/usr/share/pyshared/pandas/stats/moments.py is in python-pandas 0.7.0-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 | """
Provides rolling statistical moments and related descriptive
statistics implemented in Cython
"""
from __future__ import division
from functools import wraps
from numpy import NaN
import numpy as np
from pandas.core.api import DataFrame, Series, notnull
import pandas._tseries as _tseries
from pandas.util.decorators import Substitution, Appender
__all__ = ['rolling_count', 'rolling_max', 'rolling_min',
'rolling_sum', 'rolling_mean', 'rolling_std', 'rolling_cov',
'rolling_corr', 'rolling_var', 'rolling_skew', 'rolling_kurt',
'rolling_quantile', 'rolling_median', 'rolling_apply',
'rolling_corr_pairwise',
'ewma', 'ewmvar', 'ewmstd', 'ewmvol', 'ewmcorr', 'ewmcov']
#-------------------------------------------------------------------------------
# Docs
_doc_template = """
%s
Parameters
----------
%s
window : Number of observations used for calculating statistic
min_periods : int
Minimum number of observations in window required to have a value
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
Name of time rule to conform to before computing statistic
Returns
-------
%s
"""
_ewm_doc = r"""%s
Parameters
----------
%s
com : float. optional
Center of mass: \alpha = com / (1 + com),
span : float, optional
Specify decay in terms of span, \alpha = 2 / (span + 1)
min_periods : int, default 0
Number of observations in sample to require (only affects
beginning)
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default None
Name of time rule to conform to before computing statistic
%s
Notes
-----
Either center of mass or span must be specified
EWMA is sometimes specified using a "span" parameter s, we have have that the
decay parameter \alpha is related to the span as :math:`\alpha = 1 - 2 / (s + 1)
= c / (1 + c)`
where c is the center of mass. Given a span, the associated center of mass is
:math:`c = (s - 1) / 2`
So a "20-day EWMA" would have center 9.5.
Returns
-------
y : type of input argument
"""
_type_of_input = "y : type of input argument"
_flex_retval = """y : type depends on inputs
DataFrame / DataFrame -> DataFrame (matches on columns)
DataFrame / Series -> Computes result for each column
Series / Series -> Series"""
_unary_arg = "arg : Series, DataFrame"
_binary_arg_flex = """arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray"""
_binary_arg = """arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray"""
_bias_doc = r"""bias : boolean, default False
Use a standard estimation bias correction
"""
def rolling_count(arg, window, time_rule=None):
"""
Rolling count of number of non-NaN observations inside provided window.
Parameters
----------
arg : DataFrame or numpy ndarray-like
window : Number of observations used for calculating statistic
Returns
-------
rolling_count : type of caller
"""
arg = _conv_timerule(arg, time_rule)
window = min(window, len(arg))
return_hook, values = _process_data_structure(arg, kill_inf=False)
converted = np.isfinite(values).astype(float)
result = rolling_sum(converted, window, min_periods=1,
time_rule=time_rule)
# putmask here?
result[np.isnan(result)] = 0
return return_hook(result)
@Substitution("Unbiased moving covariance", _binary_arg_flex, _flex_retval)
@Appender(_doc_template)
def rolling_cov(arg1, arg2, window, min_periods=None, time_rule=None):
def _get_cov(X, Y):
mean = lambda x: rolling_mean(x, window, min_periods, time_rule)
count = rolling_count(X + Y, window, time_rule)
bias_adj = count / (count - 1)
return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj
return _flex_binary_moment(arg1, arg2, _get_cov)
@Substitution("Moving sample correlation", _binary_arg_flex, _flex_retval)
@Appender(_doc_template)
def rolling_corr(arg1, arg2, window, min_periods=None, time_rule=None):
def _get_corr(a, b):
num = rolling_cov(a, b, window, min_periods, time_rule)
den = (rolling_std(a, window, min_periods, time_rule) *
rolling_std(b, window, min_periods, time_rule))
return num / den
return _flex_binary_moment(arg1, arg2, _get_corr)
def _flex_binary_moment(arg1, arg2, f):
if isinstance(arg1, np.ndarray) and isinstance(arg2, np.ndarray):
X, Y = _prep_binary(arg1, arg2)
return f(X, Y)
elif isinstance(arg1, DataFrame):
results = {}
if isinstance(arg2, DataFrame):
X, Y = arg1.align(arg2, join='outer')
X = X + 0 * Y
Y = Y + 0 * X
res_columns = arg1.columns.union(arg2.columns)
for col in res_columns:
if col in X and col in Y:
results[col] = f(X[col], Y[col])
else:
res_columns = arg1.columns
X, Y = arg1.align(arg2, axis=0, join='outer')
results = {}
for col in res_columns:
results[col] = f(X[col], Y)
return DataFrame(results, index=X.index, columns=res_columns)
else:
return _flex_binary_moment(arg2, arg1, f)
def rolling_corr_pairwise(df, window, min_periods=None):
"""
Computes pairwise rolling correlation matrices as Panel whose items are
dates
Parameters
----------
df : DataFrame
window : int
min_periods : int, default None
Returns
-------
correls : Panel
"""
from pandas import Panel
from collections import defaultdict
all_results = defaultdict(dict)
for i, k1 in enumerate(df.columns):
for k2 in df.columns[i:]:
corr = rolling_corr(df[k1], df[k2], window,
min_periods=min_periods)
all_results[k1][k2] = corr
all_results[k2][k1] = corr
return Panel.from_dict(all_results).swapaxes('items', 'major')
def _rolling_moment(arg, window, func, minp, axis=0, time_rule=None):
"""
Rolling statistical measure using supplied function. Designed to be
used with passed-in Cython array-based functions.
Parameters
----------
arg : DataFrame or numpy ndarray-like
window : Number of observations used for calculating statistic
func : Cython function to compute rolling statistic on raw series
minp : int
Minimum number of observations required to have a value
axis : int, default 0
time_rule : string or DateOffset
Time rule to conform to before computing result
Returns
-------
y : type of input
"""
arg = _conv_timerule(arg, time_rule)
calc = lambda x: func(x, window, minp=minp)
return_hook, values = _process_data_structure(arg)
# actually calculate the moment. Faster way to do this?
result = np.apply_along_axis(calc, axis, values)
return return_hook(result)
def _process_data_structure(arg, kill_inf=True):
if isinstance(arg, DataFrame):
return_hook = lambda v: type(arg)(v, index=arg.index,
columns=arg.columns)
values = arg.values
elif isinstance(arg, Series):
values = arg.values
return_hook = lambda v: Series(v, arg.index)
else:
return_hook = lambda v: v
values = arg
if not issubclass(values.dtype.type, float):
values = values.astype(float)
if kill_inf:
values = values.copy()
values[np.isinf(values)] = np.NaN
return return_hook, values
#-------------------------------------------------------------------------------
# Exponential moving moments
def _get_center_of_mass(com, span):
if span is not None:
if com is not None:
raise Exception("com and span are mutually exclusive")
# convert span to center of mass
com = (span - 1) / 2.
elif com is None:
raise Exception("Must pass either com or span")
return float(com)
@Substitution("Exponentially-weighted moving average", _unary_arg, "")
@Appender(_ewm_doc)
def ewma(arg, com=None, span=None, min_periods=0, time_rule=None):
com = _get_center_of_mass(com, span)
arg = _conv_timerule(arg, time_rule)
def _ewma(v):
result = _tseries.ewma(v, com)
first_index = _first_valid_index(v)
result[first_index : first_index + min_periods] = NaN
return result
return_hook, values = _process_data_structure(arg)
output = np.apply_along_axis(_ewma, 0, values)
return return_hook(output)
def _first_valid_index(arr):
# argmax scans from left
return notnull(arr).argmax()
@Substitution("Exponentially-weighted moving variance", _unary_arg, _bias_doc)
@Appender(_ewm_doc)
def ewmvar(arg, com=None, span=None, min_periods=0, bias=False,
time_rule=None):
com = _get_center_of_mass(com, span)
arg = _conv_timerule(arg, time_rule)
moment2nd = ewma(arg * arg, com=com, min_periods=min_periods)
moment1st = ewma(arg, com=com, min_periods=min_periods)
result = moment2nd - moment1st ** 2
if not bias:
result *= (1.0 + 2.0 * com) / (2.0 * com)
return result
@Substitution("Exponentially-weighted moving std", _unary_arg, _bias_doc)
@Appender(_ewm_doc)
def ewmstd(arg, com=None, span=None, min_periods=0, bias=False,
time_rule=None):
result = ewmvar(arg, com=com, span=span, time_rule=time_rule,
min_periods=min_periods, bias=bias)
return np.sqrt(result)
ewmvol = ewmstd
@Substitution("Exponentially-weighted moving covariance", _binary_arg, "")
@Appender(_ewm_doc)
def ewmcov(arg1, arg2, com=None, span=None, min_periods=0, bias=False,
time_rule=None):
X, Y = _prep_binary(arg1, arg2)
X = _conv_timerule(X, time_rule)
Y = _conv_timerule(Y, time_rule)
mean = lambda x: ewma(x, com=com, span=span, min_periods=min_periods)
result = (mean(X*Y) - mean(X) * mean(Y))
if not bias:
result *= (1.0 + 2.0 * com) / (2.0 * com)
return result
@Substitution("Exponentially-weighted moving " "correlation", _binary_arg, "")
@Appender(_ewm_doc)
def ewmcorr(arg1, arg2, com=None, span=None, min_periods=0,
time_rule=None):
X, Y = _prep_binary(arg1, arg2)
X = _conv_timerule(X, time_rule)
Y = _conv_timerule(Y, time_rule)
mean = lambda x: ewma(x, com=com, span=span, min_periods=min_periods)
var = lambda x: ewmvar(x, com=com, span=span, min_periods=min_periods,
bias=True)
return (mean(X*Y) - mean(X)*mean(Y)) / np.sqrt(var(X) * var(Y))
def _prep_binary(arg1, arg2):
if not isinstance(arg2, type(arg1)):
raise Exception('Input arrays must be of the same type!')
# mask out values, this also makes a common index...
X = arg1 + 0 * arg2
Y = arg2 + 0 * arg1
return X, Y
#-------------------------------------------------------------------------------
# Python interface to Cython functions
def _conv_timerule(arg, time_rule):
types = (DataFrame, Series)
if time_rule is not None and isinstance(arg, types):
# Conform to whatever frequency needed.
arg = arg.asfreq(time_rule)
return arg
def _require_min_periods(p):
def _check_func(minp, window):
if minp is None:
return window
else:
return max(p, minp)
return _check_func
def _use_window(minp, window):
if minp is None:
return window
else:
return minp
def _rolling_func(func, desc, check_minp=_use_window):
@Substitution(desc, _unary_arg, _type_of_input)
@Appender(_doc_template)
@wraps(func)
def f(arg, window, min_periods=None, time_rule=None):
def call_cython(arg, window, minp):
minp = check_minp(minp, window)
return func(arg, window, minp)
return _rolling_moment(arg, window, call_cython, min_periods,
time_rule=time_rule)
return f
rolling_max = _rolling_func(_tseries.roll_max, 'Moving maximum')
rolling_min = _rolling_func(_tseries.roll_min, 'Moving minimum')
rolling_sum = _rolling_func(_tseries.roll_sum, 'Moving sum')
rolling_mean = _rolling_func(_tseries.roll_mean, 'Moving mean')
rolling_median = _rolling_func(_tseries.roll_median_cython, 'Moving median')
_ts_std = lambda *a, **kw: np.sqrt(_tseries.roll_var(*a, **kw))
rolling_std = _rolling_func(_ts_std, 'Unbiased moving standard deviation',
check_minp=_require_min_periods(2))
rolling_var = _rolling_func(_tseries.roll_var, 'Unbiased moving variance',
check_minp=_require_min_periods(2))
rolling_skew = _rolling_func(_tseries.roll_skew, 'Unbiased moving skewness',
check_minp=_require_min_periods(3))
rolling_kurt = _rolling_func(_tseries.roll_kurt, 'Unbiased moving kurtosis',
check_minp=_require_min_periods(4))
def rolling_quantile(arg, window, quantile, min_periods=None, time_rule=None):
"""Moving quantile
Parameters
----------
arg : Series, DataFrame
window : Number of observations used for calculating statistic
quantile : 0 <= quantile <= 1
min_periods : int
Minimum number of observations in window required to have a value
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
Name of time rule to conform to before computing statistic
Returns
-------
y : type of input argument
"""
def call_cython(arg, window, minp):
minp = _use_window(minp, window)
return _tseries.roll_quantile(arg, window, minp, quantile)
return _rolling_moment(arg, window, call_cython, min_periods,
time_rule=time_rule)
def rolling_apply(arg, window, func, min_periods=None, time_rule=None):
"""Generic moving function application
Parameters
----------
arg : Series, DataFrame
window : Number of observations used for calculating statistic
func : function
Must produce a single value from an ndarray input
min_periods : int
Minimum number of observations in window required to have a value
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
Name of time rule to conform to before computing statistic
Returns
-------
y : type of input argument
"""
def call_cython(arg, window, minp):
minp = _use_window(minp, window)
return _tseries.roll_generic(arg, window, minp, func)
return _rolling_moment(arg, window, call_cython, min_periods,
time_rule=time_rule)
|