This file is indexed.

/usr/share/pyshared/pyvtk/Normals.py is in python-pyvtk 0.4.74-3build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
#!/usr/bin/env python
"""
Normals
"""
"""

Copyright 2001 Pearu Peterson all rights reserved,
Pearu Peterson <pearu@ioc.ee>          
Permission to use, modify, and distribute this software is given under the
terms of the LGPL.  See http://www.fsf.org

NO WARRANTY IS EXPRESSED OR IMPLIED.  USE AT YOUR OWN RISK.
$Revision: 1.3 $
$Date: 2001-05-31 17:48:54 $
Pearu Peterson
"""

import DataSetAttr
import math
import common

class Normals(DataSetAttr.DataSetAttr):
    """Holds VTK Normals.
    Usage:
      Normals(<sequence of 3-tuples> ,name = <string>)
    Attributes:
      normals
      name
    Public methods:
      get_size()
      to_string(format = 'ascii')
    """
    def __init__(self,normals,name=None):
        self.name = self._get_name(name)
        seq = []
        for v in self.get_3_tuple_list(normals,(self.default_value,)*3):
            n = math.sqrt(v[0]*v[0]+v[1]*v[1]+v[2]*v[2])
            if n==0:
                self.warning('cannot normalize zero vector')
                seq.append(v)
            elif n==1:
                seq.append(v)
            else:
                seq.append(tuple([c/n for c in v]))
        self.normals = seq
    def to_string(self,format='ascii'):
        t = self.get_datatype(self.normals)
        ret = ['NORMALS %s %s'%(self.name,t),
               self.seq_to_string(self.normals,format,t)]
        return '\n'.join(ret)
    def get_size(self):
        return len(self.normals)

def normals_fromfile(f,n,sl):
    dataname = sl[0]
    datatype = sl[1].lower()
    assert datatype in ['bit','unsigned_char','char','unsigned_short','short','unsigned_int','int','unsigned_long','long','float','double'],`datatype`
    normals = []
    while len(normals) < 3*n:
        normals += map(eval,common._getline(f).split(' '))
    assert len(normals) == 3*n
    return Normals(normals,dataname)

if __name__ == "__main__":
    print Normals([[3,3],[4,3.],240,3,2]).to_string()