/usr/share/pyshared/pandas/sparse/panel.py is in python-pandas 0.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 | """
Data structures for sparse float data. Life is made simpler by dealing only with
float64 data
"""
# pylint: disable=E1101,E1103,W0231
import numpy as np
from pandas.core.common import _pickle_array, _unpickle_array, _mut_exclusive
from pandas.core.index import Index, MultiIndex, _ensure_index
from pandas.core.frame import DataFrame
from pandas.core.panel import Panel
from pandas.sparse.frame import SparseDataFrame
from pandas.util.decorators import deprecate
class SparsePanelAxis(object):
def __init__(self, cache_field, frame_attr):
self.cache_field = cache_field
self.frame_attr = frame_attr
def __get__(self, obj, type=None):
return getattr(obj, self.cache_field, None)
def __set__(self, obj, value):
value = _ensure_index(value)
if isinstance(value, MultiIndex):
raise NotImplementedError
for v in obj._frames.itervalues():
setattr(v, self.frame_attr, value)
setattr(obj, self.cache_field, value)
class SparsePanel(Panel):
"""
Sparse version of Panel
Parameters
----------
frames : dict of DataFrame objects
items : array-like
major_axis : array-like
minor_axis : array-like
default_kind : {'block', 'integer'}, default 'block'
Default sparse kind for converting Series to SparseSeries. Will not
override SparseSeries passed into constructor
default_fill_value : float
Default fill_value for converting Series to SparseSeries. Will not
override SparseSeries passed in
Notes
-----
"""
ndim = 3
def __init__(self, frames, items=None, major_axis=None, minor_axis=None,
default_fill_value=np.nan, default_kind='block'):
if isinstance(frames, np.ndarray):
new_frames = {}
for item, vals in zip(items, frames):
new_frames[item] = \
SparseDataFrame(vals, index=major_axis,
columns=minor_axis,
default_fill_value=default_fill_value,
default_kind=default_kind)
frames = new_frames
assert(isinstance(frames, dict))
self.default_fill_value = fill_value = default_fill_value
self.default_kind = kind = default_kind
# pre-filter, if necessary
if items is None:
items = Index(sorted(frames.keys()))
items = _ensure_index(items)
(clean_frames,
major_axis,
minor_axis) = _convert_frames(frames, major_axis,
minor_axis, kind=kind,
fill_value=fill_value)
self._frames = clean_frames
# do we want to fill missing ones?
for item in items:
if item not in clean_frames:
raise Exception('column %s not found in data' % item)
self._items = items
self.major_axis = major_axis
self.minor_axis = minor_axis
def _consolidate_inplace(self): # pragma: no cover
# do nothing when DataFrame calls this method
pass
def __array_wrap__(self, result):
return SparsePanel(result, items=self.items,
major_axis=self.major_axis,
minor_axis=self.minor_axis,
default_kind=self.default_kind,
default_fill_value=self.default_fill_value)
@classmethod
def from_dict(cls, data):
"""
Analogous to Panel.from_dict
"""
return SparsePanel(data)
def to_dense(self):
"""
Convert SparsePanel to (dense) Panel
Returns
-------
dense : Panel
"""
return Panel(self.values, self.items, self.major_axis,
self.minor_axis)
@property
def values(self):
# return dense values
return np.array([self._frames[item].values
for item in self.items])
# need a special property for items to make the field assignable
_items = None
def _get_items(self):
return self._items
def _set_items(self, new_items):
new_items = _ensure_index(new_items)
if isinstance(new_items, MultiIndex):
raise NotImplementedError
# need to create new frames dict
old_frame_dict = self._frames
old_items = self._items
self._frames = dict((new_k, old_frame_dict[old_k])
for new_k, old_k in zip(new_items, old_items))
self._items = new_items
items = property(fget=_get_items, fset=_set_items)
# DataFrame's index
major_axis = SparsePanelAxis('_major_axis', 'index')
# DataFrame's columns / "items"
minor_axis = SparsePanelAxis('_minor_axis', 'columns')
def _get_item_cache(self, key):
return self._frames[key]
def __setitem__(self, key, value):
if isinstance(value, DataFrame):
value = value.reindex(index=self.major_axis,
columns=self.minor_axis)
if not isinstance(value, SparseDataFrame):
value = value.to_sparse(fill_value=self.default_fill_value,
kind=self.default_kind)
else:
raise ValueError('only DataFrame objects can be set currently')
self._frames[key] = value
if key not in self.items:
self._items = Index(list(self.items) + [key])
def set_value(self, item, major, minor, value):
"""
Quickly set single value at (item, major, minor) location
Parameters
----------
item : item label (panel item)
major : major axis label (panel item row)
minor : minor axis label (panel item column)
value : scalar
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Panel
Returns
-------
panel : SparsePanel
"""
dense = self.to_dense().set_value(item, major, minor, value)
return dense.to_sparse(kind=self.default_kind,
fill_value=self.default_fill_value)
def __delitem__(self, key):
loc = self.items.get_loc(key)
indices = range(loc) + range(loc + 1, len(self.items))
del self._frames[key]
self._items = self._items.take(indices)
def __getstate__(self):
# pickling
return (self._frames, _pickle_array(self.items),
_pickle_array(self.major_axis), _pickle_array(self.minor_axis),
self.default_fill_value, self.default_kind)
def __setstate__(self, state):
frames, items, major, minor, fv, kind = state
self.default_fill_value = fv
self.default_kind = kind
self._items = _unpickle_array(items)
self._major_axis = _unpickle_array(major)
self._minor_axis = _unpickle_array(minor)
self._frames = frames
def copy(self):
"""
Make a (shallow) copy of the sparse panel
Returns
-------
copy : SparsePanel
"""
return SparsePanel(self._frames.copy(), items=self.items,
major_axis=self.major_axis,
minor_axis=self.minor_axis,
default_fill_value=self.default_fill_value,
default_kind=self.default_kind)
def to_frame(self, filter_observations=True):
"""
Convert SparsePanel to (dense) DataFrame
Returns
-------
frame : DataFrame
"""
if not filter_observations:
raise Exception('filter_observations=False not supported for '
'SparsePanel.to_long')
I, N, K = self.shape
counts = np.zeros(N * K, dtype=int)
d_values = {}
d_indexer = {}
for item in self.items:
frame = self[item]
values, major, minor = _stack_sparse_info(frame)
# values are stacked column-major
indexer = minor * N + major
counts.put(indexer, counts.take(indexer) + 1) # cuteness
d_values[item] = values
d_indexer[item] = indexer
# have full set of observations for each item
mask = counts == I
# for each item, take mask values at index locations for those sparse
# values, and use that to select values
values = np.column_stack([d_values[item][mask.take(d_indexer[item])]
for item in self.items])
inds, = mask.nonzero()
# still column major
major_labels = inds % N
minor_labels = inds // N
index = MultiIndex(levels=[self.major_axis, self.minor_axis],
labels=[major_labels, minor_labels])
df = DataFrame(values, index=index, columns=self.items)
return df.sortlevel(level=0)
to_long = deprecate('to_long', to_frame)
toLong = deprecate('toLong', to_frame)
def reindex(self, major=None, items=None, minor=None, major_axis=None,
minor_axis=None, copy=False):
"""
Conform / reshape panel axis labels to new input labels
Parameters
----------
major : array-like, default None
items : array-like, default None
minor : array-like, default None
copy : boolean, default False
Copy underlying SparseDataFrame objects
Returns
-------
reindexed : SparsePanel
"""
major = _mut_exclusive(major, major_axis)
minor = _mut_exclusive(minor, minor_axis)
if None == major == items == minor:
raise ValueError('Must specify at least one axis')
major = self.major_axis if major is None else major
minor = self.minor_axis if minor is None else minor
if items is not None:
new_frames = {}
for item in items:
if item in self._frames:
new_frames[item] = self._frames[item]
else:
raise Exception('Reindexing with new items not yet '
'supported')
else:
new_frames = self._frames
if copy:
new_frames = dict((k, v.copy()) for k, v in new_frames.iteritems())
return SparsePanel(new_frames, items=items,
major_axis=major,
minor_axis=minor,
default_fill_value=self.default_fill_value,
default_kind=self.default_kind)
def _combine(self, other, func, axis=0):
if isinstance(other, DataFrame):
return self._combineFrame(other, func, axis=axis)
elif isinstance(other, Panel):
return self._combinePanel(other, func)
elif np.isscalar(other):
new_frames = dict((k, func(v, other))
for k, v in self.iterkv())
return self._new_like(new_frames)
def _combineFrame(self, other, func, axis=0):
index, columns = self._get_plane_axes(axis)
axis = self._get_axis_number(axis)
other = other.reindex(index=index, columns=columns)
if axis == 0:
new_values = func(self.values, other.values)
elif axis == 1:
new_values = func(self.values.swapaxes(0, 1), other.values.T)
new_values = new_values.swapaxes(0, 1)
elif axis == 2:
new_values = func(self.values.swapaxes(0, 2), other.values)
new_values = new_values.swapaxes(0, 2)
# TODO: make faster!
new_frames = {}
for item, item_slice in zip(self.items, new_values):
old_frame = self[item]
ofv = old_frame.default_fill_value
ok = old_frame.default_kind
new_frames[item] = SparseDataFrame(item_slice,
index=self.major_axis,
columns=self.minor_axis,
default_fill_value=ofv,
default_kind=ok)
return self._new_like(new_frames)
def _new_like(self, new_frames):
return SparsePanel(new_frames, self.items, self.major_axis,
self.minor_axis,
default_fill_value=self.default_fill_value,
default_kind=self.default_kind)
def _combinePanel(self, other, func):
items = self.items + other.items
major = self.major_axis + other.major_axis
minor = self.minor_axis + other.minor_axis
# could check that everything's the same size, but forget it
this = self.reindex(items=items, major=major, minor=minor)
other = other.reindex(items=items, major=major, minor=minor)
new_frames = {}
for item in items:
new_frames[item] = func(this[item], other[item])
# maybe unnecessary
new_default_fill = func(self.default_fill_value,
other.default_fill_value)
return SparsePanel(new_frames, items, major, minor,
default_fill_value=new_default_fill,
default_kind=self.default_kind)
def major_xs(self, key):
"""
Return slice of panel along major axis
Parameters
----------
key : object
Major axis label
Returns
-------
y : DataFrame
index -> minor axis, columns -> items
"""
slices = dict((k, v.xs(key)) for k, v in self.iterkv())
return DataFrame(slices, index=self.minor_axis, columns=self.items)
def minor_xs(self, key):
"""
Return slice of panel along minor axis
Parameters
----------
key : object
Minor axis label
Returns
-------
y : SparseDataFrame
index -> major axis, columns -> items
"""
slices = dict((k, v[key]) for k, v in self.iterkv())
return SparseDataFrame(slices, index=self.major_axis,
columns=self.items,
default_fill_value=self.default_fill_value,
default_kind=self.default_kind)
SparseWidePanel = SparsePanel
def _convert_frames(frames, index, columns, fill_value=np.nan, kind='block'):
from pandas.core.panel import _get_combined_index
output = {}
for item, df in frames.iteritems():
if not isinstance(df, SparseDataFrame):
df = SparseDataFrame(df, default_kind=kind,
default_fill_value=fill_value)
output[item] = df
if index is None:
all_indexes = [df.index for df in output.values()]
index = _get_combined_index(all_indexes)
if columns is None:
all_columns = [df.columns for df in output.values()]
columns = _get_combined_index(all_columns)
index = _ensure_index(index)
columns = _ensure_index(columns)
for item, df in output.iteritems():
if not (df.index.equals(index) and df.columns.equals(columns)):
output[item] = df.reindex(index=index, columns=columns)
return output, index, columns
def _stack_sparse_info(frame):
lengths = [s.sp_index.npoints for _, s in frame.iteritems()]
# this is pretty fast
minor_labels = np.repeat(np.arange(len(frame.columns)), lengths)
inds_to_concat = []
vals_to_concat = []
for col in frame.columns:
series = frame[col]
if not np.isnan(series.fill_value):
raise Exception('This routine assumes NaN fill value')
int_index = series.sp_index.to_int_index()
inds_to_concat.append(int_index.indices)
vals_to_concat.append(series.sp_values)
major_labels = np.concatenate(inds_to_concat)
sparse_values = np.concatenate(vals_to_concat)
return sparse_values, major_labels, minor_labels
|