This file is indexed.

/usr/share/pyshared/sympy/solvers/recurr.py is in python-sympy 0.7.1.rc1-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
"""This module is intended for solving recurrences or, in other words,
   difference equations. Currently supported are linear, inhomogeneous
   equations with polynomial or rational coefficients.

   The solutions are obtained among polynomials, rational functions,
   hypergeometric terms, or combinations of hypergeometric term which
   are pairwise dissimilar.

   rsolve_X functions were meant as a low level interface for rsolve()
   which would use Mathematica's syntax.

   Given a recurrence relation:

      a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) + ... + a_{0}(n) y(n) = f(n)

   where k > 0 and a_{i}(n) are polynomials in n. To use rsolve_X we need
   to put all coefficients in to a list L of k+1 elements the following
   way:

      L = [ a_{0}(n), ..., a_{k-1}(n), a_{k}(n) ]

   where L[i], for i=0..k, maps to a_{i}(n) y(n+i) (y(n+i) is implicit).

   For example if we would like to compute m-th Bernoulli polynomial up to
   a constant (example was taken from rsolve_poly docstring), then we would
   use b(n+1) - b(n) == m*n**(m-1) recurrence, which has solution b(n) = B_m + C.

   Then L = [-1, 1] and f(n) = m*n**(m-1) and finally for m=4:

    >>> from sympy import Symbol, bernoulli, rsolve_poly
    >>> n = Symbol('n', integer=True)

    >>> rsolve_poly([-1, 1], 4*n**3, n)
    C0 + n**4 - 2*n**3 + n**2

    >>> bernoulli(4, n)
    n**4 - 2*n**3 + n**2 - 1/30

   For the sake of completeness, f(n) can be:

    [1] a polynomial              -> rsolve_poly
    [2] a rational function       -> rsolve_ratio
    [3] a hypergeometric function  -> rsolve_hyper
"""

from sympy.core.singleton import S
from sympy.core.numbers import Rational
from sympy.core.symbol import Symbol, Wild, Dummy
from sympy.core.relational import Equality
from sympy.core.add import Add
from sympy.core.mul import Mul
from sympy.core import sympify

from sympy.simplify import simplify, hypersimp, hypersimilar
from sympy.solvers import solve, solve_undetermined_coeffs
from sympy.polys import Poly, quo, gcd, lcm, roots, resultant
from sympy.functions import binomial, FallingFactorial
from sympy.matrices import Matrix, casoratian
from sympy.concrete import product

def rsolve_poly(coeffs, f, n, **hints):
    """Given linear recurrence operator L of order 'k' with polynomial
       coefficients and inhomogeneous equation Ly = f, where 'f' is a
       polynomial, we seek for all polynomial solutions over field K
       of characteristic zero.

       The algorithm performs two basic steps:

           (1) Compute degree N of the general polynomial solution.
           (2) Find all polynomials of degree N or less of Ly = f.

       There are two methods for computing the polynomial solutions.
       If the degree bound is relatively small, i.e. it's smaller than
       or equal to the order of the recurrence, then naive method of
       undetermined coefficients is being used. This gives system
       of algebraic equations with N+1 unknowns.

       In the other case, the algorithm performs transformation of the
       initial equation to an equivalent one, for which the system of
       algebraic equations has only 'r' indeterminates. This method is
       quite sophisticated (in comparison with the naive one) and was
       invented together by Abramov, Bronstein and Petkovsek.

       It is possible to generalize the algorithm implemented here to
       the case of linear q-difference and differential equations.

       Lets say that we would like to compute m-th Bernoulli polynomial
       up to a constant. For this we can use b(n+1) - b(n) == m*n**(m-1)
       recurrence, which has solution b(n) = B_m + C. For example:

       >>> from sympy import Symbol, rsolve_poly
       >>> n = Symbol('n', integer=True)

       >>> rsolve_poly([-1, 1], 4*n**3, n)
       C0 + n**4 - 2*n**3 + n**2

       For more information on implemented algorithms refer to:

       [1] S. A. Abramov, M. Bronstein and M. Petkovsek, On polynomial
           solutions of linear operator equations, in: T. Levelt, ed.,
           Proc. ISSAC '95, ACM Press, New York, 1995, 290-296.

       [2] M. Petkovsek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

       [3] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return None

    homogeneous = f.is_zero

    r = len(coeffs)-1

    coeffs = [ Poly(coeff, n) for coeff in coeffs ]

    polys = [ Poly(0, n) ] * (r+1)
    terms = [ (S.Zero, S.NegativeInfinity) ] *(r+1)

    for i in xrange(0, r+1):
        for j in xrange(i, r+1):
            polys[i] += coeffs[j]*binomial(j, i)

        if not polys[i].is_zero:
            (exp,), coeff = polys[i].LT()
            terms[i] = (coeff, exp)

    d = b = terms[0][1]

    for i in xrange(1, r+1):
        if terms[i][1] > d:
            d = terms[i][1]

        if terms[i][1] - i > b:
            b = terms[i][1] - i

    d, b = int(d), int(b)

    x = Dummy('x')

    degree_poly = S.Zero

    for i in xrange(0, r+1):
        if terms[i][1] - i == b:
            degree_poly += terms[i][0]*FallingFactorial(x, i)

    nni_roots = roots(degree_poly, x, filter='Z',
        predicate=lambda r: r >= 0).keys()

    if nni_roots:
        N = [max(nni_roots)]
    else:
        N = []

    if homogeneous:
        N += [-b-1]
    else:
        N += [f.as_poly(n).degree() - b, -b-1]

    N = int(max(N))

    if N < 0:
        if homogeneous:
            if hints.get('symbols', False):
                return (S.Zero, [])
            else:
                return S.Zero
        else:
            return None

    if N <= r:
        C = []
        y = E = S.Zero

        for i in xrange(0, N+1):
            C.append(Symbol('C'+str(i)))
            y += C[i] * n**i

        for i in xrange(0, r+1):
            E += coeffs[i].as_expr()*y.subs(n, n+i)

        solutions = solve_undetermined_coeffs(E-f, C, n)

        if solutions is not None:
            C = [ c for c in C if (c not in solutions) ]
            result = y.subs(solutions)
        else:
            return None # TBD
    else:
        A = r
        U = N+A+b+1

        nni_roots = roots(polys[r], filter='Z',
            predicate=lambda r: r >= 0).keys()

        if nni_roots != []:
            a = max(nni_roots) + 1
        else:
            a = S.Zero

        def zero_vector(k):
            return [S.Zero] * k

        def one_vector(k):
            return [S.One] * k

        def delta(p, k):
            B = S.One
            D = p.subs(n, a+k)

            for i in xrange(1, k+1):
                B *= -Rational(k-i+1, i)
                D += B * p.subs(n, a+k-i)

            return D

        alpha = {}

        for i in xrange(-A, d+1):
            I = one_vector(d+1)

            for k in xrange(1, d+1):
                I[k] = I[k-1] * (x+i-k+1)/k

            alpha[i] = S.Zero

            for j in xrange(0, A+1):
                for k in xrange(0, d+1):
                    B = binomial(k, i+j)
                    D = delta(polys[j].as_expr(), k)

                    alpha[i] += I[k]*B*D

        V = Matrix(U, A, lambda i, j: int(i == j))

        if homogeneous:
            for i in xrange(A, U):
                v = zero_vector(A)

                for k in xrange(1, A+b+1):
                    if i - k < 0:
                        break

                    B = alpha[k-A].subs(x, i-k)

                    for j in xrange(0, A):
                        v[j] += B * V[i-k, j]

                denom = alpha[-A].subs(x, i)

                for j in xrange(0, A):
                    V[i, j] = -v[j] / denom
        else:
            G = zero_vector(U)

            for i in xrange(A, U):
                v = zero_vector(A)
                g = S.Zero

                for k in xrange(1, A+b+1):
                    if i - k < 0:
                        break

                    B = alpha[k-A].subs(x, i-k)

                    for j in xrange(0, A):
                        v[j] += B * V[i-k, j]

                    g += B * G[i-k]

                denom = alpha[-A].subs(x, i)

                for j in xrange(0, A):
                    V[i, j] = -v[j] / denom

                G[i] = (delta(f, i-A) - g) / denom

        P, Q = one_vector(U), zero_vector(A)

        for i in xrange(1, U):
            P[i] = (P[i-1] * (n-a-i+1)/i).expand()

        for i in xrange(0, A):
            Q[i] = Add(*[ (v*p).expand() for v, p in zip(V[:,i], P) ])

        if not homogeneous:
            h = Add(*[ (g*p).expand() for g, p in zip(G, P) ])

        C = [ Symbol('C'+str(i)) for i in xrange(0, A) ]

        g = lambda i: Add(*[ c*delta(q, i) for c, q in zip(C, Q) ])

        if homogeneous:
            E = [ g(i) for i in xrange(N+1, U) ]
        else:
            E = [ g(i) + delta(h, i) for i in xrange(N+1, U) ]

        if E != []:
            solutions = solve(E, *C)

            if solutions is None:
                if homogeneous:
                    if hints.get('symbols', False):
                        return (S.Zero, [])
                    else:
                        return S.Zero
                else:
                    return None
        else:
            solutions = {}

        if homogeneous:
            result = S.Zero
        else:
            result = h

        for c, q in zip(C, Q):
            if c in solutions:
                s = solutions[c]*q
                C.remove(c)
            else:
                s = c*q

            result += s.expand()

    if hints.get('symbols', False):
        return (result, C)
    else:
        return result

def rsolve_ratio(coeffs, f, n, **hints):
    """Given linear recurrence operator L of order 'k' with polynomial
       coefficients and inhomogeneous equation Ly = f, where 'f' is a
       polynomial, we seek for all rational solutions over field K of
       characteristic zero.

       This procedure accepts only polynomials, however if you are
       interested in solving recurrence with rational coefficients
       then use rsolve() which will pre-process the given equation
       and run this procedure with polynomial arguments.

       The algorithm performs two basic steps:

           (1) Compute polynomial v(n) which can be used as universal
               denominator of any rational solution of equation Ly = f.

           (2) Construct new linear difference equation by substitution
               y(n) = u(n)/v(n) and solve it for u(n) finding all its
               polynomial solutions. Return None if none were found.

       Algorithm implemented here is a revised version of the original
       Abramov's algorithm, developed in 1989. The new approach is much
       simpler to implement and has better overall efficiency. This
       method can be easily adapted to q-difference equations case.

       Besides finding rational solutions alone, this functions is
       an important part of Hyper algorithm were it is used to find
       particular solution of inhomogeneous part of a recurrence.

       For more information on the implemented algorithm refer to:

       [1] S. A. Abramov, Rational solutions of linear difference
           and q-difference equations with polynomial coefficients,
           in: T. Levelt, ed., Proc. ISSAC '95, ACM Press, New York,
           1995, 285-289

    """
    f = sympify(f)

    if not f.is_polynomial(n):
        return None

    coeffs = map(sympify, coeffs)

    r = len(coeffs)-1

    A, B = coeffs[r], coeffs[0]
    A = A.subs(n, n-r).expand()

    h = Dummy('h')

    res = resultant(A, B.subs(n, n+h), n)

    if not res.is_polynomial(h):
        p, q = res.as_numer_denom()
        res = quo(p, q, h)

    nni_roots = roots(res, h, filter='Z',
        predicate=lambda r: r >= 0).keys()

    if not nni_roots:
        return rsolve_poly(coeffs, f, n, **hints)
    else:
        C, numers = S.One, [S.Zero]*(r+1)

        for i in xrange(int(max(nni_roots)), -1, -1):
            d = gcd(A, B.subs(n, n+i), n)

            A = quo(A, d, n)
            B = quo(B, d.subs(n, n-i), n)

            C *= Mul(*[ d.subs(n, n-j) for j in xrange(0, i+1) ])

        denoms = [ C.subs(n, n+i) for i in range(0, r+1) ]

        for i in range(0, r+1):
            g = gcd(coeffs[i], denoms[i], n)

            numers[i] = quo(coeffs[i], g, n)
            denoms[i] = quo(denoms[i], g, n)

        for i in xrange(0, r+1):
            numers[i] *= Mul(*(denoms[:i] + denoms[i+1:]))

        result = rsolve_poly(numers, f * Mul(*denoms), n, **hints)

        if result is not None:
            if hints.get('symbols', False):
                return (simplify(result[0] / C), result[1])
            else:
                return simplify(result / C)
        else:
            return None

def rsolve_hyper(coeffs, f, n, **hints):
    """Given linear recurrence operator L of order 'k' with polynomial
       coefficients and inhomogeneous equation Ly = f we seek for all
       hypergeometric solutions over field K of characteristic zero.

       The inhomogeneous part can be either hypergeometric or a sum
       of a fixed number of pairwise dissimilar hypergeometric terms.

       The algorithm performs three basic steps:

           (1) Group together similar hypergeometric terms in the
               inhomogeneous part of Ly = f, and find particular
               solution using Abramov's algorithm.

           (2) Compute generating set of L and find basis in it,
               so that all solutions are linearly independent.

           (3) Form final solution with the number of arbitrary
               constants equal to dimension of basis of L.

       Term a(n) is hypergeometric if it is annihilated by first order
       linear difference equations with polynomial coefficients or, in
       simpler words, if consecutive term ratio is a rational function.

       The output of this procedure is a linear combination of fixed
       number of hypergeometric terms. However the underlying method
       can generate larger class of solutions - D'Alembertian terms.

       Note also that this method not only computes the kernel of the
       inhomogeneous equation, but also reduces in to a basis so that
       solutions generated by this procedure are linearly independent

       For more information on the implemented algorithm refer to:

       [1] M. Petkovsek, Hypergeometric solutions of linear recurrences
           with polynomial coefficients, J. Symbolic Computation,
           14 (1992), 243-264.

       [2] M. Petkovsek, H. S. Wilf, D. Zeilberger, A = B, 1996.

    """
    coeffs = map(sympify, coeffs)

    f = sympify(f)

    r, kernel = len(coeffs)-1, []

    if not f.is_zero:
        if f.is_Add:
            similar = {}

            for g in f.expand().args:
                if not g.is_hypergeometric(n):
                    return None

                for h in similar.iterkeys():
                    if hypersimilar(g, h, n):
                        similar[h] += g
                        break
                else:
                    similar[g] = S.Zero

            inhomogeneous = []

            for g, h in similar.iteritems():
                inhomogeneous.append(g+h)
        elif f.is_hypergeometric(n):
            inhomogeneous = [f]
        else:
            return None

        for i, g in enumerate(inhomogeneous):
            coeff, polys = S.One, coeffs[:]
            denoms = [ S.One ] * (r+1)

            s = hypersimp(g, n)

            for j in xrange(1, r+1):
                coeff *= s.subs(n, n+j-1)

                p, q = coeff.as_numer_denom()

                polys[j] *= p
                denoms[j] = q

            for j in xrange(0, r+1):
                polys[j] *= Mul(*(denoms[:j] + denoms[j+1:]))

            R = rsolve_poly(polys, Mul(*denoms), n)

            if not (R is None  or  R is S.Zero):
                inhomogeneous[i] *= R
            else:
                return None

            result = Add(*inhomogeneous)
    else:
        result = S.Zero

    Z = Dummy('Z')

    p, q = coeffs[0], coeffs[r].subs(n, n-r+1)

    p_factors = [ z for z in roots(p, n).iterkeys() ]
    q_factors = [ z for z in roots(q, n).iterkeys() ]

    factors = [ (S.One, S.One) ]

    for p in p_factors:
        for q in q_factors:
            if p.is_integer and q.is_integer and p <= q:
                continue
            else:
                factors += [(n-p, n-q)]

    p = [ (n-p, S.One) for p in p_factors ]
    q = [ (S.One, n-q) for q in q_factors ]

    factors = p + factors + q

    for A, B in factors:
        polys, degrees = [], []
        D = A*B.subs(n, n+r-1)

        for i in xrange(0, r+1):
            a = Mul(*[ A.subs(n, n+j) for j in xrange(0, i) ])
            b = Mul(*[ B.subs(n, n+j) for j in xrange(i, r) ])

            poly = quo(coeffs[i]*a*b, D, n)
            polys.append(poly.as_poly(n))

            if not poly.is_zero:
                degrees.append(polys[i].degree())

        d, poly = max(degrees), S.Zero

        for i in xrange(0, r+1):
            coeff = polys[i].nth(d)

            if coeff is not S.Zero:
                poly += coeff * Z**i

        for z in roots(poly, Z).iterkeys():
            if not z.is_real or z.is_zero:
                continue

            C = rsolve_poly([ polys[i]*z**i for i in xrange(r+1) ], 0, n)

            if C is not None  and  C is not S.Zero:
                ratio = z * A * C.subs(n, n + 1) / B / C
                K = product(simplify(ratio), (n, 0, n-1))

                if casoratian(kernel+[K], n) != 0:
                    kernel.append(K)

    symbols = [ Symbol('C'+str(i)) for i in xrange(len(kernel)) ]

    for C, ker in zip(symbols, kernel):
        result += C * ker

    if hints.get('symbols', False):
        return (result, symbols)
    else:
        return result

def rsolve(f, y, init=None):
    """Solve univariate recurrence with rational coefficients.

       Given k-th order linear recurrence Ly = f, or equivalently:

         a_{k}(n) y(n+k) + a_{k-1}(n) y(n+k-1) + ... + a_{0}(n) y(n) = f

       where a_{i}(n), for i=0..k, are polynomials or rational functions
       in n, and f is a hypergeometric function or a sum of a fixed number
       of pairwise dissimilar hypergeometric terms in n, finds all solutions
       or returns None, if none were found.

       Initial conditions can be given as a dictionary in two forms:

          [1] {   n_0  : v_0,   n_1  : v_1, ...,   n_m  : v_m }
          [2] { y(n_0) : v_0, y(n_1) : v_1, ..., y(n_m) : v_m }

       or as a list L of values:

          L = [ v_0, v_1, ..., v_m ]

       where L[i] = v_i, for i=0..m, maps to y(n_i).

       As an example lets consider the following recurrence:

         (n - 1) y(n + 2) - (n**2 + 3 n - 2) y(n + 1) + 2 n (n + 1) y(n) == 0

       >>> from sympy import Function, rsolve
       >>> from sympy.abc import n
       >>> y = Function('y')

       >>> f = (n-1)*y(n+2) - (n**2+3*n-2)*y(n+1) + 2*n*(n+1)*y(n)

       >>> rsolve(f, y(n))
       2**n*C1 + C0*n!

       >>> rsolve(f, y(n), { y(0):0, y(1):3 })
       3*2**n - 3*n!

    """
    if isinstance(f, Equality):
        f = f.lhs - f.rhs

    if f.is_Add:
        F = f.args
    else:
        F = [f]

    k = Wild('k')
    n = y.args[0]

    h_part = {}
    i_part = S.Zero

    for g in F:
        if g.is_Mul:
            G = g.args
        else:
            G = [g]

        coeff = S.One
        kspec = None

        for h in G:
            if h.is_Function:
                if h.func == y.func:
                    result = h.args[0].match(n + k)

                    if result is not None:
                        kspec = int(result[k])
                    else:
                        raise ValueError("'%s(%s+k)' expected, got '%s'" % (y.func, n, h))
                else:
                    raise ValueError("'%s' expected, got '%s'" % (y.func, h.func))
            else:
                coeff *= h

        if kspec is not None:
            if kspec in h_part:
                h_part[kspec] += coeff
            else:
                h_part[kspec] = coeff
        else:
            i_part += coeff

    for k, coeff in h_part.iteritems():
        h_part[k] = simplify(coeff)

    common = S.One

    for coeff in h_part.itervalues():
        if coeff.is_rational_function(n):
            if not coeff.is_polynomial(n):
                common = lcm(common, coeff.as_numer_denom()[1], n)
        else:
            raise ValueError("Polynomial or rational function expected, got '%s'" % coeff)

    i_numer, i_denom = i_part.as_numer_denom()

    if i_denom.is_polynomial(n):
        common = lcm(common, i_denom, n)

    if common is not S.One:
        for k, coeff in h_part.iteritems():
            numer, denom = coeff.as_numer_denom()
            h_part[k] = numer*quo(common, denom, n)

        i_part = i_numer*quo(common, i_denom, n)

    K_min = min(h_part.keys())

    if K_min < 0:
        K = abs(K_min)

        H_part = {}
        i_part = i_part.subs(n, n+K).expand()
        common = common.subs(n, n+K).expand()

        for k, coeff in h_part.iteritems():
            H_part[k+K] = coeff.subs(n, n+K).expand()
    else:
        H_part = h_part

    K_max = max(H_part.keys())
    coeffs = []

    for i in xrange(0, K_max+1):
        if i in H_part:
            coeffs.append(H_part[i])
        else:
            coeffs.append(S.Zero)

    result = rsolve_hyper(coeffs, i_part, n, symbols=True)

    if result is None:
        return None
    else:
        solution, symbols = result

        if symbols and init is not None:
            equations = []

            if type(init) is list:
                for i in xrange(0, len(init)):
                    eq = solution.subs(n, i) - init[i]
                    equations.append(eq)
            else:
                for k, v in init.iteritems():
                    try:
                        i = int(k)
                    except TypeError:
                        if k.is_Function and k.func == y.func:
                            i = int(k.args[0])
                        else:
                            raise ValueError("Integer or term expected, got '%s'" % k)

                    eq = solution.subs(n, i) - v
                    equations.append(eq)

            result = solve(equations, *symbols)

            if result is None:
                return None
            else:
                for k, v in result.iteritems():
                    solution = solution.subs(k, v)

    return (solution.expand()) / common