This file is indexed.

/usr/share/pyshared/pandas/stats/var.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
from __future__ import division

import numpy as np

from pandas.util.decorators import cache_readonly
from pandas.core.frame import DataFrame
from pandas.core.panel import Panel
from pandas.core.series import Series
import pandas.stats.common as common
from pandas.stats.math import inv
from pandas.stats.ols import _combine_rhs

class VAR(object):
    """
    Estimates VAR(p) regression on multivariate time series data
    presented in pandas data structures.

    Parameters
    ----------
    data : DataFrame or dict of Series
    p : lags to include

    """

    def __init__(self, data, p=1, intercept=True):
        import scikits.statsmodels.tsa.var as sm_var

        self._data = DataFrame(_combine_rhs(data))
        self._p = p

        self._columns = self._data.columns
        self._index = self._data.index

        self._intercept = intercept

    @cache_readonly
    def aic(self):
        """Returns the Akaike information criterion."""
        return self._ic['aic']

    @cache_readonly
    def bic(self):
        """Returns the Bayesian information criterion."""
        return self._ic['bic']

    @cache_readonly
    def beta(self):
        """
        Returns a DataFrame, where each column x1 contains the betas
        calculated by regressing the x1 column of the VAR input with
        the lagged input.

        Returns
        -------
        DataFrame
        """
        d = dict([(key, value.beta)
                  for (key, value) in self.ols_results.iteritems()])
        return DataFrame(d)

    def forecast(self, h):
        """
        Returns a DataFrame containing the forecasts for 1, 2, ..., n time
        steps.  Each column x1 contains the forecasts of the x1 column.

        Parameters
        ----------
        n: int
            Number of time steps ahead to forecast.

        Returns
        -------
        DataFrame
        """
        forecast = self._forecast_raw(h)[:, 0, :]
        return DataFrame(forecast, index=xrange(1, 1 + h),
                         columns=self._columns)

    def forecast_cov(self, h):
        """
        Returns the covariance of the forecast residuals.

        Returns
        -------
        DataFrame
        """
        return [DataFrame(value, index=self._columns, columns=self._columns)
                for value in self._forecast_cov_raw(h)]

    def forecast_std_err(self, h):
        """
        Returns the standard errors of the forecast residuals.

        Returns
        -------
        DataFrame
        """
        return DataFrame(self._forecast_std_err_raw(h),
                         index=xrange(1, 1 + h), columns=self._columns)

    @cache_readonly
    def granger_causality(self):
        """Returns the f-stats and p-values from the Granger Causality Test.

        If the data consists of columns x1, x2, x3, then we perform the
        following regressions:

        x1 ~ L(x2, x3)
        x1 ~ L(x1, x3)
        x1 ~ L(x1, x2)

        The f-stats of these results are placed in the 'x1' column of the
        returned DataFrame.  We then repeat for x2, x3.

        Returns
        -------
        Dict, where 'f-stat' returns the DataFrame containing the f-stats,
        and 'p-value' returns the DataFrame containing the corresponding
        p-values of the f-stats.
        """
        from pandas.stats.api import ols
        from scipy.stats import f

        d = {}
        for col in self._columns:
            d[col] = {}
            for i in xrange(1, 1 + self._p):
                lagged_data = self._lagged_data[i].filter(self._columns - [col])

                for key, value in lagged_data.iteritems():
                    d[col][_make_param_name(i, key)] = value

        f_stat_dict = {}
        p_value_dict = {}

        for col, y in self._data.iteritems():
            ssr_full = (self.resid[col] ** 2).sum()

            f_stats = []
            p_values = []

            for col2 in self._columns:
                result = ols(y=y, x=d[col2])

                resid = result.resid
                ssr_reduced = (resid ** 2).sum()

                M = self._p
                N = self._nobs
                K = self._k * self._p + 1
                f_stat = ((ssr_reduced - ssr_full) / M) / (ssr_full / (N - K))
                f_stats.append(f_stat)

                p_value = f.sf(f_stat, M, N - K)
                p_values.append(p_value)

            f_stat_dict[col] = Series(f_stats, self._columns)
            p_value_dict[col] = Series(p_values, self._columns)

        f_stat_mat = DataFrame(f_stat_dict)
        p_value_mat = DataFrame(p_value_dict)

        return {
            'f-stat' : f_stat_mat,
            'p-value' : p_value_mat,
        }

    @cache_readonly
    def ols_results(self):
        """
        Returns the results of the regressions:
        x_1 ~ L(X)
        x_2 ~ L(X)
        ...
        x_k ~ L(X)

        where X = [x_1, x_2, ..., x_k]
        and L(X) represents the columns of X lagged 1, 2, ..., n lags
        (n is the user-provided number of lags).

        Returns
        -------
        dict
        """
        from pandas.stats.api import ols

        d = {}
        for i in xrange(1, 1 + self._p):
            for col, series in self._lagged_data[i].iteritems():
                d[_make_param_name(i, col)] = series

        result = dict([(col, ols(y=y, x=d, intercept=self._intercept))
                       for col, y in self._data.iteritems()])

        return result

    @cache_readonly
    def resid(self):
        """
        Returns the DataFrame containing the residuals of the VAR regressions.
        Each column x1 contains the residuals generated by regressing the x1
        column of the input against the lagged input.

        Returns
        -------
        DataFrame
        """
        d = dict([(col, series.resid)
                  for (col, series) in self.ols_results.iteritems()])
        return DataFrame(d, index=self._index)

    @cache_readonly
    def summary(self):
        template = """
%(banner_top)s

Number of Observations:         %(nobs)d
AIC:                            %(aic).3f
BIC:                            %(bic).3f

%(banner_coef)s
%(coef_table)s
%(banner_end)s
"""
        params = {
            'banner_top' : common.banner('Summary of VAR'),
            'banner_coef' : common.banner('Summary of Estimated Coefficients'),
            'banner_end' : common.banner('End of Summary'),
            'coef_table' : self.beta,
            'aic' : self.aic,
            'bic' : self.bic,
            'nobs' : self._nobs,
        }

        return template % params

    @cache_readonly
    def _alpha(self):
        """
        Returns array where the i-th element contains the intercept
        when regressing the i-th column of self._data with the lagged data.
        """
        if self._intercept:
            return self._beta_raw[-1]
        else:
            return np.zeros(self._k)

    @cache_readonly
    def _beta_raw(self):
        return np.array([self.beta[col].values() for col in self._columns]).T

    def _trans_B(self, h):
        """
        Returns 0, 1, ..., (h-1)-th power of transpose of B as defined in
        equation (4) on p. 142 of the Stata 11 Time Series reference book.
        """
        result = [np.eye(1 + self._k * self._p)]

        row1 = np.zeros((1, 1 + self._k * self._p))
        row1[0, 0] = 1

        v = self._alpha.reshape((self._k, 1))
        row2 = np.hstack(tuple([v] + self._lag_betas))

        m = self._k * (self._p - 1)
        row3 = np.hstack((
            np.zeros((m, 1)),
            np.eye(m),
            np.zeros((m, self._k))
        ))

        trans_B = np.vstack((row1, row2, row3)).T

        result.append(trans_B)

        for i in xrange(2, h):
            result.append(np.dot(trans_B, result[i - 1]))

        return result

    @cache_readonly
    def _x(self):
        values = np.array([
            self._lagged_data[i][col].values()
            for i in xrange(1, 1 + self._p)
            for col in self._columns
        ]).T

        x = np.hstack((np.ones((len(values), 1)), values))[self._p:]

        return x

    @cache_readonly
    def _cov_beta(self):
        cov_resid = self._sigma

        x = self._x

        inv_cov_x = inv(np.dot(x.T, x))

        return np.kron(inv_cov_x, cov_resid)

    def _data_xs(self, i):
        """
        Returns the cross-section of the data at the given timestep.
        """
        return self._data.values[i]

    def _forecast_cov_raw(self, n):
        resid = self._forecast_cov_resid_raw(n)
        #beta = self._forecast_cov_beta_raw(n)

        #return [a + b for a, b in izip(resid, beta)]
        # TODO: ignore the beta forecast std err until it's verified

        return resid

    def _forecast_cov_beta_raw(self, n):
        """
        Returns the covariance of the beta errors for the forecast at
        1, 2, ..., n timesteps.
        """
        p = self._p

        values = self._data.values
        T = len(values) - self._p - 1

        results = []

        for h in xrange(1, n + 1):
            psi = self._psi(h)
            trans_B = self._trans_B(h)

            sum = 0

            cov_beta = self._cov_beta

            for t in xrange(T + 1):
                index = t + p
                y = values.take(xrange(index, index - p, -1), axis=0).flatten()
                trans_Z = np.hstack(([1], y))
                trans_Z = trans_Z.reshape(1, len(trans_Z))

                sum2 = 0
                for i in xrange(h):
                    ZB = np.dot(trans_Z, trans_B[h - 1 - i])

                    prod = np.kron(ZB, psi[i])
                    sum2 = sum2 + prod

                sum = sum + chain_dot(sum2, cov_beta, sum2.T)

            results.append(sum / (T + 1))

        return results

    def _forecast_cov_resid_raw(self, h):
        """
        Returns the covariance of the residual errors for the forecast at
        1, 2, ..., h timesteps.
        """
        psi_values = self._psi(h)
        sum = 0
        result = []
        for i in xrange(h):
            psi = psi_values[i]
            sum = sum + chain_dot(psi, self._sigma, psi.T)
            result.append(sum)

        return result

    def _forecast_raw(self, h):
        """
        Returns the forecast at 1, 2, ..., h timesteps in the future.
        """
        k = self._k
        result = []
        for i in xrange(h):
            sum = self._alpha.reshape(1, k)
            for j in xrange(self._p):
                beta = self._lag_betas[j]
                idx = i - j
                if idx > 0:
                    y = result[idx - 1]
                else:
                    y = self._data_xs(idx - 1)

                sum = sum + np.dot(beta, y.T).T
            result.append(sum)

        return np.array(result)

    def _forecast_std_err_raw(self, h):
        """
        Returns the standard error of the forecasts
        at 1, 2, ..., n timesteps.
        """
        return np.array([np.sqrt(np.diag(value))
                         for value in self._forecast_cov_raw(h)])

    @cache_readonly
    def _ic(self):
        """
        Returns the Akaike/Bayesian information criteria.
        """
        RSS = self._rss
        k = self._p * (self._k * self._p + 1)
        n = self._nobs * self._k

        return {'aic' : 2 * k + n * np.log(RSS / n),
                'bic' : n * np.log(RSS / n) + k * np.log(n)}

    @cache_readonly
    def _k(self):
        return len(self._columns)

    @cache_readonly
    def _lag_betas(self):
        """
        Returns list of B_i, where B_i represents the (k, k) matrix
        with the j-th row containing the betas of regressing the j-th
        column of self._data with self._data lagged i time steps.
        First element is B_1, second element is B_2, etc.
        """
        k = self._k
        b = self._beta_raw
        return [b[k * i : k * (i + 1)].T for i in xrange(self._p)]

    @cache_readonly
    def _lagged_data(self):
        return dict([(i, self._data.shift(i))
                     for i in xrange(1, 1 + self._p)])

    @cache_readonly
    def _nobs(self):
        return len(self._data) - self._p

    def _psi(self, h):
        """
        psi value used for calculating standard error.

        Returns [psi_0, psi_1, ..., psi_(h - 1)]
        """
        k = self._k
        result = [np.eye(k)]
        for i in xrange(1, h):
            result.append(sum(
                [np.dot(result[i - j], self._lag_betas[j - 1])
                 for j in xrange(1, 1 + i)
                 if j <= self._p]))

        return result

    @cache_readonly
    def _resid_raw(self):
        resid = np.array([self.ols_results[col]._resid_raw
                          for col in self._columns])
        return resid

    @cache_readonly
    def _rss(self):
        """Returns the sum of the squares of the residuals."""
        return (self._resid_raw ** 2).sum()

    @cache_readonly
    def _sigma(self):
        """Returns covariance of resids."""
        k = self._k
        n = self._nobs

        resid = self._resid_raw

        return np.dot(resid, resid.T) / (n - k)

    def __repr__(self):
        return self.summary

def lag_select(data, max_lags=5, ic=None):
    """
    Select number of lags based on a variety of information criteria

    Parameters
    ----------
    data : DataFrame-like
    max_lags : int
        Maximum number of lags to evaluate
    ic : {None, 'aic', 'bic', ...}
        Choosing None will just display the results

    Returns
    -------
    None
    """
    pass

class PanelVAR(VAR):
    """
    Performs Vector Autoregression on panel data.

    Parameters
    ----------
    data: Panel or dict of DataFrame
    lags: int
    """
    def __init__(self, data, lags, intercept=True):
        self._data = _prep_panel_data(data)
        self._p = lags
        self._intercept = intercept

        self._columns = self._data.items

    @cache_readonly
    def _nobs(self):
        """Returns the number of observations."""
        _, timesteps, entities = self._data.values.shape
        return (timesteps - self._p) * entities

    @cache_readonly
    def _rss(self):
        """Returns the sum of the squares of the residuals."""
        return (self.resid.values ** 2).sum()

    def forecast(self, h):
        """
        Returns the forecasts at 1, 2, ..., n timesteps in the future.
        """
        forecast = self._forecast_raw(h).T.swapaxes(1, 2)
        index = xrange(1, 1 + h)
        w = Panel(forecast, items=self._data.items, major_axis=index,
                  minor_axis=self._data.minor_axis)
        return w

    @cache_readonly
    def resid(self):
        """
        Returns the DataFrame containing the residuals of the VAR regressions.
        Each column x1 contains the residuals generated by regressing the x1
        column of the input against the lagged input.

        Returns
        -------
        DataFrame
        """
        d = dict([(key, value.resid)
                  for (key, value) in self.ols_results.iteritems()])
        return Panel.fromDict(d)

    def _data_xs(self, i):
        return self._data.values[:, i, :].T

    @cache_readonly
    def _sigma(self):
        """Returns covariance of resids."""
        k = self._k
        resid = _drop_incomplete_rows(self.resid.toLong().values)
        n = len(resid)
        return np.dot(resid.T, resid) / (n - k)


def _prep_panel_data(data):
    """Converts the given data into a Panel."""
    if isinstance(data, Panel):
        return data

    return Panel.fromDict(data)

def _drop_incomplete_rows(array):
    mask = np.isfinite(array).all(1)
    indices = np.arange(len(array))[mask]
    return array.take(indices, 0)

def _make_param_name(lag, name):
    return 'L%d.%s' % (lag, name)

def chain_dot(*matrices):
    """
    Returns the dot product of the given matrices.

    Parameters
    ----------
    matrices: argument list of ndarray
    """
    return reduce(lambda x, y: np.dot(y, x), matrices[::-1])