This file is indexed.

/usr/share/doc/pyxplot/html/ex-trefoil.html is in pyxplot-doc 0.8.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: Two-dimensional parametric surfaces</title>

<link href="sec-legends.html" title="Graph Legends" rel="next" />
<link href="ex-spirograph.html" title="Plotting Parametric Functions" rel="prev" />
<link href="ex-spirograph.html" title="Plotting Parametric Functions" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>

<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="ex-spirograph.html" title="Plotting Parametric Functions"><img alt="Previous: Plotting Parametric Functions" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ex-spirograph.html" title="Plotting Parametric Functions"><img alt="Up: Plotting Parametric Functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sec-legends.html" title="Graph Legends"><img alt="Next: Graph Legends" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0255.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>

</span><span>
<span>
<a href="sect0043.html">Plotting and Vector Graphics</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ch-plotting.html">Plotting: A Detailed Survey</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ex-spirograph.html">Plotting Parametric Functions</a> <b>:</b>
</span>

</span><span>

<span>
<b class="current">Two-dimensional parametric surfaces</b>
</span>
</span>
<hr />
</div>

<div><h2 id="ex:trefoil">1.6.1 Two-dimensional parametric surfaces</h2>
<p>PyXPlot can also plot datasets which can be parameterised in terms of two free parameters <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" />. This is most often useful in conjunction with the <tt class="tt">surface</tt> plot style, allowing any <img src="images/img-0429.png" alt="$(u,v)$" style="vertical-align:-4px; 
                                     width:40px; 
                                     height:18px" class="math gen" />-surface to be plotted. However, it also works in conjunction with any other plot style, allowing, for example, <img src="images/img-0429.png" alt="$(u,v)$" style="vertical-align:-4px; 
                                     width:40px; 
                                     height:18px" class="math gen" />-grids of points to be constructed. </p><p>As in the case of parametric lines above, the range of values that each free parameter should take must be specified. This can be done using the <a name="a0000000734" id="a0000000734"></a><tt class="tt">set urange</tt> and <a name="a0000000735" id="a0000000735"></a><tt class="tt">set vrange</tt> commands. These commands also act to switch PyXPlot between one- and two-dimensional parametric function evaluation; whilst the <tt class="tt">set trange</tt> command indicates that the next parametric function should be evaluated along a single raster of values of <img src="images/img-0056.png" alt="$t$" style="vertical-align:0px; 
                                     width:6px; 
                                     height:12px" class="math gen" />, the <tt class="tt">set urange</tt> and <tt class="tt">set vrange</tt> commands indicate that a grid of <img src="images/img-0429.png" alt="$(u,v)$" style="vertical-align:-4px; 
                                     width:40px; 
                                     height:18px" class="math gen" /> values should be used. By default, the range of values used for <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> is <img src="images/img-0182.png" alt="$0\to 1$" style="vertical-align:-1px; 
                                     width:45px; 
                                     height:13px" class="math gen" />. </p><p>The number of samples to be taken can be specified using a command of the form<a name="a0000000736" id="a0000000736"></a> </p><pre>
set sample grid 20x50
</pre><p> which specifies that 20 different values of <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and 50 different values of <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> should be used, yielding a total of 1000 datapoints. The following example uses the <tt class="tt">lines</tt> plot style to generate a sequence of cross-sections through a two-dimensional Gaussian surface: </p><pre>
set sample grid 20x20
set urange [-1:1]
set vrange [-1:1]
f(u,v) = 0.4*exp(-(u**2+v**2)/0.2)
plot parametric u:v+f(u,v) with l
</pre><p> <center>
<img src="images/img-0431.png" alt="\includegraphics[width=5cm]{examples/eps/ex_datagrid}" style="width:5cm" /></center> </p><p>The ranges of values to use for <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> may alternatively be specified on a dataset-by-dataset basis within the plot command, as in the example </p><pre>
plot parametric [0:1][0:1] u:v , \
     parametric [0:1] sin(t):cos(t)
</pre><p> <span class="upshape"><span class="mdseries"><span class="rm">Torus.</span></span></span></p><div>

<table cellspacing="0" class="tabular">
<tr>

    
    <td style="border-top-style:solid; border-left:1px solid black; border-right:1px solid black; border-top-color:black; border-top-width:1px; text-align:left"><p> In this example we plot a torus, which can be parametrised in terms of two free parameters <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> as </p><table id="a0000000737" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000000738">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0412.png" alt="$\displaystyle  x  $" style="vertical-align:0px; width:10px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0433.png" alt="$\displaystyle  (R + r\cos (v))\cos (u)  $" style="vertical-align:-4px; width:159px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000739">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0414.png" alt="$\displaystyle y  $" style="vertical-align:-4px; width:9px;                     height:12px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0434.png" alt="$\displaystyle  (R + r\cos (v))\sin (u)  $" style="vertical-align:-4px; width:157px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000740">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0435.png" alt="$\displaystyle z  $" style="vertical-align:0px; width:9px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0436.png" alt="$\displaystyle  r\sin (v) ,  $" style="vertical-align:-4px; width:61px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p> where <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> both run in the range <img src="images/img-0437.png" alt="$[0:2\pi ]$" style="vertical-align:-5px; 
                                     width:50px; 
                                     height:18px" class="math gen" />, <img src="images/img-0438.png" alt="$R$" style="vertical-align:0px; 
                                     width:14px; 
                                     height:12px" class="math gen" /> is the distance of the tube’s centre from the centre of the torus, and <img src="images/img-0416.png" alt="$r$" style="vertical-align:0px; 
                                     width:8px; 
                                     height:8px" class="math gen" /> is the radius of the tube. </p></td>

</tr><tr>

    
    <td style="text-align:left; border-right:1px solid black; border-left:1px solid black"><p><tt class="tt">R = 3</tt><br /><tt class="tt">r = 0.5</tt><br /><tt class="tt">set size square</tt><br /><tt class="tt">f(u,v) = (R+r*cos(v))*cos(u)</tt><br /><tt class="tt">g(u,v) = (R+r*cos(v))*sin(u)</tt><br /><tt class="tt">h(u,v) = r*sin(v)</tt><br /></p><p><tt class="tt">set urange [0:2*pi]</tt><br /><tt class="tt">set vrange [0:2*pi]</tt><br /><tt class="tt">set zrange [-2.5:2.5]</tt><br /></p><p><tt class="tt">set nokey</tt><br /><tt class="tt">set sample grid 50x20</tt><br /><tt class="tt">plot 3d parametric f(u,v):g(u,v):h(u,v) with surf fillcol blue</tt><br /></p></td>

</tr><tr>

    
    <td style="text-align:left; border-right:1px solid black; border-left:1px solid black"><p><center>
<img src="images/img-0440.png" alt="\includegraphics[width=8cm]{examples/eps/ex_torus}" style="width:8cm" /></center> </p></td>

</tr><tr>

    
    <td style="border-bottom-style:solid; border-bottom-width:1px; border-left:1px solid black; border-right:1px solid black; text-align:left; border-bottom-color:black">&nbsp;</td>

</tr>
</table>
</div><p> <span class="upshape"><span class="mdseries"><span class="rm">Trefoil knot.</span></span></span></p><div>

<table cellspacing="0" class="tabular">
<tr>

    
    <td style="border-top-style:solid; border-left:1px solid black; border-right:1px solid black; border-top-color:black; border-top-width:1px; text-align:left"><p> In this example we plot a trefoil knot, which is the simplest non-trivial knot in topology. Simply put, this means that it is not possible to untie the knot without cutting it. The knot follows the line </p><table id="a0000000741" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000000742">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0412.png" alt="$\displaystyle  x  $" style="vertical-align:0px; width:10px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0442.png" alt="$\displaystyle  (2 + \cos (3t))\cos (2t)  $" style="vertical-align:-4px; width:155px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000743">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0414.png" alt="$\displaystyle y  $" style="vertical-align:-4px; width:9px;                     height:12px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0443.png" alt="$\displaystyle  (2 + \cos (3t))\sin (2t)  $" style="vertical-align:-4px; width:153px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000744">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0435.png" alt="$\displaystyle z  $" style="vertical-align:0px; width:9px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0444.png" alt="$\displaystyle  \sin (3t) ,  $" style="vertical-align:-4px; width:56px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p> but in this example we construct a tube around this line using the following parameterisation: </p><table id="a0000000745" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000000746">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0412.png" alt="$\displaystyle  x  $" style="vertical-align:0px; width:10px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0445.png" alt="$\displaystyle  \cos (2u)\cos (v) + r\cos (2u)(1.5+\sin (3u)/2)  $" style="vertical-align:-5px; width:332px;                     height:19px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000747">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0414.png" alt="$\displaystyle y  $" style="vertical-align:-4px; width:9px;                     height:12px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0446.png" alt="$\displaystyle  \sin (2u)\cos (v) + r\sin (2u)(1.5+\sin (3u)/2)  $" style="vertical-align:-5px; width:328px;                     height:19px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000000748">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0435.png" alt="$\displaystyle z  $" style="vertical-align:0px; width:9px;                     height:8px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0447.png" alt="$\displaystyle  \sin (v)+R\cos (3u) ,  $" style="vertical-align:-4px; width:146px;                     height:18px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p> where <img src="images/img-0428.png" alt="$u$" style="vertical-align:0px; 
                                     width:10px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0054.png" alt="$v$" style="vertical-align:0px; 
                                     width:9px; 
                                     height:8px" class="math gen" /> run in the ranges <img src="images/img-0437.png" alt="$[0:2\pi ]$" style="vertical-align:-5px; 
                                     width:50px; 
                                     height:18px" class="math gen" /> and <img src="images/img-0448.png" alt="$[-\pi :\pi ]$" style="vertical-align:-5px; 
                                     width:57px; 
                                     height:18px" class="math gen" /> respectively, and <img src="images/img-0416.png" alt="$r$" style="vertical-align:0px; 
                                     width:8px; 
                                     height:8px" class="math gen" /> and <img src="images/img-0438.png" alt="$R$" style="vertical-align:0px; 
                                     width:14px; 
                                     height:12px" class="math gen" /> determine the size and thickness of the knot as in an analogous fashion to the previous example. </p></td>

</tr><tr>

    
    <td style="text-align:left; border-right:1px solid black; border-left:1px solid black"><p><tt class="tt">R = 2</tt><br /><tt class="tt">r = 5</tt><br /><tt class="tt">set size square</tt><br /><tt class="tt">f(u,v) = cos(2*u)*cos(v) + r*cos(2*u)*(1.5+sin(3*u)/2)</tt><br /><tt class="tt">g(u,v) = sin(2*u)*cos(v) + r*sin(2*u)*(1.5+sin(3*u)/2)</tt><br /><tt class="tt">h(u,v) = sin(v)+R*cos(3*u)</tt><br /></p><p><tt class="tt">set urange [0:2*pi]</tt><br /><tt class="tt">set vrange [-pi:pi]</tt><br /></p><p><tt class="tt">set nokey</tt><br /><tt class="tt">set sample grid 150x20</tt><br /><tt class="tt">plot 3d parametric f(u,v):g(u,v):h(u,v) with surf fillcol blue</tt><br /></p></td>

</tr><tr>

    
    <td style="text-align:left; border-right:1px solid black; border-left:1px solid black"><p><center>
<img src="images/img-0450.png" alt="\includegraphics[width=8cm]{examples/eps/ex_trefoil}" style="width:8cm" /></center> </p></td>

</tr><tr>

    
    <td style="border-bottom-style:solid; border-bottom-width:1px; border-left:1px solid black; border-right:1px solid black; text-align:left; border-bottom-color:black">&nbsp;</td>

</tr>
</table>
</div></div>





<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="ex-spirograph.html" title="Plotting Parametric Functions"><img alt="Previous: Plotting Parametric Functions" border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ex-spirograph.html" title="Plotting Parametric Functions"><img alt="Up: Plotting Parametric Functions" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sec-legends.html" title="Graph Legends"><img alt="Next: Graph Legends" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0255.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>

</body>
</html>