/usr/share/doc/python-scientific/Reference/Scientific.Statistics.Histogram.Histogram-class.html is in python-scientific-doc 2.8-2build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 | <?xml version="1.0" encoding="ascii"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<title>Scientific.Statistics.Histogram.Histogram</title>
<link rel="stylesheet" href="epydoc.css" type="text/css" />
<script type="text/javascript" src="epydoc.js"></script>
</head>
<body bgcolor="white" text="black" link="blue" vlink="#204080"
alink="#204080">
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
bgcolor="#a0c0ff" cellspacing="0">
<tr valign="middle">
<!-- Home link -->
<th> <a
href="Scientific-module.html">Home</a> </th>
<!-- Tree link -->
<th> <a
href="module-tree.html">Trees</a> </th>
<!-- Index link -->
<th> <a
href="identifier-index.html">Indices</a> </th>
<!-- Help link -->
<th> <a
href="help.html">Help</a> </th>
<!-- Project homepage -->
<th class="navbar" align="right" width="100%">
<table border="0" cellpadding="0" cellspacing="0">
<tr><th class="navbar" align="center"
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
</tr></table></th>
</tr>
</table>
<table width="100%" cellpadding="0" cellspacing="0">
<tr valign="top">
<td width="100%">
<span class="breadcrumbs">
<a href="Scientific-module.html">Package Scientific</a> ::
<a href="Scientific.Statistics-module.html">Package Statistics</a> ::
<a href="Scientific.Statistics.Histogram-module.html">Module Histogram</a> ::
Class Histogram
</span>
</td>
<td>
<table cellpadding="0" cellspacing="0">
<!-- hide/show private -->
<tr><td align="right"><span class="options"
>[<a href="frames.html" target="_top">frames</a
>] | <a href="Scientific.Statistics.Histogram.Histogram-class.html"
target="_top">no frames</a>]</span></td></tr>
</table>
</td>
</tr>
</table>
<!-- ==================== CLASS DESCRIPTION ==================== -->
<h1 class="epydoc">Class Histogram</h1><p class="nomargin-top"></p>
<dl><dt>Known Subclasses:</dt>
<dd>
<ul class="subclass-list">
<li><a href="Scientific.Statistics.Histogram.WeightedHistogram-class.html">WeightedHistogram</a></li> </ul>
</dd></dl>
<hr />
<p>Histogram in one variable</p>
<p>The bin index and the number of points in a bin can be obtained by
indexing the histogram with the bin number. Application of len() yields
the number of bins. A histogram thus behaves like a sequence of bin index
- bin count pairs.</p>
<p>Here is an example on usage:</p>
<pre class="py-doctest">
<span class="py-prompt">>>> </span>nsamples = 1000
<span class="py-prompt">>>> </span><span class="py-keyword">from</span> numpy <span class="py-keyword">import</span> random
<span class="py-prompt">>>> </span>data = random.normal(1.0, 0.5, nsamples)
<span class="py-prompt">>>> </span><span class="py-keyword">import</span> Scientific.Statistics <span class="py-keyword">as</span> S
<span class="py-prompt">>>> </span>S.mean(data)
<span class="py-output">0.9607056871982641</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>S.standardDeviation(data)
<span class="py-output">0.50251811830486681</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>S.median(data)
<span class="py-output">0.94853870756924152</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>S.skewness(data) <span class="py-comment"># should be 0</span>
<span class="py-output">0.038940041870334556</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>S.kurtosis(data) <span class="py-comment"># should be 3</span>
<span class="py-output">2.865582791273765</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>
<span class="py-prompt">>>> </span><span class="py-keyword">from</span> Scientific.Statistics.Histogram <span class="py-keyword">import</span> Histogram
<span class="py-prompt">>>> </span>h = Histogram(data, 50) <span class="py-comment"># use 50 bins between min & max samples</span>
<span class="py-prompt">>>> </span>h.normalizeArea() <span class="py-comment"># make probabilities in histogram</span>
<span class="py-prompt">>>> </span>h[3] <span class="py-comment"># bin index and frequency in the 4th bin</span>
<span class="py-output">array([-0.45791018, 0.01553658])</span>
<span class="py-output"></span><span class="py-prompt">>>> </span>x = h.getBinIndices()
<span class="py-prompt">>>> </span>y = h.getBinCounts()
<span class="py-prompt">>>> </span><span class="py-comment"># can plot the y vector against the x vector (see below)</span>
<span class="py-prompt">>>> </span>
<span class="py-prompt">>>> </span><span class="py-comment"># add many more samples:</span>
<span class="py-prompt">>>> </span>nsamples2 = nsamples*100
<span class="py-prompt">>>> </span>data = random.normal(1.0, 0.5, nsamples2)
<span class="py-prompt">>>> </span>h.addData(data)
<span class="py-prompt">>>> </span>h.normalizeArea()
<span class="py-prompt">>>> </span>x2 = h.getBinIndices()
<span class="py-prompt">>>> </span>y2 = h.getBinCounts()</pre>
<pre class="py-doctest">
<span class="py-prompt">>>> </span>plot (x,y) <span class="py-keyword">and</span> (x2,y2):
<span class="py-prompt">>>> </span><span class="py-keyword">import</span> Gnuplot
<span class="py-prompt">>>> </span>g = Gnuplot.Gnuplot(persist=1)
<span class="py-prompt">>>> </span>g.xlabel(<span class="py-string">'sample value'</span>); g.ylabel(<span class="py-string">'probability'</span>)
<span class="py-prompt">>>> </span>d1 = Gnuplot.Data(x, y, with=<span class="py-string">'lines'</span>,
<span class="py-more">... </span> title=<span class="py-string">'%d samples'</span> % nsamples)
<span class="py-prompt">>>> </span>d2 = Gnuplot.Data(x2, y2, with=<span class="py-string">'lines'</span>,
<span class="py-more">... </span> title=<span class="py-string">'%d samples'</span> % nsamples2)
<span class="py-prompt">>>> </span>g.plot(d1,d2)</pre>
<!-- ==================== INSTANCE METHODS ==================== -->
<a name="section-InstanceMethods"></a>
<table class="summary" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
<td align="left" colspan="2" class="table-header">
<span class="table-header">Instance Methods</span></td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#__getitem__" class="summary-sig-name">__getitem__</a>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">index</span>)</span><br />
Returns:
an array of shape (2,) containing the bin value and the bin count</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a name="__getslice__"></a><span class="summary-sig-name">__getslice__</span>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">first</span>,
<span class="summary-sig-arg">last</span>)</span></td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#__init__" class="summary-sig-name">__init__</a>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">data</span>,
<span class="summary-sig-arg">nbins</span>,
<span class="summary-sig-arg">range</span>=<span class="summary-sig-default">None</span>)</span></td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"><code>int</code></span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#__len__" class="summary-sig-name">__len__</a>(<span class="summary-sig-arg">self</span>)</span><br />
Returns:
the number of bins</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#addData" class="summary-sig-name">addData</a>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">data</span>)</span><br />
Add values to the originally supplied data sequence.</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a name="getBinCounts"></a><span class="summary-sig-name">getBinCounts</span>(<span class="summary-sig-arg">self</span>)</span><br />
Return an array of all the bin counts.</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a name="getBinIndices"></a><span class="summary-sig-name">getBinIndices</span>(<span class="summary-sig-arg">self</span>)</span><br />
Return an array of all the bin indices.</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#normalize" class="summary-sig-name">normalize</a>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">norm</span>=<span class="summary-sig-default">1.0</span>)</span><br />
Scale all bin counts by the same factor</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
<tr>
<td width="15%" align="right" valign="top" class="summary">
<span class="summary-type"> </span>
</td><td class="summary">
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr>
<td><span class="summary-sig"><a href="Scientific.Statistics.Histogram.Histogram-class.html#normalizeArea" class="summary-sig-name">normalizeArea</a>(<span class="summary-sig-arg">self</span>,
<span class="summary-sig-arg">norm</span>=<span class="summary-sig-default">1.0</span>)</span><br />
Scale all bin counts by the same factor</td>
<td align="right" valign="top">
</td>
</tr>
</table>
</td>
</tr>
</table>
<!-- ==================== METHOD DETAILS ==================== -->
<a name="section-MethodDetails"></a>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr bgcolor="#70b0f0" class="table-header">
<td align="left" colspan="2" class="table-header">
<span class="table-header">Method Details</span></td>
</tr>
</table>
<a name="__getitem__"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">__getitem__</span>(<span class="sig-arg">self</span>,
<span class="sig-arg">index</span>)</span>
<br /><em class="fname">(Indexing operator)</em>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>index</code></strong> (<code>int</code>) - a bin index</li>
</ul></dd>
<dt>Returns:</dt>
<dd>an array of shape (2,) containing the bin value and the bin count</dd>
</dl>
</td></tr></table>
</div>
<a name="__init__"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">__init__</span>(<span class="sig-arg">self</span>,
<span class="sig-arg">data</span>,
<span class="sig-arg">nbins</span>,
<span class="sig-arg">range</span>=<span class="sig-default">None</span>)</span>
<br /><em class="fname">(Constructor)</em>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>data</code></strong> (<code>Numeric.array</code> of <code>float</code> or
<code>int</code>) - a sequence of data points</li>
<li><strong class="pname"><code>nbins</code></strong> (<code>int</code>) - the number of bins into which the data is to be sorted</li>
<li><strong class="pname"><code>range</code></strong> (<code>tuple</code> or <code>NoneType</code>) - a tuple of two values, specifying the lower and the upper end of
the interval spanned by the bins. Any data point outside this
interval will be ignored. If no range is given, the smallest and
largest data values are used to define the interval.</li>
</ul></dd>
</dl>
</td></tr></table>
</div>
<a name="__len__"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">__len__</span>(<span class="sig-arg">self</span>)</span>
<br /><em class="fname">(Length operator)</em>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<dl class="fields">
<dt>Returns: <code>int</code></dt>
<dd>the number of bins</dd>
</dl>
</td></tr></table>
</div>
<a name="addData"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">addData</span>(<span class="sig-arg">self</span>,
<span class="sig-arg">data</span>)</span>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<p>Add values to the originally supplied data sequence. Use this method
to feed long data sequences in multiple parts to avoid memory
shortages.</p>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>data</code></strong> (<code>Numeric.array</code>) - a sequence of data points</li>
</ul></dd>
</dl>
<div class="fields"> <p><strong>Note:</strong>
this does not affect the default range of the histogram, which is
fixed when the histogram is created.
</p>
</div></td></tr></table>
</div>
<a name="normalize"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">normalize</span>(<span class="sig-arg">self</span>,
<span class="sig-arg">norm</span>=<span class="sig-default">1.0</span>)</span>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<p>Scale all bin counts by the same factor</p>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>norm</code></strong> (<code>float</code> or <code>int</code>) - the sum of all bin counts after the rescaling</li>
</ul></dd>
</dl>
</td></tr></table>
</div>
<a name="normalizeArea"></a>
<div>
<table class="details" border="1" cellpadding="3"
cellspacing="0" width="100%" bgcolor="white">
<tr><td>
<table width="100%" cellpadding="0" cellspacing="0" border="0">
<tr valign="top"><td>
<h3 class="epydoc"><span class="sig"><span class="sig-name">normalizeArea</span>(<span class="sig-arg">self</span>,
<span class="sig-arg">norm</span>=<span class="sig-default">1.0</span>)</span>
</h3>
</td><td align="right" valign="top"
>
</td>
</tr></table>
<p>Scale all bin counts by the same factor</p>
<dl class="fields">
<dt>Parameters:</dt>
<dd><ul class="nomargin-top">
<li><strong class="pname"><code>norm</code></strong> (<code>float</code> or <code>int</code>) - the area under the histogram after the rescaling</li>
</ul></dd>
</dl>
</td></tr></table>
</div>
<br />
<!-- ==================== NAVIGATION BAR ==================== -->
<table class="navbar" border="0" width="100%" cellpadding="0"
bgcolor="#a0c0ff" cellspacing="0">
<tr valign="middle">
<!-- Home link -->
<th> <a
href="Scientific-module.html">Home</a> </th>
<!-- Tree link -->
<th> <a
href="module-tree.html">Trees</a> </th>
<!-- Index link -->
<th> <a
href="identifier-index.html">Indices</a> </th>
<!-- Help link -->
<th> <a
href="help.html">Help</a> </th>
<!-- Project homepage -->
<th class="navbar" align="right" width="100%">
<table border="0" cellpadding="0" cellspacing="0">
<tr><th class="navbar" align="center"
><a class="navbar" target="_top" href="http://dirac.cnrs-orleans.fr/ScientificPython/">Scientific Python</a></th>
</tr></table></th>
</tr>
</table>
<table border="0" cellpadding="0" cellspacing="0" width="100%%">
<tr>
<td align="left" class="footer">
Generated by Epydoc 3.0 on Tue Oct 28 14:16:07 2008
</td>
<td align="right" class="footer">
<a target="mainFrame" href="http://epydoc.sourceforge.net"
>http://epydoc.sourceforge.net</a>
</td>
</tr>
</table>
<script type="text/javascript">
<!--
// Private objects are initially displayed (because if
// javascript is turned off then we want them to be
// visible); but by default, we want to hide them. So hide
// them unless we have a cookie that says to show them.
checkCookie();
// -->
</script>
</body>
</html>
|