/usr/share/pyshared/pandas/sparse/series.py is in python-pandas 0.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 | """
Data structures for sparse float data. Life is made simpler by dealing only with
float64 data
"""
# pylint: disable=E1101,E1103,W0231
from numpy import nan, ndarray
import numpy as np
import operator
from pandas.core.common import isnull
from pandas.core.index import Index, _ensure_index
from pandas.core.series import Series, TimeSeries, _maybe_match_name
from pandas.core.frame import DataFrame
import pandas.core.common as common
import pandas.core.datetools as datetools
from pandas.util import py3compat
from pandas.sparse.array import (make_sparse, _sparse_array_op, SparseArray)
from pandas._sparse import BlockIndex, IntIndex
import pandas._sparse as splib
#-------------------------------------------------------------------------------
# Wrapper function for Series arithmetic methods
def _sparse_op_wrap(op, name):
"""
Wrapper function for Series arithmetic operations, to avoid
code duplication.
"""
def wrapper(self, other):
if isinstance(other, Series):
if not isinstance(other, SparseSeries):
other = other.to_sparse(fill_value=self.fill_value)
return _sparse_series_op(self, other, op, name)
elif isinstance(other, DataFrame):
return NotImplemented
elif np.isscalar(other):
new_fill_value = op(np.float64(self.fill_value),
np.float64(other))
return SparseSeries(op(self.sp_values, other),
index=self.index,
sparse_index=self.sp_index,
fill_value=new_fill_value,
name=self.name)
else: # pragma: no cover
raise TypeError('operation with %s not supported' % type(other))
wrapper.__name__ = name
return wrapper
def _sparse_series_op(left, right, op, name):
left, right = left.align(right, join='outer', copy=False)
new_index = left.index
new_name = _maybe_match_name(left, right)
result = _sparse_array_op(left, right, op, name)
result = result.view(SparseSeries)
result.index = new_index
result.name = new_name
return result
class SparseSeries(SparseArray, Series):
__array_priority__ = 15
sp_index = None
fill_value = None
def __new__(cls, data, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, copy=False):
is_sparse_array = isinstance(data, SparseArray)
if fill_value is None:
if is_sparse_array:
fill_value = data.fill_value
else:
fill_value = nan
if is_sparse_array:
if isinstance(data, SparseSeries) and index is None:
index = data.index
elif index is not None:
assert(len(index) == len(data))
sparse_index = data.sp_index
values = np.asarray(data)
elif isinstance(data, (Series, dict)):
if index is None:
index = data.index
data = Series(data)
values, sparse_index = make_sparse(data, kind=kind,
fill_value=fill_value)
elif np.isscalar(data): # pragma: no cover
if index is None:
raise Exception('must pass index!')
values = np.empty(len(index))
values.fill(data)
# TODO: more efficient
values, sparse_index = make_sparse(values, kind=kind,
fill_value=fill_value)
else:
# array-like
if sparse_index is None:
values, sparse_index = make_sparse(data, kind=kind,
fill_value=fill_value)
else:
values = data
assert(len(values) == sparse_index.npoints)
if index is None:
index = Index(np.arange(sparse_index.length))
index = _ensure_index(index)
# Create array, do *not* copy data by default
if copy:
subarr = np.array(values, dtype=np.float64, copy=True)
else:
subarr = np.asarray(values, dtype=np.float64)
if index.is_all_dates:
cls = SparseTimeSeries
# Change the class of the array to be the subclass type.
output = subarr.view(cls)
output.sp_index = sparse_index
output.fill_value = np.float64(fill_value)
output.index = index
output.name = name
return output
def __init__(self, data, index=None, sparse_index=None, kind='block',
fill_value=None, name=None, copy=False):
"""Data structure for labeled, sparse floating point data
Parameters
----------
data : {array-like, Series, SparseSeries, dict}
kind : {'block', 'integer'}
fill_value : float
Defaults to NaN (code for missing)
sparse_index : {BlockIndex, IntIndex}, optional
Only if you have one. Mainly used internally
Notes
-----
SparseSeries objects are immutable via the typical Python means. If you
must change values, convert to dense, make your changes, then convert back
to sparse
"""
pass
@property
def _constructor(self):
def make_sp_series(data, index=None, name=None):
return SparseSeries(data, index=index, fill_value=self.fill_value,
kind=self.kind, name=name)
return make_sp_series
@property
def kind(self):
if isinstance(self.sp_index, BlockIndex):
return 'block'
elif isinstance(self.sp_index, IntIndex):
return 'integer'
def __array_finalize__(self, obj):
"""
Gets called after any ufunc or other array operations, necessary
to pass on the index.
"""
self._index = getattr(obj, '_index', None)
self.name = getattr(obj, 'name', None)
self.sp_index = getattr(obj, 'sp_index', None)
self.fill_value = getattr(obj, 'fill_value', None)
def __reduce__(self):
"""Necessary for making this object picklable"""
object_state = list(ndarray.__reduce__(self))
subclass_state = (self.index, self.fill_value, self.sp_index,
self.name)
object_state[2] = (object_state[2], subclass_state)
return tuple(object_state)
def __setstate__(self, state):
"""Necessary for making this object picklable"""
nd_state, own_state = state
ndarray.__setstate__(self, nd_state)
index, fill_value, sp_index = own_state[:3]
name = None
if len(own_state) > 3:
name = own_state[3]
self.sp_index = sp_index
self.fill_value = fill_value
self.index = index
self.name = name
def __len__(self):
return self.sp_index.length
def __repr__(self):
series_rep = Series.__repr__(self)
rep = '%s\n%s' % (series_rep, repr(self.sp_index))
return rep
# Arithmetic operators
__add__ = _sparse_op_wrap(operator.add, 'add')
__sub__ = _sparse_op_wrap(operator.sub, 'sub')
__mul__ = _sparse_op_wrap(operator.mul, 'mul')
__truediv__ = _sparse_op_wrap(operator.truediv, 'truediv')
__floordiv__ = _sparse_op_wrap(operator.floordiv, 'floordiv')
__pow__ = _sparse_op_wrap(operator.pow, 'pow')
# reverse operators
__radd__ = _sparse_op_wrap(operator.add, '__radd__')
__rsub__ = _sparse_op_wrap(lambda x, y: y - x, '__rsub__')
__rmul__ = _sparse_op_wrap(operator.mul, '__rmul__')
__rtruediv__ = _sparse_op_wrap(lambda x, y: y / x, '__rtruediv__')
__rfloordiv__ = _sparse_op_wrap(lambda x, y: y // x, 'floordiv')
__rpow__ = _sparse_op_wrap(lambda x, y: y ** x, '__rpow__')
# Python 2 division operators
if not py3compat.PY3:
__div__ = _sparse_op_wrap(operator.div, 'div')
__rdiv__ = _sparse_op_wrap(lambda x, y: y / x, '__rdiv__')
def __getitem__(self, key):
"""
"""
try:
return self._get_val_at(self.index.get_loc(key))
except KeyError:
if isinstance(key, (int, np.integer)):
return self._get_val_at(key)
raise Exception('Requested index not in this series!')
except TypeError:
# Could not hash item, must be array-like?
pass
# is there a case where this would NOT be an ndarray?
# need to find an example, I took out the case for now
dataSlice = self.values[key]
new_index = Index(self.index.view(ndarray)[key])
return self._constructor(dataSlice, index=new_index, name=self.name)
def abs(self):
"""
Return an object with absolute value taken. Only applicable to objects
that are all numeric
Returns
-------
abs: type of caller
"""
res_sp_values = np.abs(self.sp_values)
return SparseSeries(res_sp_values, index=self.index,
sparse_index=self.sp_index,
fill_value=self.fill_value)
def get(self, label, default=None):
"""
Returns value occupying requested label, default to specified
missing value if not present. Analogous to dict.get
Parameters
----------
label : object
Label value looking for
default : object, optional
Value to return if label not in index
Returns
-------
y : scalar
"""
if label in self.index:
loc = self.index.get_loc(label)
return self._get_val_at(loc)
else:
return default
def get_value(self, label):
"""
Retrieve single value at passed index label
Parameters
----------
index : label
Returns
-------
value : scalar value
"""
loc = self.index.get_loc(label)
return self._get_val_at(loc)
def set_value(self, label, value):
"""
Quickly set single value at passed label. If label is not contained, a
new object is created with the label placed at the end of the result
index
Parameters
----------
label : object
Partial indexing with MultiIndex not allowed
value : object
Scalar value
Notes
-----
This method *always* returns a new object. It is not particularly
efficient but is provided for API compatibility with Series
Returns
-------
series : SparseSeries
"""
dense = self.to_dense().set_value(label, value)
return dense.to_sparse(kind=self.kind, fill_value=self.fill_value)
def to_dense(self, sparse_only=False):
"""
Convert SparseSeries to (dense) Series
"""
if sparse_only:
int_index = self.sp_index.to_int_index()
index = self.index.take(int_index.indices)
return Series(self.sp_values, index=index, name=self.name)
else:
return Series(self.values, index=self.index, name=self.name)
def astype(self, dtype=None):
"""
"""
if dtype is not None and dtype not in (np.float_, float):
raise Exception('Can only support floating point data')
return self.copy()
def copy(self, deep=True):
"""
Make a copy of the SparseSeries. Only the actual sparse values need to
be copied
"""
if deep:
values = self.sp_values.copy()
else:
values = self.sp_values
return SparseSeries(values, index=self.index,
sparse_index=self.sp_index,
fill_value=self.fill_value, name=self.name)
def reindex(self, index=None, method=None, copy=True):
"""
Conform SparseSeries to new Index
See Series.reindex docstring for general behavior
Returns
-------
reindexed : SparseSeries
"""
new_index = _ensure_index(index)
if self.index.equals(new_index):
if copy:
return self.copy()
else:
return self
if len(self.index) == 0:
# FIXME: inelegant / slow
values = np.empty(len(new_index), dtype=np.float64)
values.fill(nan)
return SparseSeries(values, index=new_index,
fill_value=self.fill_value)
new_index, fill_vec = self.index.reindex(index, method=method)
new_values = common.take_1d(self.values, fill_vec)
return SparseSeries(new_values, index=new_index,
fill_value=self.fill_value, name=self.name)
def sparse_reindex(self, new_index):
"""
Conform sparse values to new SparseIndex
Parameters
----------
new_index : {BlockIndex, IntIndex}
Returns
-------
reindexed : SparseSeries
"""
assert(isinstance(new_index, splib.SparseIndex))
new_values = self.sp_index.to_int_index().reindex(self.sp_values,
self.fill_value,
new_index)
return SparseSeries(new_values, index=self.index,
sparse_index=new_index,
fill_value=self.fill_value)
def take(self, indices, axis=0):
"""
Sparse-compatible version of ndarray.take
Returns
-------
taken : ndarray
"""
new_values = SparseArray.take(self, indices)
new_index = self.index.take(indices)
return self._constructor(new_values, index=new_index)
def cumsum(self, axis=0, dtype=None, out=None):
"""
Cumulative sum of values. Preserves locations of NaN values
Extra parameters are to preserve ndarray interface.
Returns
-------
cumsum : Series or SparseSeries
"""
result = SparseArray.cumsum(self)
if isinstance(result, SparseArray):
result = self._attach_meta(result)
return result
def _attach_meta(self, sparse_arr):
sparse_series = sparse_arr.view(SparseSeries)
sparse_series.index = self.index
sparse_series.name = self.name
return sparse_series
def dropna(self):
"""
Analogous to Series.dropna. If fill_value=NaN, returns a dense Series
"""
# TODO: make more efficient
dense_valid = self.to_dense().valid()
if isnull(self.fill_value):
return dense_valid
else:
return dense_valid.to_sparse(fill_value=self.fill_value)
def shift(self, periods, offset=None, timeRule=None):
"""
Analogous to Series.shift
"""
# no special handling of fill values yet
if not isnull(self.fill_value):
dense_shifted = self.to_dense().shift(periods, offset=offset,
timeRule=timeRule)
return dense_shifted.to_sparse(fill_value=self.fill_value,
kind=self.kind)
if periods == 0:
return self.copy()
if timeRule is not None and offset is None:
offset = datetools.getOffset(timeRule)
if offset is not None:
return SparseSeries(self.sp_values,
sparse_index=self.sp_index,
index=self.index.shift(periods, offset),
fill_value=self.fill_value)
int_index = self.sp_index.to_int_index()
new_indices = int_index.indices + periods
start, end = new_indices.searchsorted([0, int_index.length])
new_indices = new_indices[start:end]
new_sp_index = IntIndex(len(self), new_indices)
if isinstance(self.sp_index, BlockIndex):
new_sp_index = new_sp_index.to_block_index()
return SparseSeries(self.sp_values[start:end].copy(),
index=self.index,
sparse_index=new_sp_index,
fill_value=self.fill_value)
def combine_first(self, other):
"""
Combine Series values, choosing the calling Series's values
first. Result index will be the union of the two indexes
Parameters
----------
other : Series
Returns
-------
y : Series
"""
if isinstance(other, SparseSeries):
other = other.to_dense()
dense_combined = self.to_dense().combine_first(other)
return dense_combined.to_sparse(fill_value=self.fill_value)
class SparseTimeSeries(SparseSeries, TimeSeries):
pass
|