/usr/share/pyshared/pandas/sparse/array.py is in python-pandas 0.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 | """
SparseArray data structure
"""
# pylint: disable=E1101,E1103,W0231
from numpy import nan, ndarray
import numpy as np
import operator
import pandas.core.common as com
from pandas.util import py3compat
from pandas._sparse import BlockIndex, IntIndex
import pandas._sparse as splib
import pandas._engines as _gin
def _sparse_op_wrap(op, name):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def wrapper(self, other):
if isinstance(other, np.ndarray):
assert(len(self) == len(other))
if not isinstance(other, SparseArray):
other = SparseArray(other, fill_value=self.fill_value)
return _sparse_array_op(self, other, op, name)
elif np.isscalar(other):
new_fill_value = op(np.float64(self.fill_value),
np.float64(other))
return SparseArray(op(self.sp_values, other),
sparse_index=self.sp_index,
fill_value=new_fill_value)
else: # pragma: no cover
raise TypeError('operation with %s not supported' % type(other))
wrapper.__name__ = name
return wrapper
def _sparse_array_op(left, right, op, name):
if np.isnan(left.fill_value):
sparse_op = lambda a, b: _sparse_nanop(a, b, name)
else:
sparse_op = lambda a, b: _sparse_fillop(a, b, name)
if left.sp_index.equals(right.sp_index):
result = op(left.sp_values, right.sp_values)
result_index = left.sp_index
else:
result, result_index = sparse_op(left, right)
try:
fill_value = op(left.fill_value, right.fill_value)
except ZeroDivisionError:
fill_value = nan
return SparseArray(result, sparse_index=result_index,
fill_value=fill_value)
def _sparse_nanop(this, other, name):
sparse_op = getattr(splib, 'sparse_nan%s' % name)
result, result_index = sparse_op(this.sp_values,
this.sp_index,
other.sp_values,
other.sp_index)
return result, result_index
def _sparse_fillop(this, other, name):
sparse_op = getattr(splib, 'sparse_%s' % name)
result, result_index = sparse_op(this.sp_values,
this.sp_index,
this.fill_value,
other.sp_values,
other.sp_index,
other.fill_value)
return result, result_index
class SparseArray(np.ndarray):
"""Data structure for labeled, sparse floating point data
Parameters
----------
data : {array-like, Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
Defaults to NaN (code for missing)
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
__array_priority__ = 15
sp_index = None
fill_value = None
def __new__(cls, data, sparse_index=None, kind='integer', fill_value=None,
copy=False):
is_sparse_array = isinstance(data, SparseArray)
if fill_value is None:
if is_sparse_array:
fill_value = data.fill_value
else:
fill_value = nan
if is_sparse_array:
sparse_index = data.sp_index
values = np.asarray(data)
else:
# array-like
if sparse_index is None:
values, sparse_index = make_sparse(data, kind=kind,
fill_value=fill_value)
else:
values = data
assert(len(values) == sparse_index.npoints)
# Create array, do *not* copy data by default
if copy:
subarr = np.array(values, dtype=np.float64, copy=True)
else:
subarr = np.asarray(values, dtype=np.float64)
# Change the class of the array to be the subclass type.
output = subarr.view(cls)
output.sp_index = sparse_index
output.fill_value = np.float64(fill_value)
return output
@property
def _constructor(self):
return lambda x: SparseArray(x, fill_value=self.fill_value,
kind=self.kind)
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return 'block'
elif isinstance(self.sp_index, IntIndex):
return 'integer'
def __array_finalize__(self, obj):
"""
Gets called after any ufunc or other array operations, necessary
to pass on the index.
"""
self.sp_index = getattr(obj, 'sp_index', None)
self.fill_value = getattr(obj, 'fill_value', None)
def __reduce__(self):
"""Necessary for making this object picklable"""
object_state = list(ndarray.__reduce__(self))
subclass_state = self.fill_value, self.sp_index
object_state[2] = (object_state[2], subclass_state)
return tuple(object_state)
def __setstate__(self, state):
"""Necessary for making this object picklable"""
nd_state, own_state = state
ndarray.__setstate__(self, nd_state)
fill_value, sp_index = own_state[:2]
self.sp_index = sp_index
self.fill_value = fill_value
def __len__(self):
return self.sp_index.length
def __repr__(self):
return '%s\n%s' % (np.ndarray.__repr__(self),
repr(self.sp_index))
# Arithmetic operators
__add__ = _sparse_op_wrap(operator.add, 'add')
__sub__ = _sparse_op_wrap(operator.sub, 'sub')
__mul__ = _sparse_op_wrap(operator.mul, 'mul')
__truediv__ = _sparse_op_wrap(operator.truediv, 'truediv')
__floordiv__ = _sparse_op_wrap(operator.floordiv, 'floordiv')
__pow__ = _sparse_op_wrap(operator.pow, 'pow')
# reverse operators
__radd__ = _sparse_op_wrap(operator.add, 'add')
__rsub__ = _sparse_op_wrap(lambda x, y: y - x, 'rsub')
__rmul__ = _sparse_op_wrap(operator.mul, 'mul')
__rtruediv__ = _sparse_op_wrap(lambda x, y: y / x, 'rtruediv')
__rfloordiv__ = _sparse_op_wrap(lambda x, y: y // x, 'rfloordiv')
__rpow__ = _sparse_op_wrap(lambda x, y: y ** x, 'rpow')
def disable(self, other):
raise NotImplementedError('inplace binary ops not supported')
# Inplace operators
__iadd__ = disable
__isub__ = disable
__imul__ = disable
__itruediv__ = disable
__ifloordiv__ = disable
__ipow__ = disable
# Python 2 division operators
if not py3compat.PY3:
__div__ = _sparse_op_wrap(operator.div, 'div')
__rdiv__ = _sparse_op_wrap(lambda x, y: y / x, '__rdiv__')
__idiv__ = disable
@property
def values(self):
"""
Dense values
"""
output = np.empty(len(self), dtype=np.float64)
int_index = self.sp_index.to_int_index()
output.fill(self.fill_value)
output.put(int_index.indices, self)
return output
@property
def sp_values(self):
# caching not an option, leaks memory
return self.view(np.ndarray)
def __getitem__(self, key):
"""
"""
if com.is_integer(key):
return self._get_val_at(key)
else:
data_slice = self.values[key]
return self._constructor(data_slice)
def __getslice__(self, i, j):
if i < 0:
i = 0
if j < 0:
j = 0
slobj = slice(i, j)
return self.__getitem__(slobj)
def _get_val_at(self, loc):
n = len(self)
if loc < 0:
loc += n
if loc >= len(self) or loc < 0:
raise Exception('Out of bounds access')
sp_loc = self.sp_index.lookup(loc)
if sp_loc == -1:
return self.fill_value
else:
return _gin.get_value_at(self, sp_loc)
def take(self, indices, axis=0):
"""
Sparse-compatible version of ndarray.take
Returns
-------
taken : ndarray
"""
assert(axis == 0)
indices = np.asarray(indices, dtype=int)
n = len(self)
if (indices < 0).any() or (indices >= n).any():
raise Exception('out of bounds access')
if self.sp_index.npoints > 0:
locs = np.array([self.sp_index.lookup(loc) for loc in indices])
result = self.sp_values.take(locs)
result[locs == -1] = self.fill_value
else:
result = np.empty(len(indices))
result.fill(self.fill_value)
return result
def __setitem__(self, key, value):
raise Exception('SparseArray objects are immutable')
def __setslice__(self, i, j, value):
raise Exception('SparseArray objects are immutable')
def to_dense(self):
"""
Convert SparseSeries to (dense) Series
"""
return self.values
def astype(self, dtype=None):
"""
"""
dtype = np.dtype(dtype)
if dtype is not None and dtype not in (np.float_, float):
raise Exception('Can only support floating point data for now')
return self.copy()
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
if deep:
values = self.sp_values.copy()
else:
values = self.sp_values
return SparseArray(values, sparse_index=self.sp_index,
fill_value=self.fill_value)
def count(self):
"""
Compute sum of non-NA/null observations in SparseSeries. If the
fill_value is not NaN, the "sparse" locations will be included in the
observation count
Returns
-------
nobs : int
"""
sp_values = self.sp_values
valid_spvals = np.isfinite(sp_values).sum()
if self._null_fill_value:
return valid_spvals
else:
return valid_spvals + (len(self) - len(sp_values))
@property
def _null_fill_value(self):
return np.isnan(self.fill_value)
@property
def _valid_sp_values(self):
sp_vals = self.sp_values
mask = np.isfinite(sp_vals)
return sp_vals[mask]
def sum(self, axis=None, dtype=None, out=None):
"""
Sum of non-NA/null values
Returns
-------
sum : float
"""
valid_vals = self._valid_sp_values
sp_sum = valid_vals.sum()
if self._null_fill_value:
return sp_sum
else:
nsparse = self.sp_index.npoints
return sp_sum + self.fill_value * nsparse
def cumsum(self, axis=0, dtype=None, out=None):
"""
Cumulative sum of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Returns
-------
cumsum : Series
"""
if com.notnull(self.fill_value):
return self.to_dense().cumsum()
# TODO: what if sp_values contains NaN??
return SparseArray(self.sp_values.cumsum(),
sparse_index=self.sp_index,
fill_value=self.fill_value)
def mean(self, axis=None, dtype=None, out=None):
"""
Mean of non-NA/null values
Returns
-------
mean : float
"""
valid_vals = self._valid_sp_values
sp_sum = valid_vals.sum()
ct = len(valid_vals)
if self._null_fill_value:
return sp_sum / ct
else:
nsparse = self.sp_index.npoints
return (sp_sum + self.fill_value * nsparse) / (ct + nsparse)
def make_sparse(arr, kind='block', fill_value=nan):
"""
Convert ndarray to sparse format
Parameters
----------
arr : ndarray
kind : {'block', 'integer'}
fill_value : NaN or another value
Returns
-------
(sparse_values, index) : (ndarray, SparseIndex)
"""
arr = np.asarray(arr)
length = len(arr)
if np.isnan(fill_value):
mask = -np.isnan(arr)
else:
mask = arr != fill_value
indices = np.arange(length, dtype=np.int32)[mask]
if kind == 'block':
locs, lens = splib.get_blocks(indices)
index = BlockIndex(length, locs, lens)
elif kind == 'integer':
index = IntIndex(length, indices)
else: # pragma: no cover
raise ValueError('must be block or integer type')
sparsified_values = arr[mask]
return sparsified_values, index
|