This file is indexed.

/usr/share/doc/python-scientific/Reference/Scientific.Functions.Rational.RationalFunction-class.html is in python-scientific-doc 2.8-2build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
<?xml version="1.0" encoding="ascii"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
          "DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
  <title>Scientific.Functions.Rational.RationalFunction</title>
  <link rel="stylesheet" href="epydoc.css" type="text/css" />
  <script type="text/javascript" src="epydoc.js"></script>
</head>

<body bgcolor="white" text="black" link="blue" vlink="#204080"
      alink="#204080">
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
       bgcolor="#a0c0ff" cellspacing="0">
  <tr valign="middle">
  <!-- Home link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="Scientific-module.html">Home</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Tree link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="module-tree.html">Trees</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Index link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="identifier-index.html">Indices</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Help link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="help.html">Help</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Project homepage -->
      <th class="navbar" align="right" width="100%">
        <table border="0" cellpadding="0" cellspacing="0">
          <tr><th class="navbar" align="center"
            ><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
          </tr></table></th>
  </tr>
</table>
<table width="100%" cellpadding="0" cellspacing="0">
  <tr valign="top">
    <td width="100%">
      <span class="breadcrumbs">
        <a href="Scientific-module.html">Package&nbsp;Scientific</a> ::
        <a href="Scientific.Functions-module.html">Package&nbsp;Functions</a> ::
        <a href="Scientific.Functions.Rational-module.html">Module&nbsp;Rational</a> ::
        Class&nbsp;RationalFunction
      </span>
    </td>
    <td>
      <table cellpadding="0" cellspacing="0">
        <!-- hide/show private -->
        <tr><td align="right"><span class="options"
            >[<a href="frames.html" target="_top">frames</a
            >]&nbsp;|&nbsp;<a href="Scientific.Functions.Rational.RationalFunction-class.html"
            target="_top">no&nbsp;frames</a>]</span></td></tr>
      </table>
    </td>
  </tr>
</table>
<!-- ==================== CLASS DESCRIPTION ==================== -->
<h1 class="epydoc">Class RationalFunction</h1><p class="nomargin-top"></p>
<p>Rational Function</p>
  <p>Instances of this class represent rational functions in a single 
  variable. They can be evaluated like functions.</p>
  <p>Rational functions support addition, subtraction, multiplication, and 
  division.</p>

<!-- ==================== INSTANCE METHODS ==================== -->
<a name="section-InstanceMethods"></a>
<table class="summary" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
  <td align="left" colspan="2" class="table-header">
    <span class="table-header">Instance Methods</span></td>
</tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__add__"></a><span class="summary-sig-name">__add__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__call__"></a><span class="summary-sig-name">__call__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">value</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__coerce__"></a><span class="summary-sig-name">__coerce__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__div__"></a><span class="summary-sig-name">__div__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a href="Scientific.Functions.Rational.RationalFunction-class.html#__init__" class="summary-sig-name">__init__</a>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">numerator</span>,
        <span class="summary-sig-arg">denominator</span>=<span class="summary-sig-default"><code class="variable-group">[</code>1.0<code class="variable-group">]</code></span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__mul__"></a><span class="summary-sig-name">__mul__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__radd__"></a><span class="summary-sig-name">__radd__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__rdiv__"></a><span class="summary-sig-name">__rdiv__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__repr__"></a><span class="summary-sig-name">__repr__</span>(<span class="summary-sig-arg">self</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__rmul__"></a><span class="summary-sig-name">__rmul__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__rsub__"></a><span class="summary-sig-name">__rsub__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a name="__sub__"></a><span class="summary-sig-name">__sub__</span>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">other</span>)</span></td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">(<a href="Scientific.Functions.Polynomial.Polynomial-class.html" 
      class="link">Scientific.Functions.Polynomial.Polynomial</a>, <a 
      href="Scientific.Functions.Rational.RationalFunction-class.html" 
      class="link">RationalFunction</a>)</span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a href="Scientific.Functions.Rational.RationalFunction-class.html#divide" class="summary-sig-name">divide</a>(<span class="summary-sig-arg">self</span>,
        <span class="summary-sig-arg">shift</span>=<span class="summary-sig-default">0</span>)</span><br />
      Returns:
      a polynomial and a rational function such that the sum of the two is 
      equal to the original rational function.</td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type"><code>Numeric.array</code></span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a href="Scientific.Functions.Rational.RationalFunction-class.html#poles" class="summary-sig-name">poles</a>(<span class="summary-sig-arg">self</span>)</span><br />
      Find the <a name="index-poles"></a><i class="indexterm">poles</i> 
      (zeros of the denominator) by diagonalization of the associated 
      Frobenius matrix.</td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type"><code>Numeric.array</code></span>
    </td><td class="summary">
      <table width="100%" cellpadding="0" cellspacing="0" border="0">
        <tr>
          <td><span class="summary-sig"><a href="Scientific.Functions.Rational.RationalFunction-class.html#zeros" class="summary-sig-name">zeros</a>(<span class="summary-sig-arg">self</span>)</span><br />
      Find the <a name="index-zeros"></a><i class="indexterm">zeros</i> (<a
      name="index-roots"></a><i class="indexterm">roots</i>) of the 
      numerator by diagonalization of the associated Frobenius matrix.</td>
          <td align="right" valign="top">
            
            
          </td>
        </tr>
      </table>
      
    </td>
  </tr>
</table>
<!-- ==================== CLASS VARIABLES ==================== -->
<a name="section-ClassVariables"></a>
<table class="summary" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
  <td align="left" colspan="2" class="table-header">
    <span class="table-header">Class Variables</span></td>
</tr>
<tr>
    <td width="15%" align="right" valign="top" class="summary">
      <span class="summary-type">&nbsp;</span>
    </td><td class="summary">
        <a name="is_rational_function"></a><span class="summary-name">is_rational_function</span> = <code title="1">1</code>
    </td>
  </tr>
</table>
<!-- ==================== METHOD DETAILS ==================== -->
<a name="section-MethodDetails"></a>
<table class="details" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
  <td align="left" colspan="2" class="table-header">
    <span class="table-header">Method Details</span></td>
</tr>
</table>
<a name="__init__"></a>
<div>
<table class="details" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr><td>
  <table width="100%" cellpadding="0" cellspacing="0" border="0">
  <tr valign="top"><td>
  <h3 class="epydoc"><span class="sig"><span class="sig-name">__init__</span>(<span class="sig-arg">self</span>,
        <span class="sig-arg">numerator</span>,
        <span class="sig-arg">denominator</span>=<span class="sig-default"><code class="variable-group">[</code>1.0<code class="variable-group">]</code></span>)</span>
    <br /><em class="fname">(Constructor)</em>
  </h3>
  </td><td align="right" valign="top"
    >&nbsp;
    </td>
  </tr></table>
  
  
  <dl class="fields">
    <dt>Parameters:</dt>
    <dd><ul class="nomargin-top">
        <li><strong class="pname"><code>numerator</code></strong> (<a href="Scientific.Functions.Polynomial.Polynomial-class.html" 
          class="link">Scientific.Functions.Polynomial.Polynomial</a> or 
          <code>list</code> of numbers) - polynomial in one variable, or a list of polynomial coefficients</li>
        <li><strong class="pname"><code>denominator</code></strong> (<a href="Scientific.Functions.Polynomial.Polynomial-class.html" 
          class="link">Scientific.Functions.Polynomial.Polynomial</a> or 
          <code>list</code> of numbers) - polynomial in one variable, or a list of polynomial coefficients</li>
    </ul></dd>
  </dl>
</td></tr></table>
</div>
<a name="divide"></a>
<div>
<table class="details" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr><td>
  <table width="100%" cellpadding="0" cellspacing="0" border="0">
  <tr valign="top"><td>
  <h3 class="epydoc"><span class="sig"><span class="sig-name">divide</span>(<span class="sig-arg">self</span>,
        <span class="sig-arg">shift</span>=<span class="sig-default">0</span>)</span>
  </h3>
  </td><td align="right" valign="top"
    >&nbsp;
    </td>
  </tr></table>
  
  
  <dl class="fields">
    <dt>Parameters:</dt>
    <dd><ul class="nomargin-top">
        <li><strong class="pname"><code>shift</code></strong> (<code>int</code> (non-negative)) - the power of the independent variable by which the numerator is 
          multiplied prior to division</li>
    </ul></dd>
    <dt>Returns: (<a href="Scientific.Functions.Polynomial.Polynomial-class.html" 
      class="link">Scientific.Functions.Polynomial.Polynomial</a>, <a 
      href="Scientific.Functions.Rational.RationalFunction-class.html" 
      class="link">RationalFunction</a>)</dt>
        <dd>a polynomial and a rational function such that the sum of the two
          is equal to the original rational function. The returned rational
          function's numerator is of lower order than its denominator.</dd>
  </dl>
</td></tr></table>
</div>
<a name="poles"></a>
<div>
<table class="details" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr><td>
  <table width="100%" cellpadding="0" cellspacing="0" border="0">
  <tr valign="top"><td>
  <h3 class="epydoc"><span class="sig"><span class="sig-name">poles</span>(<span class="sig-arg">self</span>)</span>
  </h3>
  </td><td align="right" valign="top"
    >&nbsp;
    </td>
  </tr></table>
  
  <p>Find the <a name="index-poles"></a><i class="indexterm">poles</i> 
  (zeros of the denominator) by diagonalization of the associated Frobenius
  matrix.</p>
  <dl class="fields">
    <dt>Returns: <code>Numeric.array</code></dt>
        <dd>an array containing the poles</dd>
  </dl>
</td></tr></table>
</div>
<a name="zeros"></a>
<div>
<table class="details" border="1" cellpadding="3"
       cellspacing="0" width="100%" bgcolor="white">
<tr><td>
  <table width="100%" cellpadding="0" cellspacing="0" border="0">
  <tr valign="top"><td>
  <h3 class="epydoc"><span class="sig"><span class="sig-name">zeros</span>(<span class="sig-arg">self</span>)</span>
  </h3>
  </td><td align="right" valign="top"
    >&nbsp;
    </td>
  </tr></table>
  
  <p>Find the <a name="index-zeros"></a><i class="indexterm">zeros</i> (<a 
  name="index-roots"></a><i class="indexterm">roots</i>) of the numerator 
  by diagonalization of the associated Frobenius matrix.</p>
  <dl class="fields">
    <dt>Returns: <code>Numeric.array</code></dt>
        <dd>an array containing the zeros</dd>
  </dl>
</td></tr></table>
</div>
<br />
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
       bgcolor="#a0c0ff" cellspacing="0">
  <tr valign="middle">
  <!-- Home link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="Scientific-module.html">Home</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Tree link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="module-tree.html">Trees</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Index link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="identifier-index.html">Indices</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Help link -->
      <th>&nbsp;&nbsp;&nbsp;<a
        href="help.html">Help</a>&nbsp;&nbsp;&nbsp;</th>

  <!-- Project homepage -->
      <th class="navbar" align="right" width="100%">
        <table border="0" cellpadding="0" cellspacing="0">
          <tr><th class="navbar" align="center"
            ><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
          </tr></table></th>
  </tr>
</table>
<table border="0" cellpadding="0" cellspacing="0" width="100%%">
  <tr>
    <td align="left" class="footer">
    Generated by Epydoc 3.0 on Tue Oct 28 14:16:03 2008
    </td>
    <td align="right" class="footer">
      <a target="mainFrame" href="http://epydoc.sourceforge.net"
        >http://epydoc.sourceforge.net</a>
    </td>
  </tr>
</table>

<script type="text/javascript">
  <!--
  // Private objects are initially displayed (because if
  // javascript is turned off then we want them to be
  // visible); but by default, we want to hide them.  So hide
  // them unless we have a cookie that says to show them.
  checkCookie();
  // -->
</script>
</body>
</html>