This file is indexed.

/usr/share/pyshared/pytools/__init__.py is in python-pytools 2011.5-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
from __future__ import division

import sys
import operator
import types

from decorator import decorator

try:
    decorator_module = __import__("decorator", level=0)
except TypeError:
    # this must be Python 2.4
    my_decorator = decorator
else:
    my_decorator = decorator_module.decorator




# {{{ math --------------------------------------------------------------------
def delta(x,y):
    if x == y:
        return 1
    else:
        return 0




def levi_civita(tup):
    """Compute an entry of the Levi-Civita tensor for the indices *tuple*."""
    if len(tup) == 2:
        i,j = tup
        return j-i
    if len(tup) == 3:
        i,j,k = tup
        return (j-i)*(k-i)*(k-j)/2
    else:
        raise NotImplementedError




def factorial(n):
    from operator import mul
    assert n == int(n)
    return reduce(mul, (i for i in xrange(1,n+1)), 1)




def norm_1(iterable):
    return sum(abs(x) for x in iterable)

def norm_2(iterable):
    return sum(x**2 for x in iterable)**0.5

def norm_inf(iterable):
    return max(abs(x) for x in iterable)

def norm_p(iterable, p):
    return sum(i**p for i in iterable)**(1/p)

class Norm(object):
    def __init__(self, p):
        self.p = p

    def __call__(self, iterable):
        return sum(i**self.p for i in iterable)**(1/self.p)

# }}}

# {{{ data structures ---------------------------------------------------------

# {{{ record
class Record(object):
    """An aggregate of named sub-variables. Assumes that each record sub-type
    will be individually derived from this class.
    """

    __slots__ = []

    def __init__(self, valuedict=None, exclude=["self"], **kwargs):
        assert self.__class__ is not Record

        try:
            fields = self.__class__.fields
        except AttributeError:
            self.__class__.fields = fields = set()

        if valuedict is not None:
            kwargs.update(valuedict)

        for key, value in kwargs.iteritems():
            if not key in exclude:
                fields.add(key)
                setattr(self, key, value)

    def copy(self, **kwargs):
        for f in self.__class__.fields:
            if f not in kwargs:
                try:
                    kwargs[f] = getattr(self, f)
                except AttributeError:
                    pass
        return self.__class__(**kwargs)

    def __getstate__(self):
        return dict(
                (key, getattr(self, key))
                for key in self.__class__.fields
                if hasattr(self, key))

    def __setstate__(self, valuedict):
        try:
            fields = self.__class__.fields
        except AttributeError:
            self.__class__.fields = fields = set()

        for key, value in valuedict.iteritems():
            fields.add(key)
            setattr(self, key, value)

    def __repr__(self):
        return "%s(%s)" % (
                self.__class__.__name__,
                ", ".join("%s=%r" % (fld, getattr(self, fld))
                    for fld in self.__class__.fields
                    if hasattr(self, fld)))

    def __eq__(self, other):
        return (self.__class__ == other.__class__
                and self.__getstate__() == other.__getstate__())

    def __ne__(self, other):
        return not self.__eq__(other)

# }}}




class Reference(object):
    def __init__(self, value):
        self.value = value

    def get(self):
        from warnings import warn
        warn("Reference.get() is deprecated -- use ref.value instead")
        return self.value

    def set(self, value):
        self.value = value






# {{{ dictionary with default 
class DictionaryWithDefault(object):
    def __init__(self, default_value_generator, start = {}):
        self._Dictionary = dict(start)
        self._DefaultGenerator = default_value_generator

    def __getitem__(self, index):
        try:
            return self._Dictionary[index]
        except KeyError:
            value = self._DefaultGenerator(index)
            self._Dictionary[index] = value
            return value

    def __setitem__(self, index, value):
        self._Dictionary[index] = value

    def __contains__(self, item):
        return True

    def iterkeys(self):
        return self._Dictionary.iterkeys()

    def __iter__(self):
        return self._Dictionary.__iter__()

    def iteritems(self):
        return self._Dictionary.iteritems()

# }}}



class FakeList(object):
    def __init__(self, f, length):
        self._Length = length
        self._Function = f

    def __len__(self):
        return self._Length

    def __getitem__(self, index):
        try:
            return [self._Function(i)
                    for i in range(*index.indices(self._Length))]
        except AttributeError:
            return self._Function(index)




# {{{ dependent dictionary ----------------------------------------------------
class DependentDictionary(object):
    def __init__(self, f, start = {}):
        self._Function = f
        self._Dictionary = start.copy()

    def copy(self):
        return DependentDictionary(self._Function, self._Dictionary)

    def __contains__(self, key):
        try:
            self[key]
            return True
        except KeyError:
            return False

    def __getitem__(self, key):
        try:
            return self._Dictionary[key]
        except KeyError:
            return self._Function(self._Dictionary, key)

    def __setitem__(self, key, value):
        self._Dictionary[key] = value

    def genuineKeys(self):
        return self._Dictionary.keys()

    def iteritems(self):
        return self._Dictionary.iteritems()

    def iterkeys(self):
        return self._Dictionary.iterkeys()

    def itervalues(self):
        return self._Dictionary.itervalues()

# }}}

# }}}

# {{{ assertive accessors -----------------------------------------------------
def one(iterable):
    """Return the first entry of *iterable*. Assert that *iterable* has only
    that one entry.
    """
    it = iter(iterable)
    try:
        v = it.next()
    except StopIteration:
        raise ValueError, "empty iterable passed to 'one()'"

    def no_more():
        try:
            v2 = it.next()
            raise ValueError, "iterable with more than one entry passed to 'one()'"
        except StopIteration:
            return True

    assert no_more()

    return v




def single_valued(iterable, equality_pred=operator.eq):
    """Return the first entry of *iterable*; Assert that other entries
    are the same with the first entry of *iterable*.
    """
    it = iter(iterable)
    try:
        first_item = it.next()
    except StopIteration:
        raise ValueError, "empty iterable passed to 'single_valued()'"

    def others_same():
        for other_item in it:
            if not equality_pred(other_item, first_item):
                return False
        return True
    assert others_same()

    return first_item

# }}}

# {{{ memoization -------------------------------------------------------------
@my_decorator
def memoize(func, *args):
    # by Michele Simionato
    # http://www.phyast.pitt.edu/~micheles/python/

    try:
        return func._memoize_dic[args]
    except AttributeError:
        # _memoize_dic doesn't exist yet.

        result = func(*args)
        func._memoize_dic = {args: result}
        return result
    except KeyError:
        result = func(*args)
        func._memoize_dic[args] = result
        return result
FunctionValueCache = memoize




@my_decorator
def memoize_method(method, instance, *args):
    dicname = "_memoize_dic_"+method.__name__
    try:
        return getattr(instance, dicname)[args]
    except AttributeError:
        result = method(instance, *args)
        setattr(instance, dicname, {args: result})
        return result
    except KeyError:
        result = method(instance, *args)
        getattr(instance,dicname)[args] = result
        return result




FunctionValueCache = memoize

# }}}

# {{{ plotting ----------------------------------------------------------------
def write_1d_gnuplot_graph(f, a, b, steps=100, fname=",,f.data", progress = False):
    h = float(b - a)/steps
    gnuplot_file = file(fname, "w")

    def do_plot(func):
        for n in range(steps):
            if progress:
                sys.stdout.write(".")
                sys.stdout.flush()
            x = a + h * n
            gnuplot_file.write("%f\t%f\n" % (x, func(x)))

    do_plot(f)
    if progress:
        sys.stdout.write("\n")

def write_1d_gnuplot_graphs(f, a, b, steps=100, fnames=None, progress=False):
    h = float(b - a)/steps
    if not fnames:
        result_count = len(f(a))
        fnames = [",,f%d.data" % i for i in range(result_count)]

    gnuplot_files = [file(fname, "w") for fname in fnames]

    for n in range(steps):
        if progress:
            sys.stdout.write(".")
            sys.stdout.flush()
        x = a + h * n
        for gpfile, y in zip(gnuplot_files, f(x)):
            gpfile.write("%f\t%f\n" % (x, y))
    if progress:
        sys.stdout.write("\n")



def write_2d_gnuplot_graph(f, (x0, y0), (x1, y1), (xsteps, ysteps)=(100, 100), fname=",,f.data"):
    hx = float(x1 - x0)/xsteps
    hy = float(y1 - y0)/ysteps
    gnuplot_file = file(fname, "w")

    for ny in range(ysteps):
        for nx in range(xsteps):
            x = x0 + hx * nx
            y = y0 + hy * ny
            gnuplot_file.write("%g\t%g\t%g\n" % (x, y, f(x, y)))

        gnuplot_file.write("\n")


def write_gnuplot_graph(f, a, b, steps = 100, fname = ",,f.data", progress = False):
    h = float(b - a)/steps
    gnuplot_file = file(fname, "w")

    def do_plot(func):
        for n in range(steps):
            if progress:
                sys.stdout.write(".")
                sys.stdout.flush()
            x = a + h * n
            gnuplot_file.write("%f\t%f\n" % (x, func(x)))

    if isinstance(f, types.ListType):
        for f_index, real_f in enumerate(f):
            if progress:
                sys.stdout.write("function %d: " % f_index)
            do_plot(real_f)
            gnuplot_file.write("\n")
            if progress:
                sys.stdout.write("\n")
    else:
        do_plot(f)
        if progress:
            sys.stdout.write("\n")

# }}}

# {{{ syntactical sugar -------------------------------------------------------
class InfixOperator:
    """Pseudo-infix operators that allow syntax of the kind `op1 <<operator>> op2'.

    Following a recipe from
    http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/384122
    """
    def __init__(self, function):
        self.function = function
    def __rlshift__(self, other):
        return InfixOperator(lambda x: self.function(other, x))
    def __rshift__(self, other):
        return self.function(other)
    def call(self, a, b):
        return self.function(a, b)




def monkeypatch_method(cls):
    # from GvR, http://mail.python.org/pipermail/python-dev/2008-January/076194.html
    def decorator(func):
        setattr(cls, func.__name__, func)
        return func
    return decorator




def monkeypatch_class(name, bases, namespace):
    # from GvR, http://mail.python.org/pipermail/python-dev/2008-January/076194.html

    assert len(bases) == 1, "Exactly one base class required"
    base = bases[0]
    for name, value in namespace.iteritems():
        if name != "__metaclass__":
            setattr(base, name, value)
    return base

# }}}

# {{{ generic utilities -------------------------------------------------------
def add_tuples(t1, t2):
    return tuple([t1v + t2v for t1v, t2v in zip(t1, t2)])

def negate_tuple(t1):
    return tuple([-t1v for t1v in t1])





def shift(vec, dist):
    """Return a copy of C{vec} shifted by C{dist}.

    @postcondition: C{shift(a, i)[j] == a[(i+j) % len(a)]}
    """

    result = vec[:]

    N = len(vec)
    dist = dist % N

    # modulo only returns positive distances!
    if dist > 0:
        result[dist:] = vec[:N-dist]
        result[:dist] = vec[N-dist:]

    return result



def len_iterable(iterable):
    return sum(1 for i in iterable)




def flatten(list):
    """For an iterable of sub-iterables, generate each member of each
    sub-iterable in turn, i.e. a flattened version of that super-iterable.

    Example: Turn [[a,b,c],[d,e,f]] into [a,b,c,d,e,f].
    """
    for sublist in list:
        for j in sublist:
            yield j




def general_sum(sequence):
    return reduce(operator.add, sequence)




def linear_combination(coefficients, vectors):
    result = coefficients[0] * vectors[0]
    for c,v in zip(coefficients, vectors)[1:]:
        result += c*v
    return result




def all_equal(iterable):
    it = iterable.__iter__()
    try:
        value = it.next()
    except StopIteration:
        return True # empty sequence

    for i in it:
        if i != value:
            return False
    return True




def all_roughly_equal(iterable, threshold):
    it = iterable.__iter__()
    try:
        value = it.next()
    except StopIteration:
        return True # empty sequence

    for i in it:
        if abs(i - value) > threshold:
            return False
    return True




def common_prefix(iterable, empty=None):
    it = iter(iterable)
    try:
        pfx = it.next()
    except StopIteration:
        return  empty

    for v in it:
        for j in range(len(pfx)):
            if pfx[j] != v[j]:
                pfx = pfx[:j]
                if j == 0:
                    return pfx
                break

    return pfx




def decorate(function, list):
    return map(lambda x: (x, function(x)), list)




def partition(criterion, list):
    part_true = []
    part_false = []
    for i in list:
        if criterion(i):
            part_true.append(i)
        else:
            part_false.append(i)
    return part_true, part_false




def partition2(iterable):
    part_true = []
    part_false = []
    for pred, i in iterable:
        if pred:
            part_true.append(i)
        else:
            part_false.append(i)
    return part_true, part_false




def product(iterable):
    from operator import mul
    return reduce(mul, iterable, 1)




try:
    all = __builtins__.all
    any = __builtins__.any
except AttributeError:
    def all(iterable):
        for i in iterable:
            if not i:
                return False
        return True

    def any(iterable):
        for i in iterable:
            if i:
                return True
        return False






def reverse_dictionary(the_dict):
    result = {}
    for key, value in the_dict.iteritems():
        if value in result:
            raise RuntimeError(
                    "non-reversible mapping, duplicate key '%s'" % value)
        result[value] = key
    return result

def set_sum(set_iterable):
    from operator import or_
    return reduce(or_, set_iterable, set())




def div_ceil(nr, dr):
    return -(-nr // dr)




def uniform_interval_splitting(n, granularity, max_intervals):
    """ Return *(interval_size, num_intervals)* such that::

        num_intervals * interval_size >= n

    and::

        (num_intervals - 1) * interval_size < n

    and *interval_size* is a multiple of *granularity*.
    """
    # ported from Thrust -- minor Apache v2 license violation

    grains  = div_ceil(n, granularity)

    # one grain per interval
    if grains <= max_intervals:
        return granularity, grains

    grains_per_interval = div_ceil(grains, max_intervals)
    interval_size = grains_per_interval * granularity
    num_intervals = div_ceil(n, interval_size)

    return interval_size, num_intervals




# }}}

# {{{ argmin, argmax ----------------------------------------------------------
def argmin_f(list, f = lambda x: x):
    # deprecated -- the function has become unnecessary because of
    # generator expressions
    current_min_index = -1
    current_min = f(list[0])

    for idx, item in enumerate(list[1:]):
        value = f(item)
        if value < current_min:
            current_min_index = idx
            current_min = value
    return current_min_index+1




def argmax_f(list, f = lambda x: x):
    # deprecated -- the function has become unnecessary because of
    # generator expressions
    current_max_index = -1
    current_max = f(list[0])

    for idx, item in enumerate(list[1:]):
        value = f(item)
        if value > current_max:
            current_max_index = idx
            current_max = value
    return current_max_index+1




def argmin(iterable):
    return argmin2(enumerate(iterable))




def argmax(iterable):
    return argmax2(enumerate(iterable))




def argmin2(iterable, return_value=False):
    it = iter(iterable)
    try:
        current_argmin, current_min = it.next()
    except StopIteration:
        raise ValueError, "argmin of empty iterable"

    for arg, item in it:
        if item < current_min:
            current_argmin = arg
            current_min = item

    if return_value:
        return current_argmin, current_min
    else:
        return current_argmin




def argmax2(iterable, return_value=False):
    it = iter(iterable)
    try:
        current_argmax, current_max = it.next()
    except StopIteration:
        raise ValueError, "argmax of empty iterable"

    for arg, item in it:
        if item > current_max:
            current_argmax = arg
            current_max = item

    if return_value:
        return current_argmax, current_max
    else:
        return current_argmax

# }}}

# {{{ cartesian products etc. -------------------------------------------------
def cartesian_product(list1, list2):
    for i in list1:
        for j in list2:
            yield (i,j)





def distinct_pairs(list1, list2):
    for i, xi in enumerate(list1):
        for j, yj in enumerate(list2):
            if i != j:
                yield (xi, yj)




def cartesian_product_sum(list1, list2):
    """This routine returns a list of sums of each element of
    list1 with each element of list2. Also works with lists.
    """
    for i in list1:
        for j in list2:
            yield i+j

# }}}

# {{{ elementary statistics ---------------------------------------------------
def average(iterable):
    """Return the average of the values in iterable.

    iterable may not be empty.
    """
    it = iterable.__iter__()

    try:
        sum = it.next()
        count = 1
    except StopIteration:
        raise ValueError, "empty average"

    for value in it:
        sum = sum + value
        count += 1

    return sum/count




class VarianceAggregator:
    """Online variance calculator.
    See http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance
    Adheres to pysqlite's aggregate interface.
    """
    def __init__(self, entire_pop):
        self.n = 0
        self.mean = 0
        self.m2 = 0

        self.entire_pop = entire_pop

    def step(self, x):
        self.n += 1
        delta = x - self.mean
        self.mean += delta/self.n
        self.m2 += delta*(x - self.mean)

    def finalize(self):
        if self.entire_pop:
            if self.n == 0:
                return None
            else:
                return self.m2/self.n
        else:
            if self.n <= 1:
                return None
            else:
                return self.m2/(self.n - 1)




def variance(iterable, entire_pop):
    v_comp = VarianceAggregator(entire_pop)

    for x in iterable:
        v_comp.step(x)

    return v_comp.finalize()




def std_deviation(iterable, finite_pop):
    from math import sqrt
    return sqrt(variance(iterable, finite_pop))

# }}}

# {{{ permutations, tuples, integer sequences ---------------------------------
def wandering_element(length, wanderer=1, landscape=0):
    for i in range(length):
        yield i*(landscape,) + (wanderer,) + (length-1-i)*(landscape,)




def indices_in_shape(shape):
    if len(shape) == 0:
        yield ()
    elif len(shape) == 1:
        for i in xrange(0, shape[0]):
            yield (i,)
    else:
        remainder = shape[1:]
        for i in xrange(0, shape[0]):
            for rest in indices_in_shape(remainder):
                yield (i,)+rest




def generate_nonnegative_integer_tuples_below(n, length=None, least=0):
    """n may be a sequence, in which case length must be None."""
    if length is None:
        if len(n) == 0:
            yield ()
            return

        my_n = n[0]
        n = n[1:]
        next_length = None
    else:
        my_n = n

        assert length >= 0
        if length == 0:
            yield ()
            return

        next_length = length-1

    for i in range(least, my_n):
        my_part = (i,)
        for base in generate_nonnegative_integer_tuples_below(n, next_length, least):
            yield my_part + base

def generate_decreasing_nonnegative_tuples_summing_to(n, length, min=0, max=None):
    sig = (n,length,max)
    if length == 0:
        yield ()
    elif length == 1:
        if n <= max:
            #print "MX", n, max
            yield (n,)
        else:
            return
    else:
        if max is None or n < max:
            max = n

        for i in range(min, max+1):
            #print "SIG", sig, i
            for remainder in generate_decreasing_nonnegative_tuples_summing_to(
                    n-i, length-1, min, i):
                yield (i,) + remainder


def generate_nonnegative_integer_tuples_summing_to_at_most(n, length):
    """Enumerate all non-negative integer tuples summing to at most n,
    exhausting the search space by varying the first entry fastest,
    and the last entry the slowest.
    """
    assert length >= 0
    if length == 0:
        yield ()
    else:
        for i in range(n+1):
            for remainder in generate_nonnegative_integer_tuples_summing_to_at_most(
                    n-i, length-1):
                yield remainder + (i,)

def generate_all_nonnegative_integer_tuples(length, least=0):
    assert length >= 0
    current_max = least
    while True:
        for max_pos in range(length):
            for prebase in generate_nonnegative_integer_tuples_below(current_max, max_pos, least):
                for postbase in generate_nonnegative_integer_tuples_below(current_max+1, length-max_pos-1, least):
                    yield prebase + [current_max] + postbase
        current_max += 1

 # backwards compatibility
generate_positive_integer_tuples_below = generate_nonnegative_integer_tuples_below
generate_all_positive_integer_tuples = generate_all_nonnegative_integer_tuples

def _pos_and_neg_adaptor(tuple_iter):
    for tup in tuple_iter:
        nonzero_indices = [i for i in range(len(tup)) if tup[i] != 0]
        for do_neg_tup in generate_nonnegative_integer_tuples_below(2, len(nonzero_indices)):
            this_result = list(tup)
            for index, do_neg in enumerate(do_neg_tup):
                if do_neg:
                    this_result[nonzero_indices[index]] *= -1
            yield tuple(this_result)

def generate_all_integer_tuples_below(n, length, least_abs=0):
    return _pos_and_neg_adaptor(generate_nonnegative_integer_tuples_below(
        n, length, least_abs))

def generate_all_integer_tuples(length, least_abs=0):
    return _pos_and_neg_adaptor(generate_all_nonnegative_integer_tuples(
        length, least_abs))





def generate_permutations(original):
    """Generate all permutations of the list `original'.

    Nicked from http://aspn.activestate.com/ASPN/Cookbook/Python/Recipe/252178
    """
    if len(original) <=1:
        yield original
    else:
        for perm in generate_permutations(original[1:]):
            for i in range(len(perm)+1):
                #nb str[0:1] works in both string and list contexts
                yield perm[:i] + original[0:1] + perm[i:]






def generate_unique_permutations(original):
    """Generate all unique permutations of the list `original'.
    """

    had_those = set()

    for perm in generate_permutations(original):
        if perm not in had_those:
            had_those.add(perm)
            yield perm

def enumerate_basic_directions(dimensions):
    coordinate_list = [[0], [1], [-1]]
    return reduce(cartesian_product_sum, [coordinate_list] * dimensions)[1:]

# }}}

# {{{ index mangling ----------------------------------------------------------
def get_read_from_map_from_permutation(original, permuted):
    """With a permutation given by C{original} and C{permuted},
    generate a list C{rfm} of indices such that
    C{permuted[i] == original[rfm[i]]}.

    Requires that the permutation can be inferred from
    C{original} and C{permuted}.

    >>> for p1 in generate_permutations(range(5)):
    ...     for p2 in generate_permutations(range(5)):
    ...         rfm = get_read_from_map_from_permutation(p1, p2)
    ...         p2a = [p1[rfm[i]] for i in range(len(p1))]
    ...         assert p2 == p2a
    """
    assert len(original) == len(permuted)
    where_in_original = dict(
            (original[i], i) for i in xrange(len(original)))
    assert len(where_in_original) == len(original)
    return tuple(where_in_original[pi] for pi in permuted)




def get_write_to_map_from_permutation(original, permuted):
    """With a permutation given by C{original} and C{permuted},
    generate a list C{wtm} of indices such that
    C{permuted[wtm[i]] == original[i]}.

    Requires that the permutation can be inferred from
    C{original} and C{permuted}.

    >>> for p1 in generate_permutations(range(5)):
    ...     for p2 in generate_permutations(range(5)):
    ...         wtm = get_write_to_map_from_permutation(p1, p2)
    ...         p2a = [0] * len(p2)
    ...         for i, oi in enumerate(p1):
    ...             p2a[wtm[i]] = oi
    ...         assert p2 == p2a
    """
    assert len(original) == len(permuted)

    where_in_permuted = dict(
            (permuted[i], i) for i in xrange(len(permuted)))

    assert len(where_in_permuted) == len(permuted)
    return tuple(where_in_permuted[oi] for oi in original)

# }}}

# {{{ graph algorithms

def a_star(initial_state, goal_state, neighbor_map,
        estimate_remaining_cost=None,
        get_step_cost=lambda x, y: 1):
    """
    With the default cost and heuristic, this amounts to Dijkstra's algorithm.
    """

    from heapq import heappop, heappush

    if estimate_remaining_cost is None:
        def estimate_remaining_cost(x):
            if x != goal_state:
                return 1
            else:
                return 0

    class AStarNode(object):
        __slots__ = ["state", "parent", "path_cost"]
        def __init__(self, state, parent, path_cost):
            self.state = state
            self.parent = parent
            self.path_cost = path_cost

    inf = float("inf")
    init_remcost = estimate_remaining_cost(initial_state)
    assert init_remcost != inf

    queue = [(init_remcost, AStarNode(initial_state, parent=None, path_cost=0))]
    visited_states = set()

    while len(queue):
        _, top = heappop(queue)
        visited_states.add(top.state)

        if top.state == goal_state:
            result = []
            it = top
            while it is not None:
                result.append(it.state)
                it = it.parent
            return result[::-1]

        for state in neighbor_map[top.state]:
            if state in visited_states:
                continue

            remaining_cost = estimate_remaining_cost(state)
            if remaining_cost == inf:
                continue
            step_cost = get_step_cost(top, state)

            estimated_path_cost = top.path_cost+step_cost+remaining_cost
            heappush(queue, 
                (estimated_path_cost, 
                    AStarNode(state, top, path_cost=top.path_cost + step_cost)))

    raise RuntimeError("no solution")

# }}}

# {{{ formatting --------------------------------------------------------------
# {{{ table formatting --------------------------------------------------------
class Table:
    """An ASCII table generator."""
    def __init__(self):
        self.rows = []

    def add_row(self, row):
        self.rows.append([str(i) for i in row])

    def __str__(self):
        columns = len(self.rows[0])
        col_widths = [max(len(row[i]) for row in self.rows)
                      for i in range(columns)]

        lines = [
            "|".join([cell.ljust(col_width)
                      for cell, col_width in zip(row, col_widths)])
            for row in self.rows]
        lines[1:1] = ["+".join("-"*col_width
                              for col_width in col_widths)]
        return "\n".join(lines)

    def latex(self, skip_lines=0, hline_after=[]):
        lines = []
        for row_nr, row in list(enumerate(self.rows))[skip_lines:]:
            lines.append(" & ".join(row)+r" \\")
            if row_nr in hline_after:
                lines.append(r"\hline")

        return "\n".join(lines)

# }}}

# {{{ histogram formatting ----------------------------------------------------
def string_histogram(iterable, min_value=None, max_value=None, bin_count=20, width=70,
        bin_starts=None, use_unicode=True):
    if bin_starts is None:
        if min_value is None or max_value is None:
            iterable = list(iterable)
            min_value = min(iterable)
            max_value = max(iterable)

        bin_width = (max_value - min_value)/bin_count
        bin_starts = [min_value+bin_width*i for i in range(bin_count)]

    bins = [0 for i in range(len(bin_starts))]

    from bisect import bisect
    for value in iterable:
        if max_value is not None and value > max_value or value < bin_starts[0]:
            from warnings import warn
            warn("string_histogram: out-of-bounds value ignored")
        else:
            bin_nr = bisect(bin_starts, value)-1
            try:
                bins[bin_nr] += 1
            except:
                print value, bin_nr, bin_starts
                raise

    from math import floor, ceil
    if use_unicode:
        def format_bar(cnt):
            scaled = cnt*width/max_count
            full = int(floor(scaled))
            eighths = int(ceil((scaled-full)*8))
            if eighths:
                return full*unichr(0x2588) + unichr(0x2588+(8-eighths))
            else:
                return full*unichr(0x2588)
    else:
        def format_bar(cnt):
            return int(ceil(cnt*width/max_count))*"#"

    max_count = max(bins)
    total_count = sum(bins)
    return "\n".join("%9g |%9d | %3.0f %% | %s" % (
        bin_start,
        bin_value,
        bin_value/total_count*100,
        format_bar(bin_value))
        for bin_start, bin_value in zip(bin_starts, bins))

# }}}

def word_wrap(text, width, wrap_using="\n"):
    # http://code.activestate.com/recipes/148061-one-liner-word-wrap-function/
    """
    A word-wrap function that preserves existing line breaks
    and most spaces in the text. Expects that existing line
    breaks are posix newlines (\n).
    """
    space_or_break = [" ", wrap_using]
    return reduce(lambda line, word, width=width: '%s%s%s' %
            (line,
                space_or_break[(len(line)-line.rfind('\n')-1
                    + len(word.split('\n',1)[0]
                        ) >= width)],
                    word),
            text.split(' ')
            )

# }}}

# {{{ command line interfaces -------------------------------------------------
class CPyUserInterface(object):
    class Parameters(Record):
        pass

    def __init__(self, variables, constants={}, doc={}):
        self.variables = variables
        self.constants = constants
        self.doc = doc

    def show_usage(self, progname):
        print "usage: %s <FILE-OR-STATEMENTS>" % progname
        print
        print "FILE-OR-STATEMENTS may either be Python statements of the form"
        print "'variable1 = value1; variable2 = value2' or the name of a file"
        print "containing such statements. Any valid Python code may be used"
        print "on the command line or in a command file. If new variables are"
        print "used, they must start with 'user_' or just '_'."
        print
        print "The following variables are recognized:"
        for v in sorted(self.variables):
            print "  %s = %s" % (v, self.variables[v])
            if v in self.doc:
                print "    %s" % self.doc[v]

        print
        print "The following constants are supplied:"
        for c in sorted(self.constants):
            print "  %s = %s" % (c, self.constants[c])
            if c in self.doc:
                print "    %s" % self.doc[c]

    def gather(self, argv=None):
        import sys

        if argv is None:
            argv = sys.argv

        if len(argv) == 1 or (
                ("-h" in argv) or
                ("help" in argv) or
                ("-help" in argv) or
                ("--help" in argv)):
            self.show_usage(argv[0])
            sys.exit(2)

        execenv = self.variables.copy()
        execenv.update(self.constants)

        import os
        for arg in argv[1:]:
            if os.access(arg, os.F_OK):
                exec open(arg, "r") in execenv
            else:
                exec arg in execenv

        # check if the user set invalid keys
        for added_key in (
                set(execenv.keys())
                - set(self.variables.keys())
                - set(self.constants.keys())):
            if not (added_key.startswith("user_") or added_key.startswith("_")):
                raise ValueError(
                        "invalid setup key: '%s' "
                        "(user variables must start with 'user_' or '_')" % added_key)

        result = self.Parameters(dict((key, execenv[key]) for key in self.variables))
        self.validate(result)
        return result

    def validate(self, setup):
        pass

# }}}

# {{{ code maintenance --------------------------------------------------------
class MovedFunctionDeprecationWrapper:
    def __init__(self, f):
        self.f = f

    def __call__(self, *args, **kwargs):
        from warnings import warn
        warn("This function is deprecated. Use %s.%s instead." % (
            self.f.__module__, self.f.__name__),
            DeprecationWarning, stacklevel=2)

        return self.f(*args, **kwargs)

# }}}

# {{{ debugging ---------------------------------------------------------------
def typedump(val, max_seq=5, special_handlers={}):
    try:
        hdlr = special_handlers[type(val)]
    except KeyError:
        pass
    else:
        return hdlr(val)

    try:
        len(val)
    except TypeError:
        return type(val).__name__
    else:
        try:
            l = len(val)
            if len(val) > max_seq:
                return "%s(%s,...)" % (
                        type(val).__name__,
                        ",".join(typedump(x, max_seq, special_handlers)
                            for x in val[:max_seq]))
            else:
                return "%s(%s)" % (
                        type(val).__name__,
                        ",".join(typedump(x, max_seq, special_handlers)
                            for x in val))
        except TypeError:
            return val.__class__.__name__




def invoke_editor(s, filename="edit.txt", descr="the file"):
    from tempfile import mkdtemp
    tempdir = mkdtemp()

    from os.path import join
    full_name = join(tempdir, filename)

    outf = open(full_name, "w")
    outf.write(str(s))
    outf.close()

    import os
    if "EDITOR" in os.environ:
        from subprocess import Popen
        p = Popen([os.environ["EDITOR"], full_name])
        os.waitpid(p.pid, 0)[1]
    else:
        print "(Set the EDITOR environment variable to be " \
                "dropped directly into an editor next time.)"
        raw_input("Edit %s at %s now, then hit [Enter]:"
                % (descr, full_name))

    inf = open(full_name, "r")
    result = inf.read()
    inf.close()

    return result

# }}}

# {{{ progress bars -----------------------------------------------------------
class ProgressBar:
    def __init__(self, descr, total, initial=0, length=40):
        import time
        self.description = descr
        self.total = total
        self.done = initial
        self.length = length
        self.last_squares = -1
        self.start_time = time.time()
        self.last_update_time = self.start_time

        self.speed_meas_start_time = self.start_time
        self.speed_meas_start_done = initial

        self.time_per_step = None

    def draw(self):
        import time

        now = time.time()
        squares = int(self.done/self.total*self.length)
        if squares != self.last_squares or now-self.last_update_time > 0.5:
            if (self.done != self.speed_meas_start_done
                    and now-self.speed_meas_start_time > 3):
                new_time_per_step = (now-self.speed_meas_start_time) \
                        / (self.done-self.speed_meas_start_done)
                if self.time_per_step is not None:
                    self.time_per_step = (new_time_per_step + self.time_per_step)/2
                else:
                    self.time_per_step = new_time_per_step

                self.speed_meas_start_time = now
                self.speed_meas_start_done = self.done

            if self.time_per_step is not None:
                eta_str = "%6.1fs" % max(0, (self.total-self.done) * self.time_per_step)
            else:
                eta_str = "?"

            import sys
            sys.stderr.write("%-20s [%s] ETA %s\r" % (
                self.description,
                squares*"#"+(self.length-squares)*" ",
                eta_str))

            self.last_squares = squares
            self.last_update_time = now

    def progress(self, steps=1):
        self.set_progress(self.done + steps)

    def set_progress(self, done):
        self.done = done
        self.draw()

    def finished(self):
        import sys
        self.set_progress(self.total)
        sys.stderr.write("\n")

# }}}

# {{{ file system related -----------------------------------------------------
def assert_not_a_file(name):
    import os
    if os.access(name, os.F_OK):
        raise IOError, "file `%s' already exists" % name


def _test():
    import doctest
    doctest.testmod()

if __name__ == "__main__":
    _test()




def add_python_path_relative_to_script(rel_path):
    import sys
    from os.path import dirname, join, abspath

    script_name = sys.argv[0]
    rel_script_dir = dirname(script_name)

    sys.path.append(abspath(join(rel_script_dir, rel_path)))

# }}}

# {{{ numpy dtype mangling ----------------------------------------------------
def common_dtype(dtypes, default=None):
    dtypes = list(dtypes)
    if dtypes:
        return argmax2((dtype, dtype.num) for dtype in dtypes)
    else:
        if default is not None:
            return default
        else:
            raise ValueError(
                    "cannot find common dtype of empty dtype list")





def to_uncomplex_dtype(dtype):
    import numpy
    if dtype == numpy.complex64:
        return numpy.float32
    elif dtype == numpy.complex128:
        return numpy.float64
    if dtype == numpy.float32:
        return numpy.float32
    elif dtype == numpy.float64:
        return numpy.float64
    else:
        raise TypeError("unrecgonized dtype '%s'" % dtype)




def match_precision(dtype, dtype_to_match):
    import numpy

    tgt_is_double = dtype_to_match in [
            numpy.float64, numpy.complex128]

    dtype_is_complex = dtype.kind == "c"
    if dtype_is_complex:
        if tgt_is_double:
            return numpy.dtype(numpy.complex128)
        else:
            return numpy.dtype(numpy.complex64)
    else:
        if tgt_is_double:
            return numpy.dtype(numpy.float64)
        else:
            return numpy.dtype(numpy.float32)

# }}}

# vim: foldmethod=marker