This file is indexed.

/usr/share/radiance/He3.cal is in radiance-materials 4R0+20110410-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
{
	He-Torrance Reflectance Model (Siggraph 1991)

	Complete spectral version (8/17/95)

	The primitive for this function should look something like:

	void BRTDfunc name
	10
		s`r s`g s`b
		0 0 0
		dd`r dd`g dd`b
		He3.cal
	0
	17	amb`r amb`g amb`b
		amb`r amb`g amb`b
		0 0 0
		sigma0 tau
		n_real`r n_imag`r
		n_real`g n_imag`g
		n_real`b n_imag`b
}

			{ Constants }
lambda`r : .67;			{ red wavelength (microns) }
lambda`g : .55;			{ green wavelength (microns) }
lambda`b : .43;			{ blue wavelength (microns) }
z0err : .0001;			{ accepted error in value of z0 }
Dsumlim : .000001;		{ last term of D summation }
Dsummax : 200;			{ maximum terms in D summation }

			{ Parameters }
sigma0 = arg(10);		{ surface height deviation (microns) }
tau = arg(11);			{ correlation distance (microns) }
n_real`r = arg(12);		{ red real part of index of refraction }
n_imag`r = arg(13);		{ red imaginary part of index of refraction }
n_real`g = arg(14);		{ green real part of index of refraction }
n_imag`g = arg(15);		{ green imaginary part of index of refraction }
n_real`b = arg(16);		{ blue real part of index of refraction }
n_imag`b = arg(17);		{ blue imaginary part of index of refraction }
			{ Derived parameters }
n_k`r = n_imag`r/n_real`r;
n_k`g = n_imag`g/n_real`g;
n_k`b = n_imag`b/n_real`b;

			{ Repeated formulas }
cotexp(t) = tau/sigma0/2/tan(t);
shadowf2(et,erfcet) = (1-.5*erfcet) /
		((Exp(-sq(et))/sqrt(PI)/et - erfcet)/2 + 1);
shadowf1(t) = or(FTINY-sigma0, .01-abs(t));
shadowf0(t) = abs(t) - (PI/2-.0001);
shadowf(t) = if(shadowf0(t), 0, if(shadowf1(t), 1,
		shadowf2(cotexp(t), erfc(cotexp(t)))));
K(t) = if(abs(t)-FTINY, tan(t) * erfc(cotexp(t)), 0);
fuvA`r(ct) = sq(n_real`r)*(1-sq(n_k`r)) - (1-sq(ct));
fuvB`r(ct) = sqrt(sq(fuvA`r(ct)) + 4*sq(sq(n_real`r)*n_k`r));
fu2`r(ct) = (fuvA`r(ct) + fuvB`r(ct))/2;
fv2`r(ct) = (-fuvA`r(ct) + fuvB`r(ct))/2;
fperp2`r(ct) = (sq(ct-sqrt(fu2`r(ct))) + fv2`r(ct)) /
		(sq(ct+sqrt(fu2`r(ct))) + fv2`r(ct));
fpara2`r(ct) = (sq(sq(n_real`r)*(1-sq(n_k`r))*ct - sqrt(fu2`r(ct))) +
		sq(2*sq(n_real`r)*n_k`r*ct - sqrt(fv2`r(ct)))) /
		(sq(sq(n_real`r)*(1-sq(n_k`r))*ct + sqrt(fu2`r(ct))) +
		sq(2*sq(n_real`r)*n_k`r*ct + sqrt(fv2`r(ct))));
fresnel2`r(ct) = (fperp2`r(ct) + fpara2`r(ct))/2;
fuvA`g(ct) = sq(n_real`g)*(1-sq(n_k`g)) - (1-sq(ct));
fuvB`g(ct) = sqrt(sq(fuvA`g(ct)) + 4*sq(sq(n_real`g)*n_k`g));
fu2`g(ct) = (fuvA`g(ct) + fuvB`g(ct))/2;
fv2`g(ct) = (-fuvA`g(ct) + fuvB`g(ct))/2;
fperp2`g(ct) = (sq(ct-sqrt(fu2`g(ct))) + fv2`g(ct)) /
		(sq(ct+sqrt(fu2`g(ct))) + fv2`g(ct));
fpara2`g(ct) = (sq(sq(n_real`g)*(1-sq(n_k`g))*ct - sqrt(fu2`g(ct))) +
		sq(2*sq(n_real`g)*n_k`g*ct - sqrt(fv2`g(ct)))) /
		(sq(sq(n_real`g)*(1-sq(n_k`g))*ct + sqrt(fu2`g(ct))) +
		sq(2*sq(n_real`g)*n_k`g*ct + sqrt(fv2`g(ct))));
fresnel2`g(ct) = (fperp2`g(ct) + fpara2`g(ct))/2;
fuvA`b(ct) = sq(n_real`b)*(1-sq(n_k`b)) - (1-sq(ct));
fuvB`b(ct) = sqrt(sq(fuvA`b(ct)) + 4*sq(sq(n_real`b)*n_k`b));
fu2`b(ct) = (fuvA`b(ct) + fuvB`b(ct))/2;
fv2`b(ct) = (-fuvA`b(ct) + fuvB`b(ct))/2;
fperp2`b(ct) = (sq(ct-sqrt(fu2`b(ct))) + fv2`b(ct)) /
		(sq(ct+sqrt(fu2`b(ct))) + fv2`b(ct));
fpara2`b(ct) = (sq(sq(n_real`b)*(1-sq(n_k`b))*ct - sqrt(fu2`b(ct))) +
		sq(2*sq(n_real`b)*n_k`b*ct - sqrt(fv2`b(ct)))) /
		(sq(sq(n_real`b)*(1-sq(n_k`b))*ct + sqrt(fu2`b(ct))) +
		sq(2*sq(n_real`b)*n_k`b*ct + sqrt(fv2`b(ct))));
fresnel2`b(ct) = (fperp2`b(ct) + fpara2`b(ct))/2;

			{ Formulas dependent only on reflected direction }
theta_r = acos(RdotP);
shadowf_r = shadowf(theta_r);
K_r = K(theta_r);
srx = Dy*NzP - Dz*NyP; sry = Dz*NxP - Dx*NzP; srz = Dx*NyP - Dy*NxP;
srn2 = sq(srx) + sq(sry) + sq(srz);
prx = sry*Dz - srz*Dy;
pry = srz*Dx - srx*Dz;
prz = srx*Dy - sry*Dx;
s`r = fresnel2`r(RdotP)*Exp(-g`r(RdotP))*sq(shadowf_r);
s`g = fresnel2`g(RdotP)*Exp(-g`g(RdotP))*sq(shadowf_r);
s`b = fresnel2`b(RdotP)*Exp(-g`b(RdotP))*sq(shadowf_r);

			{ Formulas dependent on incident direction }
		{ z0 }
z0d(Ki,z) = -(Ki+K_r)/(4*sigma0)*z*Exp(-sq(z/sigma0)/2) - sqrt(PI/2);
z0lim(x) = if(x, max(x,z0err), min(x,-z0err));
z0off(Ki,z) = (sigma0/4*(Ki+K_r)*Exp(-sq(z/sigma0)/2)-sqrt(PI/2)*z)/
		z0lim(z0d(Ki,z));
z0root(Ki, x0, x1, i) = if(i,
			if(z0err-abs(x1-x0),
				x1,
				z0root(Ki,x1,x1-z0off(Ki,x1),i-1)),
			0);
z0(ti) = z0root(K(ti), .1, -z0off(K(ti),.1), 100);
		{ sigma }
sigma(ti) = if( FTINY-sigma0, sigma0,
		sigma0/sqrt(1+sq(z0(ti)/sigma0)) );
		{ g }
g`r(cti) = sq(2*PI/lambda`r*sigma(Acos(cti))*(cti+RdotP));
g`g(cti) = sq(2*PI/lambda`g*sigma(Acos(cti))*(cti+RdotP));
g`b(cti) = sq(2*PI/lambda`b*sigma(Acos(cti))*(cti+RdotP));
		{ |F|^2 }
fresnel2dd`r(kix,kiy,kiz) = fresnel2`r(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
					sq(kiz-Dz))/2);
fresnel2dd`g(kix,kiy,kiz) = fresnel2`g(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
					sq(kiz-Dz))/2);
fresnel2dd`b(kix,kiy,kiz) = fresnel2`b(sqrt(sq(kix-Dx) + sq(kiy-Dy) +
					sq(kiz-Dz))/2);
		{ G }
G(kix,kiy,kiz) = sq( (sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz)) /
			(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz)) );
		{ D }
Dsum2(m,lt,c,t,e,g) = if(or(m-Dsummax,and(lt-t,Dsumlim-t)),0,
	t+Dsum2(m+1,t,c*g/(m+1),c*g/(m+1)*Exp(-g-e/(m+1))/(m+1),e,g));
Dsum(e,g) = Dsum2(1,0,g,g*Exp(-g-e),e,g);
D`r(kix,kiy,kiz) = sq(PI)/4/sq(lambda`r)*sq(tau) *
	Dsum(sq(2*PI/lambda`r)/4*sq(tau)*
		(sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
			sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
		g`r(kix*NxP+kiy*NyP+kiz*NzP));
D`g(kix,kiy,kiz) = sq(PI)/4/sq(lambda`g)*sq(tau) *
	Dsum(sq(2*PI/lambda`g)/4*sq(tau)*
		(sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
			sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
		g`g(kix*NxP+kiy*NyP+kiz*NzP));
D`b(kix,kiy,kiz) = sq(PI)/4/sq(lambda`b)*sq(tau) *
	Dsum(sq(2*PI/lambda`b)/4*sq(tau)*
		(sq(kix-Dx)+sq(kiy-Dy)+sq(kiz-Dz) -
			sq(NxP*(kix-Dx)+NyP*(kiy-Dy)+NzP*(kiz-Dz))),
		g`b(kix*NxP+kiy*NyP+kiz*NzP));
		{ rho_dd }
dd2(cti) = shadowf_r*shadowf(Acos(cti))/cti/RdotP;
dd`r(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
		fresnel2dd`r(kix,kiy,kiz)/PI*D`r(kix,kiy,kiz);
dd`g(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
		fresnel2dd`g(kix,kiy,kiz)/PI*D`g(kix,kiy,kiz);
dd`b(kix,kiy,kiz) = dd2(kix*NxP+kiy*NyP+kiz*NzP)*G(kix,kiy,kiz)*
		fresnel2dd`b(kix,kiy,kiz)/PI*D`b(kix,kiy,kiz);