This file is indexed.

/usr/share/pyshared/pandas/stats/moments.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
"""
Provides rolling statistical moments and related descriptive
statistics implemented in Cython
"""
from __future__ import division

from functools import wraps

from numpy import NaN
import numpy as np

from pandas.core.api import DataFrame, Series, notnull
import pandas._tseries as _tseries

from pandas.util.decorators import Substitution, Appender

__all__ = ['rolling_count', 'rolling_max', 'rolling_min',
           'rolling_sum', 'rolling_mean', 'rolling_std', 'rolling_cov',
           'rolling_corr', 'rolling_var', 'rolling_skew', 'rolling_kurt',
           'rolling_quantile', 'rolling_median', 'rolling_apply',
           'rolling_corr_pairwise',
           'ewma', 'ewmvar', 'ewmstd', 'ewmvol', 'ewmcorr', 'ewmcov']

#-------------------------------------------------------------------------------
# Docs

_doc_template = """
%s

Parameters
----------
%s
window : Number of observations used for calculating statistic
min_periods : int
    Minimum number of observations in window required to have a value
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
    Name of time rule to conform to before computing statistic

Returns
-------
%s
"""


_ewm_doc = r"""%s

Parameters
----------
%s
com : float. optional
    Center of mass: \alpha = com / (1 + com),
span : float, optional
    Specify decay in terms of span, \alpha = 2 / (span + 1)
min_periods : int, default 0
    Number of observations in sample to require (only affects
    beginning)
time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default None
    Name of time rule to conform to before computing statistic
%s
Notes
-----
Either center of mass or span must be specified

EWMA is sometimes specified using a "span" parameter s, we have have that the
decay parameter \alpha is related to the span as :math:`\alpha = 1 - 2 / (s + 1)
= c / (1 + c)`

where c is the center of mass. Given a span, the associated center of mass is
:math:`c = (s - 1) / 2`

So a "20-day EWMA" would have center 9.5.

Returns
-------
y : type of input argument
"""

_type_of_input = "y : type of input argument"

_flex_retval = """y : type depends on inputs
    DataFrame / DataFrame -> DataFrame (matches on columns)
    DataFrame / Series -> Computes result for each column
    Series / Series -> Series"""

_unary_arg = "arg : Series, DataFrame"

_binary_arg_flex = """arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray"""

_binary_arg = """arg1 : Series, DataFrame, or ndarray
arg2 : Series, DataFrame, or ndarray"""

_bias_doc = r"""bias : boolean, default False
    Use a standard estimation bias correction
"""
def rolling_count(arg, window, time_rule=None):
    """
    Rolling count of number of non-NaN observations inside provided window.

    Parameters
    ----------
    arg :  DataFrame or numpy ndarray-like
    window : Number of observations used for calculating statistic

    Returns
    -------
    rolling_count : type of caller
    """
    arg = _conv_timerule(arg, time_rule)
    window = min(window, len(arg))

    return_hook, values = _process_data_structure(arg, kill_inf=False)

    converted = np.isfinite(values).astype(float)
    result = rolling_sum(converted, window, min_periods=1,
                         time_rule=time_rule)

    # putmask here?
    result[np.isnan(result)] = 0

    return return_hook(result)

@Substitution("Unbiased moving covariance", _binary_arg_flex, _flex_retval)
@Appender(_doc_template)
def rolling_cov(arg1, arg2, window, min_periods=None, time_rule=None):
    def _get_cov(X, Y):
        mean = lambda x: rolling_mean(x, window, min_periods, time_rule)
        count = rolling_count(X + Y, window, time_rule)
        bias_adj = count / (count - 1)
        return (mean(X * Y) - mean(X) * mean(Y)) * bias_adj
    return _flex_binary_moment(arg1, arg2, _get_cov)

@Substitution("Moving sample correlation", _binary_arg_flex, _flex_retval)
@Appender(_doc_template)
def rolling_corr(arg1, arg2, window, min_periods=None, time_rule=None):
    def _get_corr(a, b):
        num = rolling_cov(a, b, window, min_periods, time_rule)
        den  = (rolling_std(a, window, min_periods, time_rule) *
                rolling_std(b, window, min_periods, time_rule))
        return num / den
    return _flex_binary_moment(arg1, arg2, _get_corr)

def _flex_binary_moment(arg1, arg2, f):
    if isinstance(arg1, np.ndarray) and isinstance(arg2, np.ndarray):
        X, Y = _prep_binary(arg1, arg2)
        return f(X, Y)
    elif isinstance(arg1, DataFrame):
        results = {}
        if isinstance(arg2, DataFrame):
            X, Y = arg1.align(arg2, join='outer')
            X = X + 0 * Y
            Y = Y + 0 * X
            res_columns = arg1.columns.union(arg2.columns)
            for col in res_columns:
                if col in X and col in Y:
                    results[col] = f(X[col], Y[col])
        else:
            res_columns = arg1.columns
            X, Y = arg1.align(arg2, axis=0, join='outer')
            results = {}

            for col in res_columns:
                results[col] = f(X[col], Y)

        return DataFrame(results, index=X.index, columns=res_columns)
    else:
        return _flex_binary_moment(arg2, arg1, f)

def rolling_corr_pairwise(df, window, min_periods=None):
    """
    Computes pairwise rolling correlation matrices as Panel whose items are
    dates

    Parameters
    ----------
    df : DataFrame
    window : int
    min_periods : int, default None

    Returns
    -------
    correls : Panel
    """
    from pandas import Panel
    from collections import defaultdict

    all_results = defaultdict(dict)

    for i, k1 in enumerate(df.columns):
        for k2 in df.columns[i:]:
            corr = rolling_corr(df[k1], df[k2], window,
                                min_periods=min_periods)
            all_results[k1][k2] = corr
            all_results[k2][k1] = corr

    return Panel.from_dict(all_results).swapaxes('items', 'major')

def _rolling_moment(arg, window, func, minp, axis=0, time_rule=None):
    """
    Rolling statistical measure using supplied function. Designed to be
    used with passed-in Cython array-based functions.

    Parameters
    ----------
    arg :  DataFrame or numpy ndarray-like
    window : Number of observations used for calculating statistic
    func : Cython function to compute rolling statistic on raw series
    minp : int
        Minimum number of observations required to have a value
    axis : int, default 0
    time_rule : string or DateOffset
        Time rule to conform to before computing result

    Returns
    -------
    y : type of input
    """
    arg = _conv_timerule(arg, time_rule)
    calc = lambda x: func(x, window, minp=minp)
    return_hook, values = _process_data_structure(arg)
    # actually calculate the moment. Faster way to do this?
    result = np.apply_along_axis(calc, axis, values)

    return return_hook(result)

def _process_data_structure(arg, kill_inf=True):
    if isinstance(arg, DataFrame):
        return_hook = lambda v: type(arg)(v, index=arg.index,
                                          columns=arg.columns)
        values = arg.values
    elif isinstance(arg, Series):
        values = arg.values
        return_hook = lambda v: Series(v, arg.index)
    else:
        return_hook = lambda v: v
        values = arg

    if not issubclass(values.dtype.type, float):
        values = values.astype(float)

    if kill_inf:
        values = values.copy()
        values[np.isinf(values)] = np.NaN

    return return_hook, values

#-------------------------------------------------------------------------------
# Exponential moving moments

def _get_center_of_mass(com, span):
    if span is not None:
        if com is not None:
            raise Exception("com and span are mutually exclusive")

        # convert span to center of mass
        com = (span - 1) / 2.

    elif com is None:
        raise Exception("Must pass either com or span")

    return float(com)

@Substitution("Exponentially-weighted moving average", _unary_arg, "")
@Appender(_ewm_doc)
def ewma(arg, com=None, span=None, min_periods=0, time_rule=None):
    com = _get_center_of_mass(com, span)
    arg = _conv_timerule(arg, time_rule)

    def _ewma(v):
        result = _tseries.ewma(v, com)
        first_index = _first_valid_index(v)
        result[first_index : first_index + min_periods] = NaN
        return result

    return_hook, values = _process_data_structure(arg)
    output = np.apply_along_axis(_ewma, 0, values)
    return return_hook(output)

def _first_valid_index(arr):
    # argmax scans from left
    return notnull(arr).argmax()

@Substitution("Exponentially-weighted moving variance", _unary_arg, _bias_doc)
@Appender(_ewm_doc)
def ewmvar(arg, com=None, span=None, min_periods=0, bias=False,
           time_rule=None):
    com = _get_center_of_mass(com, span)
    arg = _conv_timerule(arg, time_rule)
    moment2nd = ewma(arg * arg, com=com, min_periods=min_periods)
    moment1st = ewma(arg, com=com, min_periods=min_periods)

    result = moment2nd - moment1st ** 2
    if not bias:
        result *= (1.0 + 2.0 * com) / (2.0 * com)

    return result

@Substitution("Exponentially-weighted moving std", _unary_arg, _bias_doc)
@Appender(_ewm_doc)
def ewmstd(arg, com=None, span=None, min_periods=0, bias=False,
           time_rule=None):
    result = ewmvar(arg, com=com, span=span, time_rule=time_rule,
                    min_periods=min_periods, bias=bias)
    return np.sqrt(result)

ewmvol = ewmstd

@Substitution("Exponentially-weighted moving covariance", _binary_arg, "")
@Appender(_ewm_doc)
def ewmcov(arg1, arg2, com=None, span=None, min_periods=0, bias=False,
           time_rule=None):
    X, Y = _prep_binary(arg1, arg2)

    X = _conv_timerule(X, time_rule)
    Y = _conv_timerule(Y, time_rule)

    mean = lambda x: ewma(x, com=com, span=span, min_periods=min_periods)

    result = (mean(X*Y) - mean(X) * mean(Y))

    if not bias:
        result *= (1.0 + 2.0 * com) / (2.0 * com)

    return result

@Substitution("Exponentially-weighted moving " "correlation", _binary_arg, "")
@Appender(_ewm_doc)
def ewmcorr(arg1, arg2, com=None, span=None, min_periods=0,
            time_rule=None):
    X, Y = _prep_binary(arg1, arg2)

    X = _conv_timerule(X, time_rule)
    Y = _conv_timerule(Y, time_rule)

    mean = lambda x: ewma(x, com=com, span=span, min_periods=min_periods)
    var = lambda x: ewmvar(x, com=com, span=span, min_periods=min_periods,
                           bias=True)
    return (mean(X*Y) - mean(X)*mean(Y)) / np.sqrt(var(X) * var(Y))

def _prep_binary(arg1, arg2):
    if not isinstance(arg2, type(arg1)):
        raise Exception('Input arrays must be of the same type!')

    # mask out values, this also makes a common index...
    X = arg1 + 0 * arg2
    Y = arg2 + 0 * arg1

    return X, Y

#-------------------------------------------------------------------------------
# Python interface to Cython functions

def _conv_timerule(arg, time_rule):
    types = (DataFrame, Series)
    if time_rule is not None and isinstance(arg, types):
        # Conform to whatever frequency needed.
        arg = arg.asfreq(time_rule)

    return arg

def _require_min_periods(p):
    def _check_func(minp, window):
        if minp is None:
            return window
        else:
            return max(p, minp)
    return _check_func

def _use_window(minp, window):
    if minp is None:
        return window
    else:
        return minp

def _rolling_func(func, desc, check_minp=_use_window):
    @Substitution(desc, _unary_arg, _type_of_input)
    @Appender(_doc_template)
    @wraps(func)
    def f(arg, window, min_periods=None, time_rule=None):
        def call_cython(arg, window, minp):
            minp = check_minp(minp, window)
            return func(arg, window, minp)
        return _rolling_moment(arg, window, call_cython, min_periods,
                               time_rule=time_rule)

    return f

rolling_max = _rolling_func(_tseries.roll_max, 'Moving maximum')
rolling_min = _rolling_func(_tseries.roll_min, 'Moving minimum')
rolling_sum = _rolling_func(_tseries.roll_sum, 'Moving sum')
rolling_mean = _rolling_func(_tseries.roll_mean, 'Moving mean')
rolling_median = _rolling_func(_tseries.roll_median_cython, 'Moving median')

_ts_std = lambda *a, **kw: np.sqrt(_tseries.roll_var(*a, **kw))
rolling_std = _rolling_func(_ts_std, 'Unbiased moving standard deviation',
                            check_minp=_require_min_periods(2))
rolling_var = _rolling_func(_tseries.roll_var, 'Unbiased moving variance',
                            check_minp=_require_min_periods(2))
rolling_skew = _rolling_func(_tseries.roll_skew, 'Unbiased moving skewness',
                             check_minp=_require_min_periods(3))
rolling_kurt = _rolling_func(_tseries.roll_kurt, 'Unbiased moving kurtosis',
                             check_minp=_require_min_periods(4))

def rolling_quantile(arg, window, quantile, min_periods=None, time_rule=None):
    """Moving quantile

    Parameters
    ----------
    arg : Series, DataFrame
    window : Number of observations used for calculating statistic
    quantile : 0 <= quantile <= 1
    min_periods : int
        Minimum number of observations in window required to have a value
    time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
        Name of time rule to conform to before computing statistic

    Returns
    -------
    y : type of input argument
    """

    def call_cython(arg, window, minp):
        minp = _use_window(minp, window)
        return _tseries.roll_quantile(arg, window, minp, quantile)
    return _rolling_moment(arg, window, call_cython, min_periods,
                           time_rule=time_rule)

def rolling_apply(arg, window, func, min_periods=None, time_rule=None):
    """Generic moving function application

    Parameters
    ----------
    arg : Series, DataFrame
    window : Number of observations used for calculating statistic
    func : function
        Must produce a single value from an ndarray input
    min_periods : int
        Minimum number of observations in window required to have a value
    time_rule : {None, 'WEEKDAY', 'EOM', 'W@MON', ...}, default=None
        Name of time rule to conform to before computing statistic

    Returns
    -------
    y : type of input argument
    """
    def call_cython(arg, window, minp):
        minp = _use_window(minp, window)
        return _tseries.roll_generic(arg, window, minp, func)
    return _rolling_moment(arg, window, call_cython, min_periods,
                           time_rule=time_rule)