This file is indexed.

/usr/share/pyshared/pandas/sparse/array.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
"""
SparseArray data structure
"""

# pylint: disable=E1101,E1103,W0231

from numpy import nan, ndarray
import numpy as np

import operator
import pandas.core.common as com

from pandas.util import py3compat

from pandas._sparse import BlockIndex, IntIndex
import pandas._sparse as splib
import pandas._engines as _gin


def _sparse_op_wrap(op, name):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    def wrapper(self, other):
        if isinstance(other, np.ndarray):
            assert(len(self) == len(other))
            if not isinstance(other, SparseArray):
                other = SparseArray(other, fill_value=self.fill_value)
            return _sparse_array_op(self, other, op, name)
        elif np.isscalar(other):
            new_fill_value = op(np.float64(self.fill_value),
                                np.float64(other))

            return SparseArray(op(self.sp_values, other),
                               sparse_index=self.sp_index,
                               fill_value=new_fill_value)
        else: # pragma: no cover
            raise TypeError('operation with %s not supported' % type(other))

    wrapper.__name__ = name
    return wrapper

def _sparse_array_op(left, right, op, name):
    if np.isnan(left.fill_value):
        sparse_op = lambda a, b: _sparse_nanop(a, b, name)
    else:
        sparse_op = lambda a, b: _sparse_fillop(a, b, name)

    if left.sp_index.equals(right.sp_index):
        result = op(left.sp_values, right.sp_values)
        result_index = left.sp_index
    else:
        result, result_index = sparse_op(left, right)

    try:
        fill_value = op(left.fill_value, right.fill_value)
    except ZeroDivisionError:
        fill_value = nan

    return SparseArray(result, sparse_index=result_index,
                       fill_value=fill_value)

def _sparse_nanop(this, other, name):
    sparse_op = getattr(splib, 'sparse_nan%s' % name)
    result, result_index = sparse_op(this.sp_values,
                                     this.sp_index,
                                     other.sp_values,
                                     other.sp_index)

    return result, result_index

def _sparse_fillop(this, other, name):
    sparse_op = getattr(splib, 'sparse_%s' % name)
    result, result_index = sparse_op(this.sp_values,
                                     this.sp_index,
                                     this.fill_value,
                                     other.sp_values,
                                     other.sp_index,
                                     other.fill_value)

    return result, result_index


class SparseArray(np.ndarray):
    """Data structure for labeled, sparse floating point data

Parameters
----------
data : {array-like, Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
    Defaults to NaN (code for missing)
sparse_index : {BlockIndex, IntIndex}, optional
    Only if you have one. Mainly used internally

Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
    """
    __array_priority__ = 15

    sp_index = None
    fill_value = None

    def __new__(cls, data, sparse_index=None, kind='integer', fill_value=None,
                copy=False):

        is_sparse_array = isinstance(data, SparseArray)
        if fill_value is None:
            if is_sparse_array:
                fill_value = data.fill_value
            else:
                fill_value = nan

        if is_sparse_array:
            sparse_index = data.sp_index
            values = np.asarray(data)
        else:
            # array-like
            if sparse_index is None:
                values, sparse_index = make_sparse(data, kind=kind,
                                                   fill_value=fill_value)
            else:
                values = data
                assert(len(values) == sparse_index.npoints)

        # Create array, do *not* copy data by default
        if copy:
            subarr = np.array(values, dtype=np.float64, copy=True)
        else:
            subarr = np.asarray(values, dtype=np.float64)

        # Change the class of the array to be the subclass type.
        output = subarr.view(cls)
        output.sp_index = sparse_index
        output.fill_value = np.float64(fill_value)
        return output

    @property
    def _constructor(self):
        return lambda x: SparseArray(x, fill_value=self.fill_value,
                                     kind=self.kind)

    @property
    def kind(self):
        if isinstance(self.sp_index, BlockIndex):
            return 'block'
        elif isinstance(self.sp_index, IntIndex):
            return 'integer'

    def __array_finalize__(self, obj):
        """
        Gets called after any ufunc or other array operations, necessary
        to pass on the index.
        """
        self.sp_index = getattr(obj, 'sp_index', None)
        self.fill_value = getattr(obj, 'fill_value', None)

    def __reduce__(self):
        """Necessary for making this object picklable"""
        object_state = list(ndarray.__reduce__(self))
        subclass_state = self.fill_value, self.sp_index
        object_state[2] = (object_state[2], subclass_state)
        return tuple(object_state)

    def __setstate__(self, state):
        """Necessary for making this object picklable"""
        nd_state, own_state = state
        ndarray.__setstate__(self, nd_state)

        fill_value, sp_index = own_state[:2]
        self.sp_index = sp_index
        self.fill_value = fill_value

    def __len__(self):
        return self.sp_index.length

    def __repr__(self):
        return '%s\n%s' % (np.ndarray.__repr__(self),
                           repr(self.sp_index))

    # Arithmetic operators

    __add__ = _sparse_op_wrap(operator.add, 'add')
    __sub__ = _sparse_op_wrap(operator.sub, 'sub')
    __mul__ = _sparse_op_wrap(operator.mul, 'mul')
    __truediv__ = _sparse_op_wrap(operator.truediv, 'truediv')
    __floordiv__ = _sparse_op_wrap(operator.floordiv, 'floordiv')
    __pow__ = _sparse_op_wrap(operator.pow, 'pow')

    # reverse operators
    __radd__ = _sparse_op_wrap(operator.add, 'add')
    __rsub__ = _sparse_op_wrap(lambda x, y: y - x, 'rsub')
    __rmul__ = _sparse_op_wrap(operator.mul, 'mul')
    __rtruediv__ = _sparse_op_wrap(lambda x, y: y / x, 'rtruediv')
    __rfloordiv__ = _sparse_op_wrap(lambda x, y: y // x, 'rfloordiv')
    __rpow__ = _sparse_op_wrap(lambda x, y: y ** x, 'rpow')

    def disable(self, other):
        raise NotImplementedError('inplace binary ops not supported')
    # Inplace operators
    __iadd__ = disable
    __isub__ = disable
    __imul__ = disable
    __itruediv__ = disable
    __ifloordiv__ = disable
    __ipow__ = disable

    # Python 2 division operators
    if not py3compat.PY3:
        __div__ = _sparse_op_wrap(operator.div, 'div')
        __rdiv__ = _sparse_op_wrap(lambda x, y: y / x, '__rdiv__')
        __idiv__ = disable

    @property
    def values(self):
        """
        Dense values
        """
        output = np.empty(len(self), dtype=np.float64)
        int_index = self.sp_index.to_int_index()
        output.fill(self.fill_value)
        output.put(int_index.indices, self)
        return output

    @property
    def sp_values(self):
        # caching not an option, leaks memory
        return self.view(np.ndarray)

    def __getitem__(self, key):
        """

        """
        if com.is_integer(key):
            return self._get_val_at(key)
        else:
            data_slice = self.values[key]
            return self._constructor(data_slice)

    def __getslice__(self, i, j):
        if i < 0:
            i = 0
        if j < 0:
            j = 0
        slobj = slice(i, j)
        return self.__getitem__(slobj)

    def _get_val_at(self, loc):
        n = len(self)
        if loc < 0:
            loc += n

        if loc >= len(self) or loc < 0:
            raise Exception('Out of bounds access')

        sp_loc = self.sp_index.lookup(loc)
        if sp_loc == -1:
            return self.fill_value
        else:
            return _gin.get_value_at(self, sp_loc)

    def take(self, indices, axis=0):
        """
        Sparse-compatible version of ndarray.take

        Returns
        -------
        taken : ndarray
        """
        assert(axis == 0)
        indices = np.asarray(indices, dtype=int)

        n = len(self)
        if (indices < 0).any() or (indices >= n).any():
            raise Exception('out of bounds access')

        if self.sp_index.npoints > 0:
            locs = np.array([self.sp_index.lookup(loc) for loc in indices])
            result = self.sp_values.take(locs)
            result[locs == -1] = self.fill_value
        else:
            result = np.empty(len(indices))
            result.fill(self.fill_value)

        return result

    def __setitem__(self, key, value):
        raise Exception('SparseArray objects are immutable')

    def __setslice__(self, i, j, value):
        raise Exception('SparseArray objects are immutable')

    def to_dense(self):
        """
        Convert SparseSeries to (dense) Series
        """
        return self.values

    def astype(self, dtype=None):
        """

        """
        dtype = np.dtype(dtype)
        if dtype is not None and dtype not in (np.float_, float):
            raise Exception('Can only support floating point data for now')
        return self.copy()

    def copy(self, deep=True):
        """
        Make a copy of the SparseSeries. Only the actual sparse values need to
        be copied
        """
        if deep:
            values = self.sp_values.copy()
        else:
            values = self.sp_values
        return SparseArray(values, sparse_index=self.sp_index,
                           fill_value=self.fill_value)

    def count(self):
        """
        Compute sum of non-NA/null observations in SparseSeries. If the
        fill_value is not NaN, the "sparse" locations will be included in the
        observation count

        Returns
        -------
        nobs : int
        """
        sp_values = self.sp_values
        valid_spvals = np.isfinite(sp_values).sum()
        if self._null_fill_value:
            return valid_spvals
        else:
            return valid_spvals + (len(self) - len(sp_values))

    @property
    def _null_fill_value(self):
        return np.isnan(self.fill_value)

    @property
    def _valid_sp_values(self):
        sp_vals = self.sp_values
        mask = np.isfinite(sp_vals)
        return sp_vals[mask]

    def sum(self, axis=None, dtype=None, out=None):
        """
        Sum of non-NA/null values

        Returns
        -------
        sum : float
        """
        valid_vals = self._valid_sp_values
        sp_sum = valid_vals.sum()
        if self._null_fill_value:
            return sp_sum
        else:
            nsparse = self.sp_index.npoints
            return sp_sum + self.fill_value * nsparse

    def cumsum(self, axis=0, dtype=None, out=None):
        """
        Cumulative sum of values. Preserves locations of NaN values

        Extra parameters are to preserve ndarray interface.

        Returns
        -------
        cumsum : Series
        """
        if com.notnull(self.fill_value):
            return self.to_dense().cumsum()
        # TODO: what if sp_values contains NaN??
        return SparseArray(self.sp_values.cumsum(),
                           sparse_index=self.sp_index,
                           fill_value=self.fill_value)

    def mean(self, axis=None, dtype=None, out=None):
        """
        Mean of non-NA/null values

        Returns
        -------
        mean : float
        """
        valid_vals = self._valid_sp_values
        sp_sum = valid_vals.sum()
        ct = len(valid_vals)

        if self._null_fill_value:
            return sp_sum / ct
        else:
            nsparse = self.sp_index.npoints
            return (sp_sum + self.fill_value * nsparse) / (ct + nsparse)



def make_sparse(arr, kind='block', fill_value=nan):
    """
    Convert ndarray to sparse format

    Parameters
    ----------
    arr : ndarray
    kind : {'block', 'integer'}
    fill_value : NaN or another value

    Returns
    -------
    (sparse_values, index) : (ndarray, SparseIndex)
    """
    arr = np.asarray(arr)
    length = len(arr)

    if np.isnan(fill_value):
        mask = -np.isnan(arr)
    else:
        mask = arr != fill_value

    indices = np.arange(length, dtype=np.int32)[mask]

    if kind == 'block':
        locs, lens = splib.get_blocks(indices)
        index = BlockIndex(length, locs, lens)
    elif kind == 'integer':
        index = IntIndex(length, indices)
    else: # pragma: no cover
        raise ValueError('must be block or integer type')

    sparsified_values = arr[mask]
    return sparsified_values, index