This file is indexed.

/usr/share/pyshared/pandas/tools/pivot.py is in python-pandas 0.7.0-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# pylint: disable=E1103

from pandas import Series, DataFrame
from pandas.tools.merge import concat
import pandas.core.common as com
import numpy as np

def pivot_table(data, values=None, rows=None, cols=None, aggfunc='mean',
                fill_value=None, margins=False):
    """
    Create a spreadsheet-style pivot table as a DataFrame. The levels in the
    pivot table will be stored in MultiIndex objects (hierarchical indexes) on
    the index and columns of the result DataFrame

    Parameters
    ----------
    data : DataFrame
    values : column to aggregate, optional
    rows : list
        Columns to group on the x-axis of the pivot table
    cols : list
        Columns to group on the x-axis of the pivot table
    aggfunc : function, default numpy.mean, or list of functions
        If list of functions passed, the resulting pivot table will have
        hierarchical columns whose top level are the function names (inferred
        from the function objects themselves)
    fill_value : scalar, default None
        Value to replace missing values with
    margins : boolean, default False
        Add all row / columns (e.g. for subtotal / grand totals)

    Examples
    --------
    >>> df
       A   B   C      D
    0  foo one small  1
    1  foo one large  2
    2  foo one large  2
    3  foo two small  3
    4  foo two small  3
    5  bar one large  4
    6  bar one small  5
    7  bar two small  6
    8  bar two large  7

    >>> table = pivot_table(df, values='D', rows=['A', 'B'],
    ...                     cols=['C'], aggfunc=np.sum)
    >>> table
              small  large
    foo  one  1      4
         two  6      NaN
    bar  one  5      4
         two  6      7

    Returns
    -------
    table : DataFrame
    """
    rows = _convert_by(rows)
    cols = _convert_by(cols)

    if isinstance(aggfunc, list):
        pieces = []
        keys = []
        for func in aggfunc:
            table = pivot_table(data, values=values, rows=rows, cols=cols,
                                fill_value=fill_value, aggfunc=func,
                                margins=margins)
            pieces.append(table)
            keys.append(func.__name__)
        return concat(pieces, keys=keys, axis=1)

    keys = rows + cols

    values_passed = values is not None
    if values_passed:
        if isinstance(values, (list, tuple)):
            values_multi = True
        else:
            values_multi = False
            values = [values]
    else:
        values = list(data.columns.drop(keys))

    if values_passed:
        data = data[keys + values]

    grouped = data.groupby(keys)
    agged = grouped.agg(aggfunc)

    table = agged
    for k in cols:
        table = table.unstack(level=k)

    if fill_value is not None:
        table = table.fillna(value=fill_value)

    if margins:
        table = _add_margins(table, data, values, rows=rows,
                             cols=cols, aggfunc=aggfunc)

    # discard the top level
    if values_passed and not values_multi:
        table = table[values[0]]

    return table

DataFrame.pivot_table = pivot_table

def _add_margins(table, data, values, rows=None, cols=None, aggfunc=np.mean):
    grand_margin = {}
    for k, v in data[values].iteritems():
        try:
            if isinstance(aggfunc, basestring):
                grand_margin[k] = getattr(v, aggfunc)()
            else:
                grand_margin[k] = aggfunc(v)
        except TypeError:
            pass

    if len(cols) > 0:
        # need to "interleave" the margins
        table_pieces = []
        margin_keys = []


        def _all_key(key):
            return (key, 'All') + ('',) * (len(cols) - 1)

        if len(rows) > 0:
            margin = data[rows + values].groupby(rows).agg(aggfunc)
            cat_axis = 1
            for key, piece in table.groupby(level=0, axis=cat_axis):
                all_key = _all_key(key)
                piece[all_key] = margin[key]
                table_pieces.append(piece)
                margin_keys.append(all_key)
        else:
            margin = grand_margin
            cat_axis = 0
            for key, piece in table.groupby(level=0, axis=cat_axis):
                all_key = _all_key(key)
                table_pieces.append(piece)
                table_pieces.append(Series(margin[key], index=[all_key]))
                margin_keys.append(all_key)

        result = concat(table_pieces, axis=cat_axis)

        if len(rows) == 0:
            return result
    else:
        result = table
        margin_keys = table.columns

    if len(cols) > 0:
        row_margin = data[cols + values].groupby(cols).agg(aggfunc)
        row_margin = row_margin.stack()

        # slight hack
        new_order = [len(cols)] + range(len(cols))
        row_margin.index = row_margin.index.reorder_levels(new_order)
    else:
        row_margin = Series(np.nan, index=result.columns)

    key = ('All',) + ('',) * (len(rows) - 1) if len(rows) > 1 else 'All'

    row_margin = row_margin.reindex(result.columns)
    # populate grand margin
    for k in margin_keys:
        if len(cols) > 0:
            row_margin[k] = grand_margin[k[0]]
        else:
            row_margin[k] = grand_margin[k]

    margin_dummy = DataFrame(row_margin, columns=[key]).T

    row_names = result.index.names
    result = result.append(margin_dummy)
    result.index.names = row_names

    return result

def _convert_by(by):
    if by is None:
        by = []
    elif np.isscalar(by):
        by = [by]
    else:
        by = list(by)
    return by

def crosstab(rows, cols, values=None, rownames=None, colnames=None,
             aggfunc=None, margins=False):
    """
    Compute a simple cross-tabulation of two (or more) factors. By default
    computes a frequency table of the factors unless an array of values and an
    aggregation function are passed

    Parameters
    ----------
    rows : array-like, Series, or list of arrays/Series
        Values to group by in the rows
    cols : array-like, Series, or list of arrays/Series
        Values to group by in the columns
    values : array-like, optional
        Array of values to aggregate according to the factors
    aggfunc : function, optional
        If no values array is passed, computes a frequency table
    rownames : sequence, default None
        If passed, must match number of row arrays passed
    colnames : sequence, default None
        If passed, must match number of column arrays passed
    margins : boolean, default False
        Add row/column margins (subtotals)

    Notes
    -----
    Any Series passed will have their name attributes used unless row or column
    names for the cross-tabulation are specified

    Examples
    --------
    >>> a
    array([foo, foo, foo, foo, bar, bar,
           bar, bar, foo, foo, foo], dtype=object)
    >>> b
    array([one, one, one, two, one, one,
           one, two, two, two, one], dtype=object)
    >>> c
    array([dull, dull, shiny, dull, dull, shiny,
           shiny, dull, shiny, shiny, shiny], dtype=object)

    >>> crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
    b    one          two
    c    dull  shiny  dull  shiny
    a
    bar  1     2      1     0
    foo  2     2      1     2

    Returns
    -------
    crosstab : DataFrame
    """
    rows = com._maybe_make_list(rows)
    cols = com._maybe_make_list(cols)

    rownames = _get_names(rows, rownames, prefix='row')
    colnames = _get_names(cols, colnames, prefix='col')

    data = {}
    data.update(zip(rownames, rows))
    data.update(zip(colnames, cols))

    if values is None:
        df = DataFrame(data)
        df['__dummy__'] = 0
        table = df.pivot_table('__dummy__', rows=rownames, cols=colnames,
                               aggfunc=len, margins=margins)
        return table.fillna(0).astype(np.int64)
    else:
        data['__dummy__'] = values
        df = DataFrame(data)
        table = df.pivot_table('__dummy__', rows=rownames, cols=colnames,
                               aggfunc=aggfunc, margins=margins)
        return table

def _get_names(arrs, names, prefix='row'):
    if names is None:
        names = []
        for i, arr in enumerate(arrs):
            if isinstance(arr, Series) and arr.name is not None:
                names.append(arr.name)
            else:
                names.append('%s_%d' % (prefix, i))
    else:
        assert(len(names) == len(arrs))
        if not isinstance(names, list):
            names = list(names)

    return names