This file is indexed.

/usr/share/pyshared/pandas/sparse/series.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
"""
Data structures for sparse float data. Life is made simpler by dealing only with
float64 data
"""

# pylint: disable=E1101,E1103,W0231

from numpy import nan, ndarray
import numpy as np

import operator

from pandas.core.common import isnull
from pandas.core.index import Index, _ensure_index
from pandas.core.series import Series, TimeSeries, _maybe_match_name
from pandas.core.frame import DataFrame
import pandas.core.common as common
import pandas.core.datetools as datetools

from pandas.util import py3compat

from pandas.sparse.array import (make_sparse, _sparse_array_op, SparseArray)
from pandas._sparse import BlockIndex, IntIndex
import pandas._sparse as splib


#-------------------------------------------------------------------------------
# Wrapper function for Series arithmetic methods

def _sparse_op_wrap(op, name):
    """
    Wrapper function for Series arithmetic operations, to avoid
    code duplication.
    """
    def wrapper(self, other):
        if isinstance(other, Series):
            if not isinstance(other, SparseSeries):
                other = other.to_sparse(fill_value=self.fill_value)
            return _sparse_series_op(self, other, op, name)
        elif isinstance(other, DataFrame):
            return NotImplemented
        elif np.isscalar(other):
            new_fill_value = op(np.float64(self.fill_value),
                                np.float64(other))

            return SparseSeries(op(self.sp_values, other),
                                index=self.index,
                                sparse_index=self.sp_index,
                                fill_value=new_fill_value,
                                name=self.name)
        else: # pragma: no cover
            raise TypeError('operation with %s not supported' % type(other))

    wrapper.__name__ = name
    return wrapper

def _sparse_series_op(left, right, op, name):
    left, right = left.align(right, join='outer', copy=False)
    new_index = left.index
    new_name = _maybe_match_name(left, right)

    result = _sparse_array_op(left, right, op, name)
    result = result.view(SparseSeries)
    result.index = new_index
    result.name = new_name

    return result

class SparseSeries(SparseArray, Series):
    __array_priority__ = 15

    sp_index = None
    fill_value = None

    def __new__(cls, data, index=None, sparse_index=None, kind='block',
                fill_value=None, name=None, copy=False):

        is_sparse_array = isinstance(data, SparseArray)
        if fill_value is None:
            if is_sparse_array:
                fill_value = data.fill_value
            else:
                fill_value = nan

        if is_sparse_array:
            if isinstance(data, SparseSeries) and index is None:
                index = data.index
            elif index is not None:
                assert(len(index) == len(data))

            sparse_index = data.sp_index
            values = np.asarray(data)
        elif isinstance(data, (Series, dict)):
            if index is None:
                index = data.index

            data = Series(data)
            values, sparse_index = make_sparse(data, kind=kind,
                                               fill_value=fill_value)
        elif np.isscalar(data): # pragma: no cover
            if index is None:
                raise Exception('must pass index!')

            values = np.empty(len(index))
            values.fill(data)

            # TODO: more efficient

            values, sparse_index = make_sparse(values, kind=kind,
                                               fill_value=fill_value)

        else:
            # array-like
            if sparse_index is None:
                values, sparse_index = make_sparse(data, kind=kind,
                                                   fill_value=fill_value)
            else:
                values = data
                assert(len(values) == sparse_index.npoints)

        if index is None:
            index = Index(np.arange(sparse_index.length))
        index = _ensure_index(index)

        # Create array, do *not* copy data by default
        if copy:
            subarr = np.array(values, dtype=np.float64, copy=True)
        else:
            subarr = np.asarray(values, dtype=np.float64)

        if index.is_all_dates:
            cls = SparseTimeSeries

        # Change the class of the array to be the subclass type.
        output = subarr.view(cls)
        output.sp_index = sparse_index
        output.fill_value = np.float64(fill_value)
        output.index = index
        output.name = name
        return output

    def __init__(self, data, index=None, sparse_index=None, kind='block',
                 fill_value=None, name=None, copy=False):
        """Data structure for labeled, sparse floating point data

Parameters
----------
data : {array-like, Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
    Defaults to NaN (code for missing)
sparse_index : {BlockIndex, IntIndex}, optional
    Only if you have one. Mainly used internally

Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
        """
        pass

    @property
    def _constructor(self):
        def make_sp_series(data, index=None, name=None):
            return SparseSeries(data, index=index, fill_value=self.fill_value,
                                kind=self.kind, name=name)

        return make_sp_series

    @property
    def kind(self):
        if isinstance(self.sp_index, BlockIndex):
            return 'block'
        elif isinstance(self.sp_index, IntIndex):
            return 'integer'

    def __array_finalize__(self, obj):
        """
        Gets called after any ufunc or other array operations, necessary
        to pass on the index.
        """
        self._index = getattr(obj, '_index', None)
        self.name = getattr(obj, 'name', None)
        self.sp_index = getattr(obj, 'sp_index', None)
        self.fill_value = getattr(obj, 'fill_value', None)

    def __reduce__(self):
        """Necessary for making this object picklable"""
        object_state = list(ndarray.__reduce__(self))

        subclass_state = (self.index, self.fill_value, self.sp_index,
                          self.name)
        object_state[2] = (object_state[2], subclass_state)
        return tuple(object_state)

    def __setstate__(self, state):
        """Necessary for making this object picklable"""
        nd_state, own_state = state
        ndarray.__setstate__(self, nd_state)


        index, fill_value, sp_index = own_state[:3]
        name = None
        if len(own_state) > 3:
            name = own_state[3]

        self.sp_index = sp_index
        self.fill_value = fill_value
        self.index = index
        self.name = name

    def __len__(self):
        return self.sp_index.length

    def __repr__(self):
        series_rep = Series.__repr__(self)
        rep = '%s\n%s' % (series_rep, repr(self.sp_index))
        return rep

    # Arithmetic operators

    __add__ = _sparse_op_wrap(operator.add, 'add')
    __sub__ = _sparse_op_wrap(operator.sub, 'sub')
    __mul__ = _sparse_op_wrap(operator.mul, 'mul')
    __truediv__ = _sparse_op_wrap(operator.truediv, 'truediv')
    __floordiv__ = _sparse_op_wrap(operator.floordiv, 'floordiv')
    __pow__ = _sparse_op_wrap(operator.pow, 'pow')

    # reverse operators
    __radd__ = _sparse_op_wrap(operator.add, '__radd__')
    __rsub__ = _sparse_op_wrap(lambda x, y: y - x, '__rsub__')
    __rmul__ = _sparse_op_wrap(operator.mul, '__rmul__')
    __rtruediv__ = _sparse_op_wrap(lambda x, y: y / x, '__rtruediv__')
    __rfloordiv__ = _sparse_op_wrap(lambda x, y: y // x, 'floordiv')
    __rpow__ = _sparse_op_wrap(lambda x, y: y ** x, '__rpow__')

    # Python 2 division operators
    if not py3compat.PY3:
        __div__ = _sparse_op_wrap(operator.div, 'div')
        __rdiv__ = _sparse_op_wrap(lambda x, y: y / x, '__rdiv__')

    def __getitem__(self, key):
        """

        """
        try:
            return self._get_val_at(self.index.get_loc(key))

        except KeyError:
            if isinstance(key, (int, np.integer)):
                return self._get_val_at(key)
            raise Exception('Requested index not in this series!')

        except TypeError:
            # Could not hash item, must be array-like?
            pass

        # is there a case where this would NOT be an ndarray?
        # need to find an example, I took out the case for now

        dataSlice = self.values[key]
        new_index = Index(self.index.view(ndarray)[key])
        return self._constructor(dataSlice, index=new_index, name=self.name)

    def abs(self):
        """
        Return an object with absolute value taken. Only applicable to objects
        that are all numeric

        Returns
        -------
        abs: type of caller
        """
        res_sp_values = np.abs(self.sp_values)
        return SparseSeries(res_sp_values, index=self.index,
                            sparse_index=self.sp_index,
                            fill_value=self.fill_value)

    def get(self, label, default=None):
        """
        Returns value occupying requested label, default to specified
        missing value if not present. Analogous to dict.get

        Parameters
        ----------
        label : object
            Label value looking for
        default : object, optional
            Value to return if label not in index

        Returns
        -------
        y : scalar
        """
        if label in self.index:
            loc = self.index.get_loc(label)
            return self._get_val_at(loc)
        else:
            return default

    def get_value(self, label):
        """
        Retrieve single value at passed index label

        Parameters
        ----------
        index : label

        Returns
        -------
        value : scalar value
        """
        loc = self.index.get_loc(label)
        return self._get_val_at(loc)

    def set_value(self, label, value):
        """
        Quickly set single value at passed label. If label is not contained, a
        new object is created with the label placed at the end of the result
        index

        Parameters
        ----------
        label : object
            Partial indexing with MultiIndex not allowed
        value : object
            Scalar value

        Notes
        -----
        This method *always* returns a new object. It is not particularly
        efficient but is provided for API compatibility with Series

        Returns
        -------
        series : SparseSeries
        """
        dense = self.to_dense().set_value(label, value)
        return dense.to_sparse(kind=self.kind, fill_value=self.fill_value)

    def to_dense(self, sparse_only=False):
        """
        Convert SparseSeries to (dense) Series
        """
        if sparse_only:
            int_index = self.sp_index.to_int_index()
            index = self.index.take(int_index.indices)
            return Series(self.sp_values, index=index, name=self.name)
        else:
            return Series(self.values, index=self.index, name=self.name)

    def astype(self, dtype=None):
        """

        """
        if dtype is not None and dtype not in (np.float_, float):
            raise Exception('Can only support floating point data')

        return self.copy()

    def copy(self, deep=True):
        """
        Make a copy of the SparseSeries. Only the actual sparse values need to
        be copied
        """
        if deep:
            values = self.sp_values.copy()
        else:
            values = self.sp_values
        return SparseSeries(values, index=self.index,
                            sparse_index=self.sp_index,
                            fill_value=self.fill_value, name=self.name)

    def reindex(self, index=None, method=None, copy=True):
        """
        Conform SparseSeries to new Index

        See Series.reindex docstring for general behavior

        Returns
        -------
        reindexed : SparseSeries
        """
        new_index = _ensure_index(index)

        if self.index.equals(new_index):
            if copy:
                return self.copy()
            else:
                return self

        if len(self.index) == 0:
            # FIXME: inelegant / slow
            values = np.empty(len(new_index), dtype=np.float64)
            values.fill(nan)
            return SparseSeries(values, index=new_index,
                                fill_value=self.fill_value)

        new_index, fill_vec = self.index.reindex(index, method=method)
        new_values = common.take_1d(self.values, fill_vec)
        return SparseSeries(new_values, index=new_index,
                            fill_value=self.fill_value, name=self.name)

    def sparse_reindex(self, new_index):
        """
        Conform sparse values to new SparseIndex

        Parameters
        ----------
        new_index : {BlockIndex, IntIndex}

        Returns
        -------
        reindexed : SparseSeries
        """
        assert(isinstance(new_index, splib.SparseIndex))

        new_values = self.sp_index.to_int_index().reindex(self.sp_values,
                                                          self.fill_value,
                                                          new_index)
        return SparseSeries(new_values, index=self.index,
                            sparse_index=new_index,
                            fill_value=self.fill_value)

    def take(self, indices, axis=0):
        """
        Sparse-compatible version of ndarray.take

        Returns
        -------
        taken : ndarray
        """
        new_values = SparseArray.take(self, indices)
        new_index = self.index.take(indices)
        return self._constructor(new_values, index=new_index)

    def cumsum(self, axis=0, dtype=None, out=None):
        """
        Cumulative sum of values. Preserves locations of NaN values

        Extra parameters are to preserve ndarray interface.

        Returns
        -------
        cumsum : Series or SparseSeries
        """
        result = SparseArray.cumsum(self)
        if isinstance(result, SparseArray):
            result = self._attach_meta(result)
        return result

    def _attach_meta(self, sparse_arr):
        sparse_series = sparse_arr.view(SparseSeries)
        sparse_series.index = self.index
        sparse_series.name = self.name
        return sparse_series

    def dropna(self):
        """
        Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
        """
        # TODO: make more efficient
        dense_valid = self.to_dense().valid()
        if isnull(self.fill_value):
            return dense_valid
        else:
            return dense_valid.to_sparse(fill_value=self.fill_value)

    def shift(self, periods, offset=None, timeRule=None):
        """
        Analogous to Series.shift
        """
        # no special handling of fill values yet
        if not isnull(self.fill_value):
            dense_shifted = self.to_dense().shift(periods, offset=offset,
                                                  timeRule=timeRule)
            return dense_shifted.to_sparse(fill_value=self.fill_value,
                                           kind=self.kind)

        if periods == 0:
            return self.copy()

        if timeRule is not None and offset is None:
            offset = datetools.getOffset(timeRule)

        if offset is not None:
            return SparseSeries(self.sp_values,
                                sparse_index=self.sp_index,
                                index=self.index.shift(periods, offset),
                                fill_value=self.fill_value)

        int_index = self.sp_index.to_int_index()
        new_indices = int_index.indices + periods
        start, end = new_indices.searchsorted([0, int_index.length])

        new_indices = new_indices[start:end]

        new_sp_index = IntIndex(len(self), new_indices)
        if isinstance(self.sp_index, BlockIndex):
            new_sp_index = new_sp_index.to_block_index()

        return SparseSeries(self.sp_values[start:end].copy(),
                            index=self.index,
                            sparse_index=new_sp_index,
                            fill_value=self.fill_value)

    def combine_first(self, other):
        """
        Combine Series values, choosing the calling Series's values
        first. Result index will be the union of the two indexes

        Parameters
        ----------
        other : Series

        Returns
        -------
        y : Series
        """
        if isinstance(other, SparseSeries):
            other = other.to_dense()

        dense_combined = self.to_dense().combine_first(other)
        return dense_combined.to_sparse(fill_value=self.fill_value)

class SparseTimeSeries(SparseSeries, TimeSeries):
    pass