This file is indexed.

/usr/share/doc/pyxplot/html/sect0244.html is in pyxplot-doc 0.8.4-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en">
<head>
<meta name="generator" content="plasTeX" />
<meta content="text/html; charset=utf-8" http-equiv="content-type" />
<title>PyXPlot Users' Guide: The Covariance Matrix</title>

<link href="sec-correlation_matrix.html" title="The Correlation Matrix" rel="next" />
<link href="sect0243.html" title="Estimating the Error in u0" rel="prev" />
<link href="ch-fit_maths.html" title="The fit Command: Mathematical Details" rel="up" />
<link rel="stylesheet" href="styles/styles.css" />
</head>
<body>

<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0243.html" title="Estimating the Error in "><img alt="Previous: Estimating the Error in " border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ch-fit_maths.html" title="The fit Command: Mathematical Details"><img alt="Up: The fit Command: Mathematical Details" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sec-correlation_matrix.html" title="The Correlation Matrix"><img alt="Next: The Correlation Matrix" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0255.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<div class="breadcrumbs">
<span>
<span>
<a href="index.html">PyXPlot Users' Guide</a> <b>:</b>
</span>

</span><span>
<span>
<a href="sect0230.html">Appendices</a> <b>:</b>
</span>

</span><span>
<span>
<a href="ch-fit_maths.html">The <tt class="tt">fit</tt> Command: Mathematical Details</a> <b>:</b>
</span>

</span><span>

<span>
<b class="current">The Covariance Matrix</b>
</span>
</span>
<hr />
</div>

<div><h1 id="a0000000245">C.4 The Covariance Matrix</h1>
<p> <a name="a0000001676" id="a0000001676"></a> </p><p>The terms of the covariance matrix <img src="images/img-0822.png" alt="$V_{ij}$" style="vertical-align:-5px; 
                                     width:21px; 
                                     height:17px" class="math gen" /> are defined by: </p><table id="&lt;plasTeX.TeXFragment object at 0xb25f6bc&gt;" class="equation" width="100%" cellspacing="0" cellpadding="7">
<tr>
    
    <td style="width:40%">&nbsp;</td>
    <td><img src="images/img-0823.png" alt="\begin{equation}  V_{ij} = \left&lt; \left(u_ i - u^0_ i\right) \left(u_ j - u^0_ j\right) \right&gt; \label{eqn:def_ covar} \end{equation}" style="width:404px; 
                            height:24px" class="math gen" /></td>
    
    <td style="width:40%">&nbsp;</td>
    <td class="eqnnum" style="width:20%"><span>(<span>C.8</span>)</span></td>
</tr>
</table><p>Its leading diagonal terms may be recognised as equalling the variances of each of our <img src="images/img-0794.png" alt="$n_\mathrm {u}$" style="vertical-align:-2px; 
                                     width:19px; 
                                     height:10px" class="math gen" /> variables; its cross terms measure the correlation between the variables. If a component <img src="images/img-0824.png" alt="$V_{ij} &gt; 0$" style="vertical-align:-5px; 
                                     width:55px; 
                                     height:17px" class="math gen" />, it implies that higher estimates of the coefficient <img src="images/img-0821.png" alt="$u_ i$" style="vertical-align:-2px; 
                                     width:14px; 
                                     height:10px" class="math gen" /> make higher estimates of <img src="images/img-0825.png" alt="$u_ j$" style="vertical-align:-5px; 
                                     width:16px; 
                                     height:13px" class="math gen" /> more favourable also; if <img src="images/img-0826.png" alt="$V_{ij} &lt; 0$" style="vertical-align:-5px; 
                                     width:55px; 
                                     height:17px" class="math gen" />, the converse is true. </p><p>It is a standard statistical result that <img src="images/img-0827.png" alt="$\mathbf{V} = (-\mathbf{A})^{-1}$" style="vertical-align:-4px; 
                                     width:101px; 
                                     height:20px" class="math gen" />. In the remainder of this section we prove this; readers who are willing to accept this may skip onto Section <a href="sec-correlation_matrix.html">C.5</a>. </p><p>Using <img src="images/img-0828.png" alt="$\Delta u_ i$" style="vertical-align:-2px; 
                                     width:28px; 
                                     height:14px" class="math gen" /> to denote <img src="images/img-0829.png" alt="$\left(u_ i - u^0_ i\right)$" style="vertical-align:-6px; 
                                     width:69px; 
                                     height:22px" class="math gen" />, we may proceed by rewriting Equation (<a></a>) as: </p><table id="a0000001677" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000001678">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0830.png" alt="$\displaystyle  V_{ij}  $" style="vertical-align:-5px; width:21px;                     height:17px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0831.png" alt="$\displaystyle  \idotsint _{u_ i=-\infty }^{\infty } \Delta u_ i \Delta u_ j \mathrm{P}\left( \mathbf{u} | \left\{  \mathbf{x}_ i, f_ i, \sigma _ i \right\}  \right) \, \mathrm{d}^{n_\mathrm {u}}\mathbf{u}  $" style="vertical-align:-18px; width:348px;                     height:44px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum"><span>(<span>C.9</span>)</span></td>
</tr><tr id="a0000001679">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0175.png" alt="$\displaystyle  $" style="vertical-align:0px; width:1px;                     height:1px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0832.png" alt="$\displaystyle  \frac{ \idotsint _{u_ i=-\infty }^{\infty } \Delta u_ i \Delta u_ j \exp (-Q) \, \mathrm{d}^{n_\mathrm {u}}\mathbf{u} }{ \idotsint _{u_ i=-\infty }^{\infty } \exp (-Q) \, \mathrm{d}^{n_\mathrm {u}}\mathbf{u} } \nonumber  $" style="vertical-align:-22px; width:278px;                     height:53px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p>The normalisation factor in the denominator of this expression, which we denote as <img src="images/img-0833.png" alt="$Z$" style="vertical-align:0px; 
                                     width:12px; 
                                     height:12px" class="math gen" />, the <i class="itshape">partition function</i>, may be evaluated by <img src="images/img-0794.png" alt="$n_\mathrm {u}$" style="vertical-align:-2px; 
                                     width:19px; 
                                     height:10px" class="math gen" />-dimensional Gaussian integration, and is a standard result: </p><table id="a0000001680" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000001681">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0834.png" alt="$\displaystyle  Z  $" style="vertical-align:0px; width:12px;                     height:12px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0835.png" alt="$\displaystyle  \idotsint _{u_ i=-\infty }^{\infty } \exp \left(\frac{1}{2} \Delta \mathbf{u}^\mathbf {T} \mathbf{A} \Delta \mathbf{u} \right) \, \mathrm{d}^{n_\mathrm {u}}\mathbf{u}  $" style="vertical-align:-18px; width:305px;                     height:45px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum"><span>(<span>C.10</span>)</span></td>
</tr><tr id="a0000001682">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0175.png" alt="$\displaystyle  $" style="vertical-align:0px; width:1px;                     height:1px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0836.png" alt="$\displaystyle  \frac{(2\pi )^{n_\mathrm {u}/2}}{\mathrm{Det}(\mathbf{-A})} \nonumber  $" style="vertical-align:-17px; width:74px;                     height:47px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p>Differentiating <img src="images/img-0837.png" alt="$\log _ e(Z)$" style="vertical-align:-4px; 
                                     width:57px; 
                                     height:18px" class="math gen" /> with respect of any given component of the Hessian matrix <img src="images/img-0838.png" alt="$A_{ij}$" style="vertical-align:-5px; 
                                     width:25px; 
                                     height:17px" class="math gen" /> yields: </p><table id="a0000001683" class="equation" width="100%" cellspacing="0" cellpadding="7">
<tr>
    
    <td style="width:40%">&nbsp;</td>
    <td><img src="images/img-0839.png" alt="\begin{equation}  -2 \frac{\partial }{\partial A_{ij}} \left[ \log _ e(Z) \right] = \frac{1}{Z} \idotsint _{u_ i=-\infty }^{\infty } \Delta u_ i \Delta u_ j \exp (-Q) \, \mathrm{d}^{n_\mathrm {u}}\mathbf{u} \end{equation}" style="width:547px; 
                            height:44px" class="math gen" /></td>
    
    <td style="width:40%">&nbsp;</td>
    <td class="eqnnum" style="width:20%"><span>(<span>C.11</span>)</span></td>
</tr>
</table><p>which we may identify as equalling <img src="images/img-0822.png" alt="$V_{ij}$" style="vertical-align:-5px; 
                                     width:21px; 
                                     height:17px" class="math gen" />: </p><table id="&lt;plasTeX.TeXFragment object at 0xb279b3c&gt;" cellpadding="7" width="100%" cellspacing="0" class="eqnarray">
<tr id="a0000001684">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0840.png" alt="$\displaystyle  \label{eqa:v_ zrelate} V_{ij}  $" style="vertical-align:-5px; width:21px;                     height:17px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0841.png" alt="$\displaystyle  -2 \frac{\partial }{\partial A_{ij}} \left[ \log _ e(Z) \right]  $" style="vertical-align:-19px; width:132px;                     height:44px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum"><span>(<span>C.12</span>)</span></td>
</tr><tr id="a0000001685">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0175.png" alt="$\displaystyle  $" style="vertical-align:0px; width:1px;                     height:1px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0842.png" alt="$\displaystyle  -2 \frac{\partial }{\partial A_{ij}} \left[ \log _ e((2\pi )^{n_\mathrm {u}/2}) - \log _ e(\mathrm{Det}(\mathbf{-A})) \right] \nonumber  $" style="vertical-align:-19px; width:329px;                     height:44px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr><tr id="a0000001686">
    
    <td style="width:40%">&nbsp;</td>
    
    
        <td style="vertical-align:middle;                                    text-align:right"><img src="images/img-0175.png" alt="$\displaystyle  $" style="vertical-align:0px; width:1px;                     height:1px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:center"><img src="images/img-0058.png" alt="$\displaystyle  =  $" style="vertical-align:2px; width:12px;                     height:4px" class="math gen" /></td>
    
    
    
        <td style="vertical-align:middle;                                    text-align:left"><img src="images/img-0843.png" alt="$\displaystyle  2 \frac{\partial }{\partial A_{ij}} \left[ \log _ e(\mathrm{Det}(\mathbf{-A})) \right] \nonumber  $" style="vertical-align:-19px; width:177px;                     height:44px" class="math gen" /></td>
    
    
    
    <td style="width:40%">&nbsp;</td>
    <td style="width:20%" class="eqnnum">&nbsp;</td>
</tr>
</table><p>This expression may be simplified by recalling that the determinant of a matrix is equal to the scalar product of any of its rows with its cofactors, yielding the result: </p><table id="a0000001687" class="equation" width="100%" cellspacing="0" cellpadding="7">
<tr>
    
    <td style="width:40%">&nbsp;</td>
    <td><img src="images/img-0844.png" alt="\begin{equation}  \frac{\partial }{\partial A_{ij}} \left[\mathrm{Det}(\mathbf{-A})\right] = -a_{ij} \end{equation}" style="width:389px; 
                            height:44px" class="math gen" /></td>
    
    <td style="width:40%">&nbsp;</td>
    <td class="eqnnum" style="width:20%"><span>(<span>C.13</span>)</span></td>
</tr>
</table><p>where <img src="images/img-0845.png" alt="$a_{ij}$" style="vertical-align:-5px; 
                                     width:21px; 
                                     height:13px" class="math gen" /> is the cofactor of <img src="images/img-0838.png" alt="$A_{ij}$" style="vertical-align:-5px; 
                                     width:25px; 
                                     height:17px" class="math gen" />. Substituting this into Equation (<a></a>) yields: </p><table id="a0000001688" class="equation" width="100%" cellspacing="0" cellpadding="7">
<tr>
    
    <td style="width:40%">&nbsp;</td>
    <td><img src="images/img-0846.png" alt="\begin{equation}  V_{ij} = \frac{-a_{ij}}{\mathrm{Det}(\mathbf{-A})} \end{equation}" style="width:358px; 
                            height:37px" class="math gen" /></td>
    
    <td style="width:40%">&nbsp;</td>
    <td class="eqnnum" style="width:20%"><span>(<span>C.14</span>)</span></td>
</tr>
</table><p>Recalling that the adjoint <img src="images/img-0847.png" alt="$\mathbf{A}^\dagger $" style="vertical-align:0px; 
                                     width:22px; 
                                     height:16px" class="math gen" /> of the Hessian matrix is the matrix of cofactors of its transpose, and that <img src="images/img-0812.png" alt="$\mathbf{A}$" style="vertical-align:0px; 
                                     width:15px; 
                                     height:12px" class="math gen" /> is symmetric, we may write: </p><table id="a0000001689" class="equation" width="100%" cellspacing="0" cellpadding="7">
<tr>
    
    <td style="width:40%">&nbsp;</td>
    <td><img src="images/img-0848.png" alt="\begin{equation}  V_{ij} = \frac{-\mathbf{A}^\dagger }{\mathrm{Det}(\mathbf{-A})} \equiv (-\mathbf{A})^{-1} \end{equation}" style="width:402px; 
                            height:44px" class="math gen" /></td>
    
    <td style="width:40%">&nbsp;</td>
    <td class="eqnnum" style="width:20%"><span>(<span>C.15</span>)</span></td>
</tr>
</table><p>which proves the result stated earlier. </p></div>





<div class="navigation">
<table cellspacing="2" cellpadding="0" width="100%">
<tr>
<td><a href="sect0243.html" title="Estimating the Error in "><img alt="Previous: Estimating the Error in " border="0" src="icons/previous.gif" width="32" height="32" /></a></td>

<td><a href="ch-fit_maths.html" title="The fit Command: Mathematical Details"><img alt="Up: The fit Command: Mathematical Details" border="0" src="icons/up.gif" width="32" height="32" /></a></td>

<td><a href="sec-correlation_matrix.html" title="The Correlation Matrix"><img alt="Next: The Correlation Matrix" border="0" src="icons/next.gif" width="32" height="32" /></a></td>

<td class="navtitle" align="center">PyXPlot Users' Guide</td>
<td><a href="index.html" title="Table of Contents"><img border="0" alt="" src="icons/contents.gif" width="32" height="32" /></a></td>

<td><a href="sect0255.html" title="Index"><img border="0" alt="" src="icons/index.gif" width="32" height="32" /></a></td>

<td><img border="0" alt="" src="icons/blank.gif" width="32" height="32" /></td>
</tr>
</table>
</div>

<script language="javascript" src="icons/imgadjust.js" type="text/javascript"></script>

</body>
</html>