(obj)

NA_INTEGER = -2147483648

def _convert_int_vector(obj):
    arr = np.asarray(obj)
    mask = arr == NA_INTEGER
    if mask.any():
        arr = arr.astype(float)
        arr[mask] = np.nan
    return arr

def _convert_str_vector(obj):
    arr = np.asarray(obj, dtype=object)
    mask = arr == robj.NA_Character
    if mask.any():
        arr[mask] = np.nan
    return arr

def _convert_DataFrame(rdf):
    columns = list(rdf.colnames)
    rows = np.array(rdf.rownames)

    data = {}
    for i, col in enumerate(columns):
        vec = rdf.rx2(i + 1)
        values = _convert_vector(vec)

        if isinstance(vec, robj.FactorVector):
            values = np.asarray(vec.levels).take(values - 1)

        data[col] = values

    return pn.DataFrame(data, index=_check_int(rows), columns=columns)

def _convert_Matrix(mat):
    columns = mat.colnames
    rows = mat.rownames

    columns = None if _is_null(columns) else list(columns)
    index = None if _is_null(rows) else list(rows)

    return pn.DataFrame(np.array(mat), index=_check_int(index),
                        columns=columns)

def _check_int(vec):
    try:
        # R observation numbers come through as strings
        vec = vec.astype(int)
    except Exception:
        pass

    return vec

_pandas_converters = [
    (robj.DataFrame , _convert_DataFrame),
    (robj.Matrix , _convert_Matrix),
    (robj.StrVector, _convert_vector),
    (robj.FloatVector, _convert_vector),
    (robj.Array, _convert_array),
    (robj.Vector, _convert_list),
]

_converters = [
    (robj.DataFrame , lambda x: _convert_DataFrame(x).toRecords(index=False)),
    (robj.Matrix , lambda x: _convert_Matrix(x).toRecords(index=False)),
    (robj.IntVector, _convert_vector),
    (robj.StrVector, _convert_vector),
    (robj.FloatVector, _convert_vector),
    (robj.Array, _convert_array),
    (robj.Vector, _convert_list),
]

def convert_robj(obj, use_pandas=True):
    """
    Convert rpy2 object to a pandas-friendly form

    Parameters
    ----------
    obj : rpy2 object

    Returns
    -------
    Non-rpy data structure, mix of NumPy and pandas objects
    """
    if not isinstance(obj, robj.RObjectMixin):
        return obj

    converters = _pandas_converters if use_pandas else _converters

    for rpy_type, converter in converters:
        if isinstance(obj, rpy_type):
            return converter(obj)

    raise Exception('Do not know what to do with %s object' % type(obj))

def test_convert_list():
    obj = r('list(a=1, b=2, c=3)')

    converted = convert_robj(obj)
    expected = {'a' : [1], 'b' : [2], 'c' : [3]}

    _test.assert_dict_equal(converted, expected)

def test_convert_nested_list():
    obj = r('list(a=list(foo=1, bar=2))')

    converted = convert_robj(obj)
    expected = {'a' : {'foo' : [1], 'bar' : [2]}}

    _test.assert_dict_equal(converted, expected)

def test_convert_frame():
    # built-in dataset
    df = r['faithful']

    converted = convert_robj(df)

    assert np.array_equal(converted.columns, ['eruptions', 'waiting'])
    assert np.array_equal(converted.index, np.arange(1, 273))

def _test_matrix():
    r('mat <- matrix(rnorm(9), ncol=3)')
    r('colnames(mat) <- c("one", "two", "three")')
    r('rownames(mat) <- c("a", "b", "c")')

    return r['mat']

def test_convert_matrix():
    mat = _test_matrix()

    converted = convert_robj(mat)

    assert np.array_equal(converted.index, ['a', 'b', 'c'])
    assert np.array_equal(converted.columns, ['one', 'two', 'three'])


if __name__ == '__main__':
    pass