/usr/share/pyshared/pycha/pie.py is in python-pycha 0.6.0-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 | # Copyright(c) 2007-2010 by Lorenzo Gil Sanchez <lorenzo.gil.sanchez@gmail.com>
#
# This file is part of PyCha.
#
# PyCha is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# PyCha is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public License
# along with PyCha. If not, see <http://www.gnu.org/licenses/>.
import math
import cairo
from pycha.chart import Chart, Option, Layout, Area, get_text_extents
from pycha.color import hex2rgb
class PieChart(Chart):
def __init__(self, surface=None, options={}, debug=False):
super(PieChart, self).__init__(surface, options, debug)
self.slices = []
self.centerx = 0
self.centery = 0
self.layout = PieLayout(self.slices)
def _updateChart(self):
"""Evaluates measures for pie charts"""
slices = [dict(name=key,
value=(i, value[0][1]))
for i, (key, value) in enumerate(self.datasets)]
s = float(sum([slice['value'][1] for slice in slices]))
fraction = angle = 0.0
del self.slices[:]
for slice in slices:
if slice['value'][1] > 0:
angle += fraction
fraction = slice['value'][1] / s
self.slices.append(Slice(slice['name'], fraction,
slice['value'][0], slice['value'][1],
angle))
def _updateTicks(self):
"""Evaluates pie ticks"""
self.xticks = []
if self.options.axis.x.ticks:
lookup = dict([(slice.xval, slice) for slice in self.slices])
for tick in self.options.axis.x.ticks:
if not isinstance(tick, Option):
tick = Option(tick)
slice = lookup.get(tick.v, None)
label = tick.label or str(tick.v)
if slice is not None:
label += ' (%.1f%%)' % (slice.fraction * 100)
self.xticks.append((tick.v, label))
else:
for slice in self.slices:
label = '%s (%.1f%%)' % (slice.name, slice.fraction * 100)
self.xticks.append((slice.xval, label))
def _renderLines(self, cx):
"""Aux function for _renderBackground"""
# there are no lines in a Pie Chart
def _renderChart(self, cx):
"""Renders a pie chart"""
self.centerx = self.layout.chart.x + self.layout.chart.w * 0.5
self.centery = self.layout.chart.y + self.layout.chart.h * 0.5
cx.set_line_join(cairo.LINE_JOIN_ROUND)
if self.options.stroke.shadow and False:
cx.save()
cx.set_source_rgba(0, 0, 0, 0.15)
cx.new_path()
cx.move_to(self.centerx, self.centery)
cx.arc(self.centerx + 1, self.centery + 2,
self.layout.radius + 1, 0, math.pi * 2)
cx.line_to(self.centerx, self.centery)
cx.close_path()
cx.fill()
cx.restore()
cx.save()
for slice in self.slices:
if slice.isBigEnough():
cx.set_source_rgb(*self.colorScheme[slice.name])
if self.options.shouldFill:
slice.draw(cx, self.centerx, self.centery,
self.layout.radius)
cx.fill()
if not self.options.stroke.hide:
slice.draw(cx, self.centerx, self.centery,
self.layout.radius)
cx.set_line_width(self.options.stroke.width)
cx.set_source_rgb(*hex2rgb(self.options.stroke.color))
cx.stroke()
cx.restore()
if self.debug:
cx.set_source_rgba(1, 0, 0, 0.5)
px = max(cx.device_to_user_distance(1, 1))
for x, y in self.layout._lines:
cx.arc(x, y, 5 * px, 0, 2 * math.pi)
cx.fill()
cx.new_path()
cx.move_to(self.centerx, self.centery)
cx.line_to(x, y)
cx.stroke()
def _renderAxis(self, cx):
"""Renders the axis for pie charts"""
if self.options.axis.x.hide or not self.xticks:
return
self.xlabels = []
if self.debug:
px = max(cx.device_to_user_distance(1, 1))
cx.set_source_rgba(0, 0, 1, 0.5)
for x, y, w, h in self.layout.ticks:
cx.rectangle(x, y, w, h)
cx.stroke()
cx.arc(x + w / 2.0, y + h / 2.0, 5 * px, 0, 2 * math.pi)
cx.fill()
cx.arc(x, y, 2 * px, 0, 2 * math.pi)
cx.fill()
cx.select_font_face(self.options.axis.tickFont,
cairo.FONT_SLANT_NORMAL,
cairo.FONT_WEIGHT_NORMAL)
cx.set_font_size(self.options.axis.tickFontSize)
cx.set_source_rgb(*hex2rgb(self.options.axis.labelColor))
for i, tick in enumerate(self.xticks):
label = tick[1]
x, y, w, h = self.layout.ticks[i]
xb, yb, width, height, xa, ya = cx.text_extents(label)
# draw label with text tick[1]
cx.move_to(x - xb, y - yb)
cx.show_text(label)
self.xlabels.append(label)
class Slice(object):
def __init__(self, name, fraction, xval, yval, angle):
self.name = name
self.fraction = fraction
self.xval = xval
self.yval = yval
self.startAngle = 2 * angle * math.pi
self.endAngle = 2 * (angle + fraction) * math.pi
def __str__(self):
return ("<pycha.pie.Slice from %.2f to %.2f (%.2f%%)>" %
(self.startAngle, self.endAngle, self.fraction))
def isBigEnough(self):
return abs(self.startAngle - self.endAngle) > 0.001
def draw(self, cx, centerx, centery, radius):
cx.new_path()
cx.move_to(centerx, centery)
cx.arc(centerx, centery, radius, -self.endAngle, -self.startAngle)
cx.close_path()
def getNormalisedAngle(self):
normalisedAngle = (self.startAngle + self.endAngle) / 2
if normalisedAngle > math.pi * 2:
normalisedAngle -= math.pi * 2
elif normalisedAngle < 0:
normalisedAngle += math.pi * 2
return normalisedAngle
class PieLayout(Layout):
"""Set of chart areas for pie charts"""
def __init__(self, slices):
self.slices = slices
self.title = Area()
self.chart = Area()
self.ticks = []
self.radius = 0
self._areas = (
(self.title, (1, 126 / 255.0, 0)), # orange
(self.chart, (75 / 255.0, 75 / 255.0, 1.0)), # blue
)
self._lines = []
def update(self, cx, options, width, height, xticks, yticks):
self.title.x = options.padding.left
self.title.y = options.padding.top
self.title.w = width - (options.padding.left + options.padding.right)
self.title.h = get_text_extents(cx,
options.title,
options.titleFont,
options.titleFontSize,
options.encoding)[1]
lookup = dict([(slice.xval, slice) for slice in self.slices])
self.chart.x = self.title.x
self.chart.y = self.title.y + self.title.h
self.chart.w = self.title.w
self.chart.h = height - self.title.h - (options.padding.top
+ options.padding.bottom)
centerx = self.chart.x + self.chart.w * 0.5
centery = self.chart.y + self.chart.h * 0.5
self.radius = min(self.chart.w / 2.0, self.chart.h / 2.0)
for tick in xticks:
slice = lookup.get(tick[0], None)
width, height = get_text_extents(cx, tick[1],
options.axis.tickFont,
options.axis.tickFontSize,
options.encoding)
angle = slice.getNormalisedAngle()
radius = self._get_min_radius(angle, centerx, centery,
width, height)
self.radius = min(self.radius, radius)
# Now that we now the radius we move the ticks as close as we can
# to the circle
for i, tick in enumerate(xticks):
slice = lookup.get(tick[0], None)
angle = slice.getNormalisedAngle()
self.ticks[i] = self._get_tick_position(self.radius, angle,
self.ticks[i],
centerx, centery)
def _get_min_radius(self, angle, centerx, centery, width, height):
min_radius = None
# precompute some common values
tan = math.tan(angle)
half_width = width / 2.0
half_height = height / 2.0
offset_x = half_width * tan
offset_y = half_height / tan
def intersect_horizontal_line(y):
return centerx + (centery - y) / tan
def intersect_vertical_line(x):
return centery - tan * (x - centerx)
# computes the intersection between the rect that has
# that angle with the X axis and the bounding chart box
if 0.25 * math.pi <= angle < 0.75 * math.pi:
# intersects with the top rect
y = self.chart.y
x = intersect_horizontal_line(y)
self._lines.append((x, y))
x1 = x - half_width - offset_y
self.ticks.append((x1, self.chart.y, width, height))
min_radius = abs((y + height) - centery)
elif 0.75 * math.pi <= angle < 1.25 * math.pi:
# intersects with the left rect
x = self.chart.x
y = intersect_vertical_line(x)
self._lines.append((x, y))
y1 = y - half_height - offset_x
self.ticks.append((x, y1, width, height))
min_radius = abs(centerx - (x + width))
elif 1.25 * math.pi <= angle < 1.75 * math.pi:
# intersects with the bottom rect
y = self.chart.y + self.chart.h
x = intersect_horizontal_line(y)
self._lines.append((x, y))
x1 = x - half_width + offset_y
self.ticks.append((x1, y - height, width, height))
min_radius = abs((y - height) - centery)
else:
# intersects with the right rect
x = self.chart.x + self.chart.w
y = intersect_vertical_line(x)
self._lines.append((x, y))
y1 = y - half_height + offset_x
self.ticks.append((x - width, y1, width, height))
min_radius = abs((x - width) - centerx)
return min_radius
def _get_tick_position(self, radius, angle, tick, centerx, centery):
text_width, text_height = tick[2:4]
half_width = text_width / 2.0
half_height = text_height / 2.0
if 0 <= angle < 0.5 * math.pi:
# first quadrant
k1 = j1 = k2 = 1
j2 = -1
elif 0.5 * math.pi <= angle < math.pi:
# second quadrant
k1 = k2 = -1
j1 = j2 = 1
elif math.pi <= angle < 1.5 * math.pi:
# third quadrant
k1 = j1 = k2 = -1
j2 = 1
elif 1.5 * math.pi <= angle < 2 * math.pi:
# fourth quadrant
k1 = k2 = 1
j1 = j2 = -1
cx = radius * math.cos(angle) + k1 * half_width
cy = radius * math.sin(angle) + j1 * half_height
radius2 = math.sqrt(cx * cx + cy * cy)
tan = math.tan(angle)
x = math.sqrt((radius2 * radius2) / (1 + tan * tan))
y = tan * x
x = centerx + k2 * x
y = centery + j2 * y
return x - half_width, y - half_height, text_width, text_height
|