/usr/share/tcltk/tcllib1.14/math/bigfloat2.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 | ########################################################################
# BigFloat for Tcl
# Copyright (C) 2003-2005 ARNOLD Stephane
# It is published with the terms of tcllib's BSD-style license.
# See the file named license.terms.
########################################################################
package require Tcl 8.5
# this line helps when I want to source this file again and again
catch {namespace delete ::math::bigfloat}
# private namespace
# this software works only with Tcl v8.4 and higher
# it is using the package math::bignum
namespace eval ::math::bigfloat {
# cached constants
# ln(2) with arbitrary precision
variable Log2
# Pi with arb. precision
variable Pi
variable _pi0
}
################################################################################
# procedures that handle floating-point numbers
# these procedures are sorted by name (after eventually removing the underscores)
#
# BigFloats are internally represented as a list :
# {"F" Mantissa Exponent Delta} where "F" is a character which determins
# the datatype, Mantissa and Delta are two big integers and Exponent another integer.
#
# The BigFloat value equals to (Mantissa +/- Delta)*2^Exponent
# So the internal representation is binary, but trying to get as close as possible to
# the decimal one when converted to a string.
# When calling [fromstr], the Delta parameter is set to the value of 1 at the position
# of the last decimal digit.
# Example : 1.50 belongs to [1.49,1.51], but internally Delta may not equal to 1.
# Because of the binary representation, it is between 1 and 1+(2^-15).
#
# So Mantissa and Delta are not limited in size, but in practice Delta is kept under
# 2^32 by the 'normalize' procedure, to avoid a never-ended growth of memory used.
# Indeed, when you perform some computations, the Delta parameter (which represent
# the uncertainty on the value of the Mantissa) may increase.
# Exponent, as an integer, is limited to 32 bits, and this limit seems fair.
# The exponent is indeed involved in logarithmic computations, so it may be
# a mistake to give it a too large value.
# Retrieving the parameters of a BigFloat is often done with that command :
# foreach {dummy int exp delta} $bigfloat {break}
# (dummy is not used, it is just used to get the "F" marker).
# The isInt, isFloat, checkNumber and checkFloat procedures are used
# to check data types
#
# Taylor development are often used to compute the analysis functions (like exp(),log()...)
# To learn how it is done in practice, take a look at ::math::bigfloat::_asin
# While doing computation on Mantissas, we do not care about the last digit,
# because if we compute correctly Deltas, the digits that remain will be exact.
################################################################################
################################################################################
# returns the absolute value
################################################################################
proc ::math::bigfloat::abs {number} {
checkNumber $number
if {[isInt $number]} {
# set sign to positive for a BigInt
return [expr {abs($number)}]
}
# set sign to positive for a BigFloat into the Mantissa (index 1)
lset number 1 [expr {abs([lindex $number 1])}]
return $number
}
################################################################################
# arccosinus of a BigFloat
################################################################################
proc ::math::bigfloat::acos {x} {
# handy proc for checking datatype
checkFloat $x
foreach {dummy entier exp delta} $x {break}
set precision [expr {($exp<0)?(-$exp):1}]
# acos(0.0)=Pi/2
# 26/07/2005 : changed precision from decimal to binary
# with the second parameter of pi command
set piOverTwo [floatRShift [pi $precision 1]]
if {[iszero $x]} {
# $x is too close to zero -> acos(0)=PI/2
return $piOverTwo
}
# acos(-x)= Pi/2 + asin(x)
if {$entier<0} {
return [add $piOverTwo [asin [abs $x]]]
}
# we always use _asin to compute the result
# but as it is a Taylor development, the value given to [_asin]
# has to be a bit smaller than 1 ; by using that trick : acos(x)=asin(sqrt(1-x^2))
# we can limit the entry of the Taylor development below 1/sqrt(2)
if {[compare $x [fromstr 0.7071]]>0} {
# x > sqrt(2)/2 : trying to make _asin converge quickly
# creating 0 and 1 with the same precision as the entry
set fzero [list F 0 -$precision 1]
# 1.000 with $precision zeros
set fone [list F [expr {1<<$precision}] -$precision 1]
# when $x is close to 1 (acos(1.0)=0.0)
if {[equal $fone $x]} {
return $fzero
}
if {[compare $fone $x]<0} {
# the behavior assumed because acos(x) is not defined
# when |x|>1
error "acos on a number greater than 1"
}
# acos(x) = asin(sqrt(1 - x^2))
# since 1 - cos(x)^2 = sin(x)^2
# x> sqrt(2)/2 so x^2 > 1/2 so 1-x^2<1/2
set x [sqrt [sub $fone [mul $x $x]]]
# the parameter named x is smaller than sqrt(2)/2
return [_asin $x]
}
# acos(x) = Pi/2 - asin(x)
# x<sqrt(2)/2 here too
return [sub $piOverTwo [_asin $x]]
}
################################################################################
# returns A + B
################################################################################
proc ::math::bigfloat::add {a b} {
checkNumber $a
checkNumber $b
if {[isInt $a]} {
if {[isInt $b]} {
# intAdd adds two BigInts
return [incr a $b]
}
# adds the BigInt a to the BigFloat b
return [addInt2Float $b $a]
}
if {[isInt $b]} {
# ... and vice-versa
return [addInt2Float $a $b]
}
# retrieving parameters from A and B
foreach {dummy integerA expA deltaA} $a {break}
foreach {dummy integerB expB deltaB} $b {break}
if {$expA<$expB} {
foreach {dummy integerA expA deltaA} $b {break}
foreach {dummy integerB expB deltaB} $a {break}
}
# when we add two numbers which have different digit numbers (after the dot)
# for example : 1.0 and 0.00001
# We promote the one with the less number of digits (1.0) to the same level as
# the other : so 1.00000.
# that is why we shift left the number which has the greater exponent
# But we do not forget the Delta parameter, which is lshift'ed too.
if {$expA>$expB} {
set diff [expr {$expA-$expB}]
set integerA [expr {$integerA<<$diff}]
set deltaA [expr {$deltaA<<$diff}]
incr integerA $integerB
incr deltaA $deltaB
return [normalize [list F $integerA $expB $deltaA]]
} elseif {$expA==$expB} {
# nothing to shift left
return [normalize [list F [incr integerA $integerB] $expA [incr deltaA $deltaB]]]
} else {
error "internal error"
}
}
################################################################################
# returns the sum A(BigFloat) + B(BigInt)
# the greatest advantage of this method is that the uncertainty
# of the result remains unchanged, in respect to the entry's uncertainty (deltaA)
################################################################################
proc ::math::bigfloat::addInt2Float {a b} {
# type checking
checkFloat $a
if {![isInt $b]} {
error "second argument is not an integer"
}
# retrieving data from $a
foreach {dummy integerA expA deltaA} $a {break}
# to add an int to a BigFloat,...
if {$expA>0} {
# we have to put the integer integerA
# to the level of zero exponent : 1e8 --> 100000000e0
set shift $expA
set integerA [expr {($integerA<<$shift)+$b}]
set deltaA [expr {$deltaA<<$shift}]
# we have to normalize, because we have shifted the mantissa
# and the uncertainty left
return [normalize [list F $integerA 0 $deltaA]]
} elseif {$expA==0} {
# integerA is already at integer level : float=(integerA)e0
return [normalize [list F [incr integerA $b] \
0 $deltaA]]
} else {
# here we have something like 234e-2 + 3
# we have to shift the integer left by the exponent |$expA|
incr integerA [expr {$b<<(-$expA)}]
return [normalize [list F $integerA $expA $deltaA]]
}
}
################################################################################
# arcsinus of a BigFloat
################################################################################
proc ::math::bigfloat::asin {x} {
# type checking
checkFloat $x
foreach {dummy entier exp delta} $x {break}
if {$exp>-1} {
error "not enough precision on input (asin)"
}
set precision [expr {-$exp}]
# when x=0, return 0 at the same precision as the input was
if {[iszero $x]} {
return [list F 0 -$precision 1]
}
# asin(-x)=-asin(x)
if {$entier<0} {
return [opp [asin [abs $x]]]
}
# 26/07/2005 : changed precision from decimal to binary
set piOverTwo [floatRShift [pi $precision 1]]
# now a little trick : asin(x)=Pi/2-asin(sqrt(1-x^2))
# so we can limit the entry of the Taylor development
# to 1/sqrt(2)~0.7071
# the comparison is : if x>0.7071 then ...
if {[compare $x [fromstr 0.7071]]>0} {
set fone [list F [expr {1<<$precision}] -$precision 1]
# asin(1)=Pi/2 (with the same precision as the entry has)
if {[equal $fone $x]} {
return $piOverTwo
}
if {[compare $x $fone]>0} {
error "asin on a number greater than 1"
}
# asin(x)=Pi/2-asin(sqrt(1-x^2))
set x [sqrt [sub $fone [mul $x $x]]]
return [sub $piOverTwo [_asin $x]]
}
return [normalize [_asin $x]]
}
################################################################################
# _asin : arcsinus of numbers between 0 and +1
################################################################################
proc ::math::bigfloat::_asin {x} {
# Taylor development
# asin(x)=x + 1/2 x^3/3 + 3/2.4 x^5/5 + 3.5/2.4.6 x^7/7 + ...
# into this iterative form :
# asin(x)=x * (1 + 1/2 * x^2 * (1/3 + 3/4 *x^2 * (...
# ...* (1/(2n-1) + (2n-1)/2n * x^2 / (2n+1))...)))
# we show how is really computed the development :
# we don't need to set a var with x^n or a product of integers
# all we need is : x^2, 2n-1, 2n, 2n+1 and a few variables
foreach {dummy mantissa exp delta} $x {break}
set precision [expr {-$exp}]
if {$precision+1<[bits $mantissa]} {
error "sinus greater than 1"
}
# precision is the number of after-dot digits
set result $mantissa
set delta_final $delta
# resultat is the final result, and delta_final
# will contain the uncertainty of the result
# square is the square of the mantissa
set square [expr {$mantissa*$mantissa>>$precision}]
# dt is the uncertainty of Mantissa
set dt [expr {$mantissa*$delta>>($precision-1)}]
incr dt
set num 1
# two will be used into the loop
set i 3
set denom 2
# the nth factor equals : $num/$denom* $mantissa/$i
set delta [expr {$delta*$square + $dt*($delta+$mantissa)}]
set delta [expr {($delta*$num)/ $denom >>$precision}]
incr delta
# we do not multiply the Mantissa by $num right now because it is 1 !
# but we have Mantissa=$x
# and we want Mantissa*$x^2 * $num / $denom / $i
set mantissa [expr {($mantissa*$square>>$precision)/$denom}]
# do not forget the modified Taylor development :
# asin(x)=x * (1 + 1/2*x^2*(1/3 + 3/4*x^2*(...*(1/(2n-1) + (2n-1)/2n*x^2/(2n+1))...)))
# all we need is : x^2, 2n-1, 2n, 2n+1 and a few variables
# $num=2n-1 $denom=2n $square=x^2 and $i=2n+1
set mantissa_temp [expr {$mantissa/$i}]
set delta_temp [expr {1+$delta/$i}]
# when the Mantissa increment is smaller than the Delta increment,
# we would not get much precision by continuing the development
while {$mantissa_temp!=0} {
# Mantissa = Mantissa * $num/$denom * $square
# Add Mantissa/$i, which is stored in $mantissa_temp, to the result
incr result $mantissa_temp
incr delta_final $delta_temp
# here we have $two instead of [fromstr 2] (optimization)
# num=num+2,i=i+2,denom=denom+2
# because num=2n-1 denom=2n and i=2n+1
incr num 2
incr i 2
incr denom 2
# computes precisly the future Delta parameter
set delta [expr {$delta*$square+$dt*($delta+$mantissa)}]
set delta [expr {($delta*$num)/$denom>>$precision}]
incr delta
set mantissa [expr {$mantissa*$square>>$precision}]
set mantissa [expr {($mantissa*$num)/$denom}]
set mantissa_temp [expr {$mantissa/$i}]
set delta_temp [expr {1+$delta/$i}]
}
return [normalize [list F $result $exp $delta_final]]
}
################################################################################
# arctangent : returns atan(x)
################################################################################
proc ::math::bigfloat::atan {x} {
checkFloat $x
foreach {dummy mantissa exp delta} $x {break}
if {$exp>=0} {
error "not enough precision to compute atan"
}
set precision [expr {-$exp}]
# atan(0)=0
if {[iszero $x]} {
return [list F 0 -$precision $delta]
}
# atan(-x)=-atan(x)
if {$mantissa<0} {
return [opp [atan [abs $x]]]
}
# now x is strictly positive
# at this moment, we are trying to limit |x| to a fair acceptable number
# to ensure that Taylor development will converge quickly
set float1 [list F [expr {1<<$precision}] -$precision 1]
if {[compare $float1 $x]<0} {
# compare x to 2.4142
if {[compare $x [fromstr 2.4142]]<0} {
# atan(x)=Pi/4 + atan((x-1)/(x+1))
# as 1<x<2.4142 : (x-1)/(x+1)=1-2/(x+1) belongs to
# the range : ]0,1-2/3.414[
# that equals ]0,0.414[
set pi_sur_quatre [floatRShift [pi $precision 1] 2]
return [add $pi_sur_quatre [atan \
[div [sub $x $float1] [add $x $float1]]]]
}
# atan(x)=Pi/2-atan(1/x)
# 1/x < 1/2.414 so the argument is lower than 0.414
set pi_over_two [floatRShift [pi $precision 1]]
return [sub $pi_over_two [atan [div $float1 $x]]]
}
if {[compare $x [fromstr 0.4142]]>0} {
# atan(x)=Pi/4 + atan((x-1)/(x+1))
# x>0.420 so (x-1)/(x+1)=1 - 2/(x+1) > 1-2/1.414
# > -0.414
# x<1 so (x-1)/(x+1)<0
set pi_sur_quatre [floatRShift [pi $precision 1] 2]
return [add $pi_sur_quatre [atan \
[div [sub $x $float1] [add $x $float1]]]]
}
# precision increment : to have less uncertainty
# we add a little more precision so that the result would be more accurate
# Taylor development : x - x^3/3 + x^5/5 - ... + (-1)^(n+1)*x^(2n-1)/(2n-1)
# when we have n steps in Taylor development : the nth term is :
# x^(2n-1)/(2n-1)
# and the loss of precision is of 2n (n sums and n divisions)
# this command is called with x<sqrt(2)-1
# if we add an increment to the precision, say n:
# (sqrt(2)-1)^(2n-1)/(2n-1) has to be lower than 2^(-precision-n-1)
# (2n-1)*log(sqrt(2)-1)-log(2n-1)<-(precision+n+1)*log(2)
# 2n(log(sqrt(2)-1)-log(sqrt(2)))<-(precision-1)*log(2)+log(2n-1)+log(sqrt(2)-1)
# 2n*log(1-1/sqrt(2))<-(precision-1)*log(2)+log(2n-1)+log(2)/2
# 2n/sqrt(2)>(precision-3/2)*log(2)-log(2n-1)
# hence log(2n-1)<2n-1
# n*sqrt(2)>(precision-1.5)*log(2)+1-2n
# n*(sqrt(2)+2)>(precision-1.5)*log(2)+1
set n [expr {int((log(2)*($precision-1.5)+1)/(sqrt(2)+2)+1)}]
incr precision $n
set mantissa [expr {$mantissa<<$n}]
set delta [expr {$delta<<$n}]
# end of adding precision increment
# now computing Taylor development :
# atan(x)=x - x^3/3 + x^5/5 - x^7/7 ... + (-1)^n*x^(2n+1)/(2n+1)
# atan(x)=x * (1 - x^2 * (1/3 - x^2 * (1/5 - x^2 * (...*(1/(2n-1) - x^2 / (2n+1))...))))
# what do we need to compute this ?
# x^2 ($square), 2n+1 ($divider), $result, the nth term of the development ($t)
# and the nth term multiplied by 2n+1 ($temp)
# then we do this (with care keeping as much precision as possible):
# while ($t <>0) :
# $result=$result+$t
# $temp=$temp * $square
# $divider = $divider+2
# $t=$temp/$divider
# end-while
set result $mantissa
set delta_end $delta
# we store the square of the integer (mantissa)
# Delta of Mantissa^2 = Delta * 2 = Delta << 1
set delta_square [expr {$delta<<1}]
set square [expr {$mantissa*$mantissa>>$precision}]
# the (2n+1) divider
set divider 3
# computing precisely the uncertainty
set delta [expr {1+($delta_square*$mantissa+$delta*$square>>$precision)}]
# temp contains (-1)^n*x^(2n+1)
set temp [expr {-$mantissa*$square>>$precision}]
set t [expr {$temp/$divider}]
set dt [expr {1+$delta/$divider}]
while {$t!=0} {
incr result $t
incr delta_end $dt
incr divider 2
set delta [expr {1+($delta_square*abs($temp)+$delta*($delta_square+$square)>>$precision)}]
set temp [expr {-$temp*$square>>$precision}]
set t [expr {$temp/$divider}]
set dt [expr {1+$delta/$divider}]
}
# we have to normalize because the uncertainty might be greater than 2**16
# moreover it is the most often case
return [normalize [list F $result [expr {$exp-$n}] $delta_end]]
}
################################################################################
# compute atan(1/integer) at a given precision
# this proc is only used to compute Pi
# it is using the same Taylor development as [atan]
################################################################################
proc ::math::bigfloat::_atanfract {integer precision} {
# Taylor development : x - x^3/3 + x^5/5 - ... + (-1)^(n+1)*x^(2n-1)/(2n-1)
# when we have n steps in Taylor development : the nth term is :
# 1/denom^(2n+1)/(2n+1)
# and the loss of precision is of 2n (n sums and n divisions)
# this command is called with integer>=5
#
# We do not want to compute the Delta parameter, so we just
# can increment precision (with lshift) in order for the result to be precise.
# Remember : we compute atan2(1,$integer) with $precision bits
# $integer has no Delta parameter as it is a BigInt, of course, so
# theorically we could compute *any* number of digits.
#
# if we add an increment to the precision, say n:
# (1/5)^(2n-1)/(2n-1) has to be lower than (1/2)^(precision+n-1)
# Calculus :
# log(left term) < log(right term)
# log(1/left term) > log(1/right term)
# (2n-1)*log(5)+log(2n-1)>(precision+n-1)*log(2)
# n(2log(5)-log(2))>(precision-1)*log(2)-log(2n-1)+log(5)
# -log(2n-1)>-(2n-1)
# n(2log(5)-log(2)+2)>(precision-1)*log(2)+1+log(5)
set n [expr {int((($precision-1)*log(2)+1+log(5))/(2*log(5)-log(2)+2)+1)}]
incr precision $n
# first term of the development : 1/integer
set a [expr {(1<<$precision)/$integer}]
# 's' will contain the result
set s $a
# Taylor development : x - x^3/3 + x^5/5 - ... + (-1)^(n+1)*x^(2n-1)/(2n-1)
# equals x (1 - x^2 * (1/3 + x^2 * (... * (1/(2n-3) + (-1)^(n+1) * x^2 / (2n-1))...)))
# all we need to store is : 2n-1 ($denom), x^(2n+1) and x^2 ($square) and two results :
# - the nth term => $u
# - the nth term * (2n-1) => $t
# + of course, the result $s
set square [expr {$integer*$integer}]
set denom 3
# $t is (-1)^n*x^(2n+1)
set t [expr {-$a/$square}]
set u [expr {$t/$denom}]
# we break the loop when the current term of the development is null
while {$u!=0} {
incr s $u
# denominator= (2n+1)
incr denom 2
# div $t by x^2
set t [expr {-$t/$square}]
set u [expr {$t/$denom}]
}
# go back to the initial precision
return [expr {$s>>$n}]
}
#
# bits : computes the number of bits of an integer, approx.
#
proc ::math::bigfloat::bits {int} {
set l [string length [set int [expr {abs($int)}]]]
# int<10**l -> log_2(int)=l*log_2(10)
set l [expr {int($l*log(10)/log(2))+1}]
if {$int>>$l!=0} {
error "bad result: $l bits"
}
while {($int>>($l-1))==0} {
incr l -1
}
return $l
}
################################################################################
# returns the integer part of a BigFloat, as a BigInt
# the result is the same one you would have
# if you had called [expr {ceil($x)}]
################################################################################
proc ::math::bigfloat::ceil {number} {
checkFloat $number
set number [normalize $number]
if {[iszero $number]} {
return 0
}
foreach {dummy integer exp delta} $number {break}
if {$exp>=0} {
error "not enough precision to perform rounding (ceil)"
}
# saving the sign ...
set sign [expr {$integer<0}]
set integer [expr {abs($integer)}]
# integer part
set try [expr {$integer>>(-$exp)}]
if {$sign} {
return [opp $try]
}
# fractional part
if {($try<<(-$exp))!=$integer} {
return [incr try]
}
return $try
}
################################################################################
# checks each variable to be a BigFloat
# arguments : each argument is the name of a variable to be checked
################################################################################
proc ::math::bigfloat::checkFloat {number} {
if {![isFloat $number]} {
error "BigFloat expected"
}
}
################################################################################
# checks if each number is either a BigFloat or a BigInt
# arguments : each argument is the name of a variable to be checked
################################################################################
proc ::math::bigfloat::checkNumber {x} {
if {![isFloat $x] && ![isInt $x]} {
error "input is not an integer, nor a BigFloat"
}
}
################################################################################
# returns 0 if A and B are equal, else returns 1 or -1
# accordingly to the sign of (A - B)
################################################################################
proc ::math::bigfloat::compare {a b} {
if {[isInt $a] && [isInt $b]} {
set diff [expr {$a-$b}]
if {$diff>0} {return 1} elseif {$diff<0} {return -1}
return 0
}
checkFloat $a
checkFloat $b
if {[equal $a $b]} {return 0}
if {[lindex [sub $a $b] 1]<0} {return -1}
return 1
}
################################################################################
# gets cos(x)
# throws an error if there is not enough precision on the input
################################################################################
proc ::math::bigfloat::cos {x} {
checkFloat $x
foreach {dummy integer exp delta} $x {break}
if {$exp>-2} {
error "not enough precision on floating-point number"
}
set precision [expr {-$exp}]
# cos(2kPi+x)=cos(x)
foreach {n integer} [divPiQuarter $integer $precision] {break}
# now integer>=0 and <Pi/2
set d [expr {$n%4}]
# add trigonometric circle turns number to delta
incr delta [expr {abs($n)}]
set signe 0
# cos(Pi-x)=-cos(x)
# cos(-x)=cos(x)
# cos(Pi/2-x)=sin(x)
switch -- $d {
1 {set signe 1;set l [_sin2 $integer $precision $delta]}
2 {set signe 1;set l [_cos2 $integer $precision $delta]}
0 {set l [_cos2 $integer $precision $delta]}
3 {set l [_sin2 $integer $precision $delta]}
default {error "internal error"}
}
# precision -> exp (multiplied by -1)
#idebug break
lset l 1 [expr {-([lindex $l 1])}]
# set the sign
if {$signe} {
lset l 0 [expr {-[lindex $l 0]}]
}
#idebug break
return [normalize [linsert $l 0 F]]
}
################################################################################
# compute cos(x) where 0<=x<Pi/2
# returns : a list formed with :
# 1. the mantissa
# 2. the precision (opposite of the exponent)
# 3. the uncertainty (doubt range)
################################################################################
proc ::math::bigfloat::_cos2 {x precision delta} {
# precision bits after the dot
set pi [_pi $precision]
set pis2 [expr {$pi>>1}]
set pis4 [expr {$pis2>>1}]
if {$x>=$pis4} {
# cos(Pi/2-x)=sin(x)
set x [expr {$pis2-$x}]
incr delta
return [_sin $x $precision $delta]
}
#idebug break
return [_cos $x $precision $delta]
}
################################################################################
# compute cos(x) where 0<=x<Pi/4
# returns : a list formed with :
# 1. the mantissa
# 2. the precision (opposite of the exponent)
# 3. the uncertainty (doubt range)
################################################################################
proc ::math::bigfloat::_cos {x precision delta} {
set float1 [expr {1<<$precision}]
# Taylor development follows :
# cos(x)=1-x^2/2 + x^4/4! ... + (-1)^(2n)*x^(2n)/2n!
# cos(x)= 1 - x^2/1.2 * (1 - x^2/3.4 * (... * (1 - x^2/(2n.(2n-1))...))
# variables : $s (the Mantissa of the result)
# $denom1 & $denom2 (2n-1 & 2n)
# $x as the square of what is named x in 'cos(x)'
set s $float1
# 'd' is the uncertainty on x^2
set d [expr {$x*($delta<<1)}]
set d [expr {1+($d>>$precision)}]
# x=x^2 (because in this Taylor development, there are only even powers of x)
set x [expr {$x*$x>>$precision}]
set denom1 1
set denom2 2
set t [expr {-($x>>1)}]
set dt $d
while {$t!=0} {
incr s $t
incr delta $dt
incr denom1 2
incr denom2 2
set dt [expr {$x*$dt+($t+$dt)*$d>>$precision}]
incr dt
set t [expr {$x*$t>>$precision}]
set t [expr {-$t/($denom1*$denom2)}]
}
return [list $s $precision $delta]
}
################################################################################
# cotangent : the trivial algorithm is used
################################################################################
proc ::math::bigfloat::cotan {x} {
return [::math::bigfloat::div [::math::bigfloat::cos $x] [::math::bigfloat::sin $x]]
}
################################################################################
# converts angles from degrees to radians
# deg/180=rad/Pi
################################################################################
proc ::math::bigfloat::deg2rad {x} {
checkFloat $x
set xLen [expr {-[lindex $x 2]}]
if {$xLen<3} {
error "number too loose to convert to radians"
}
set pi [pi $xLen 1]
return [div [mul $x $pi] 180]
}
################################################################################
# private proc to get : x modulo Pi/2
# and the quotient (x divided by Pi/2)
# used by cos , sin & others
################################################################################
proc ::math::bigfloat::divPiQuarter {integer precision} {
incr precision 2
set integer [expr {$integer<<1}]
#idebug break
set P [_pi $precision]
# modulo 2Pi
set integer [expr {$integer%$P}]
# end modulo 2Pi
# 2Pi>>1 = Pi of course!
set P [expr {$P>>1}]
set n [expr {$integer/$P}]
set integer [expr {$integer%$P}]
# now divide by Pi/2
# multiply n by 2
set n [expr {$n<<1}]
# pi/2=Pi>>1
set P [expr {$P>>1}]
return [list [incr n [expr {$integer/$P}]] [expr {($integer%$P)>>1}]]
}
################################################################################
# divide A by B and returns the result
# throw error : divide by zero
################################################################################
proc ::math::bigfloat::div {a b} {
checkNumber $a
checkNumber $b
# dispatch to an appropriate procedure
if {[isInt $a]} {
if {[isInt $b]} {
return [expr {$a/$b}]
}
error "trying to divide an integer by a BigFloat"
}
if {[isInt $b]} {return [divFloatByInt $a $b]}
foreach {dummy integerA expA deltaA} $a {break}
foreach {dummy integerB expB deltaB} $b {break}
# computes the limits of the doubt (or uncertainty) interval
set BMin [expr {$integerB-$deltaB}]
set BMax [expr {$integerB+$deltaB}]
if {$BMin>$BMax} {
# swap BMin and BMax
set temp $BMin
set BMin $BMax
set BMax $temp
}
# multiply by zero gives zero
if {$integerA==0} {
# why not return any number or the integer 0 ?
# because there is an exponent that might be different between two BigFloats
# 0.00 --> exp = -2, 0.000000 -> exp = -6
return $a
}
# test of the division by zero
if {$BMin*$BMax<0 || $BMin==0 || $BMax==0} {
error "divide by zero"
}
# shift A because we need accuracy
set l [bits $integerB]
set integerA [expr {$integerA<<$l}]
set deltaA [expr {$deltaA<<$l}]
set exp [expr {$expA-$l-$expB}]
# relative uncertainties (dX/X) are added
# to give the relative uncertainty of the result
# i.e. 3% on A + 2% on B --> 5% on the quotient
# d(A/B)/(A/B)=dA/A + dB/B
# Q=A/B
# dQ=dA/B + dB*A/B*B
# dQ is "delta"
set delta [expr {($deltaB*abs($integerA))/abs($integerB)}]
set delta [expr {([incr delta]+$deltaA)/abs($integerB)}]
set quotient [expr {$integerA/$integerB}]
if {$integerB*$integerA<0} {
incr quotient -1
}
return [normalize [list F $quotient $exp [incr delta]]]
}
################################################################################
# divide a BigFloat A by a BigInt B
# throw error : divide by zero
################################################################################
proc ::math::bigfloat::divFloatByInt {a b} {
# type check
checkFloat $a
if {![isInt $b]} {
error "second argument is not an integer"
}
foreach {dummy integer exp delta} $a {break}
# zero divider test
if {$b==0} {
error "divide by zero"
}
# shift left for accuracy ; see other comments in [div] procedure
set l [bits $b]
set integer [expr {$integer<<$l}]
set delta [expr {$delta<<$l}]
incr exp -$l
set integer [expr {$integer/$b}]
# the uncertainty is always evaluated to the ceil value
# and as an absolute value
set delta [expr {$delta/abs($b)+1}]
return [normalize [list F $integer $exp $delta]]
}
################################################################################
# returns 1 if A and B are equal, 0 otherwise
# IN : a, b (BigFloats)
################################################################################
proc ::math::bigfloat::equal {a b} {
if {[isInt $a] && [isInt $b]} {
return [expr {$a==$b}]
}
# now a & b should only be BigFloats
checkFloat $a
checkFloat $b
foreach {dummy aint aexp adelta} $a {break}
foreach {dummy bint bexp bdelta} $b {break}
# set all Mantissas and Deltas to the same level (exponent)
# with lshift
set diff [expr {$aexp-$bexp}]
if {$diff<0} {
set diff [expr {-$diff}]
set bint [expr {$bint<<$diff}]
set bdelta [expr {$bdelta<<$diff}]
} elseif {$diff>0} {
set aint [expr {$aint<<$diff}]
set adelta [expr {$adelta<<$diff}]
}
# compute limits of the number's doubt range
set asupInt [expr {$aint+$adelta}]
set ainfInt [expr {$aint-$adelta}]
set bsupInt [expr {$bint+$bdelta}]
set binfInt [expr {$bint-$bdelta}]
# A & B are equal
# if their doubt ranges overlap themselves
if {$bint==$aint} {
return 1
}
if {$bint>$aint} {
set r [expr {$asupInt>=$binfInt}]
} else {
set r [expr {$bsupInt>=$ainfInt}]
}
return $r
}
################################################################################
# returns exp(X) where X is a BigFloat
################################################################################
proc ::math::bigfloat::exp {x} {
checkFloat $x
foreach {dummy integer exp delta} $x {break}
if {$exp>=0} {
# shift till exp<0 with respect to the internal representation
# of the number
incr exp
set integer [expr {$integer<<$exp}]
set delta [expr {$delta<<$exp}]
set exp -1
}
# add 8 bits of precision for safety
set precision [expr {8-$exp}]
set integer [expr {$integer<<8}]
set delta [expr {$delta<<8}]
set Log2 [_log2 $precision]
set new_exp [expr {$integer/$Log2}]
set integer [expr {$integer%$Log2}]
# $new_exp = integer part of x/log(2)
# $integer = remainder
# exp(K.log(2)+r)=2^K.exp(r)
# so we just have to compute exp(r), r is small so
# the Taylor development will converge quickly
incr delta $new_exp
foreach {integer delta} [_exp $integer $precision $delta] {break}
set delta [expr {$delta>>8}]
incr precision -8
# multiply by 2^K , and take care of the sign
# example : X=-6.log(2)+0.01
# exp(X)=exp(0.01)*2^-6
# if {abs($new_exp)>>30!=0} {
# error "floating-point overflow due to exp"
# }
set exp [expr {$new_exp-$precision}]
incr delta
return [normalize [list F [expr {$integer>>8}] $exp $delta]]
}
################################################################################
# private procedure to compute exponentials
# using Taylor development of exp(x) :
# exp(x)=1+ x + x^2/2 + x^3/3! +...+x^n/n!
# input : integer (the mantissa)
# precision (the number of decimals)
# delta (the doubt limit, or uncertainty)
# returns a list : 1. the mantissa of the result
# 2. the doubt limit, or uncertainty
################################################################################
proc ::math::bigfloat::_exp {integer precision delta} {
if {$integer==0} {
# exp(0)=1
return [list [expr {1<<$precision}] $delta]
}
set s [expr {(1<<$precision)+$integer}]
set d [expr {1+$delta/2}]
incr delta $delta
# dt = uncertainty on x^2
set dt [expr {1+($d*$integer>>$precision)}]
# t= x^2/2 = x^2>>1
set t [expr {$integer*$integer>>$precision+1}]
set denom 2
while {$t!=0} {
# the sum is called 's'
incr s $t
incr delta $dt
# we do not have to keep trace of the factorial, we just iterate divisions
incr denom
# add delta
set d [expr {1+$d/$denom}]
incr dt $d
# get x^n from x^(n-1)
set t [expr {($integer*$t>>$precision)/$denom}]
}
return [list $s $delta]
}
################################################################################
# divide a BigFloat by 2 power 'n'
################################################################################
proc ::math::bigfloat::floatRShift {float {n 1}} {
return [lset float 2 [expr {[lindex $float 2]-$n}]]
}
################################################################################
# procedure floor : identical to [expr floor($x)] in functionality
# arguments : number IN (a BigFloat)
# returns : the floor value as a BigInt
################################################################################
proc ::math::bigfloat::floor {number} {
checkFloat $number
if {[iszero $number]} {
# returns the BigInt 0
return 0
}
foreach {dummy integer exp delta} $number {break}
if {$exp>=0} {
error "not enough precision to perform rounding (floor)"
}
# floor(n.xxxx)=n when n is positive
if {$integer>0} {return [expr {$integer>>(-$exp)}]}
set integer [expr {abs($integer)}]
# integer part
set try [expr {$integer>>(-$exp)}]
# floor(-n.xxxx)=-(n+1) when xxxx!=0
if {$try<<(-$exp)!=$integer} {
incr try
}
return [expr {-$try}]
}
################################################################################
# returns a list formed by an integer and an exponent
# x = (A +/- C) * 10 power B
# return [list "F" A B C] (where F is the BigFloat tag)
# A and C are BigInts, B is a raw integer
# return also a BigInt when there is neither a dot, nor a 'e' exponent
#
# arguments : -base base integer
# or integer
# or float
# or float trailingZeros
################################################################################
proc ::math::bigfloat::fromstr {number {addzeros 0}} {
if {$addzeros<0} {
error "second argument has to be a positive integer"
}
# eliminate the sign problem
# added on 05/08/2005
# setting '$signe' to the sign of the number
set number [string trimleft $number +]
if {[string index $number 0]=="-"} {
set signe 1
set string [string range $number 1 end]
} else {
set signe 0
set string $number
}
# integer case (not a floating-point number)
if {[string is digit $string]} {
if {$addzeros!=0} {
error "second argument not allowed with an integer"
}
# we have completed converting an integer to a BigInt
# please note that most math::bigfloat procs accept BigInts as arguments
return $number
}
# floating-point number : check for an exponent
# scientific notation
set tab [split $string e]
if {[llength $tab]>2} {
# there are more than one 'e' letter in the number
error "syntax error in number : $string"
}
if {[llength $tab]==2} {
set exp [lindex $tab 1]
# now exp can look like +099 so you need to handle octal numbers
# too bad...
# find the sign (if any?)
regexp {^[\+\-]?} $exp expsign
# trim the number with left-side 0's
set found [string length $expsign]
set exp $expsign[string trimleft [string range $exp $found end] 0]
set mantissa [lindex $tab 0]
} else {
set exp 0
set mantissa [lindex $tab 0]
}
# a floating-point number may have a dot
set tab [split [string trimleft $mantissa 0] .]
if {[llength $tab]>2} {error "syntax error in number : $string"}
if {[llength $tab]==2} {
set mantissa [join $tab ""]
# increment by the number of decimals (after the dot)
incr exp -[string length [lindex $tab 1]]
}
# this is necessary to ensure we can call fromstr (recursively) with
# the mantissa ($number)
if {![string is digit $mantissa]} {
error "$number is not a number"
}
# take account of trailing zeros
incr exp -$addzeros
# multiply $number by 10^$trailingZeros
append mantissa [string repeat 0 $addzeros]
# add the sign
# here we avoid octal numbers by trimming the leading zeros!
# 2005-10-28 S.ARNOLD
if {$signe} {set mantissa [expr {-[string trimleft $mantissa 0]}]}
# the F tags a BigFloat
# a BigInt is like any other integer since Tcl 8.5,
# because expr now supports arbitrary length integers
return [_fromstr $mantissa $exp]
}
################################################################################
# private procedure to transform decimal floats into binary ones
# IN :
# - number : a BigInt representing the Mantissa
# - exp : the decimal exponent (a simple integer)
# OUT :
# $number * 10^$exp, as the internal binary representation of a BigFloat
################################################################################
proc ::math::bigfloat::_fromstr {number exp} {
set number [string trimleft $number 0]
if {$number==""} {
return [list F 0 [expr {int($exp*log(10)/log(2))-15}] [expr {1<<15}]]
}
if {$exp==0} {
return [list F $number 0 1]
}
if {$exp>0} {
# mul by 10^exp, then normalize
set power [expr {10**$exp}]
set number [expr {$number*$power}]
return [normalize [list F $number 0 $power]]
}
# now exp is negative or null
# the closest power of 2 to the 'exp'th power of ten, but greater than it
# 10**$exp<2**$binaryExp
# $binaryExp>$exp*log(10)/log(2)
set binaryExp [expr {int(-$exp*log(10)/log(2))+1+16}]
# then compute n * 2^binaryExp / 10^(-exp)
# (exp is negative)
# equals n * 2^(binaryExp+exp) / 5^(-exp)
set diff [expr {$binaryExp+$exp}]
if {$diff<0} {
error "internal error"
}
set power [expr {5**(-$exp)}]
set number [expr {($number<<$diff)/$power}]
set delta [expr {(1<<$diff)/$power}]
return [normalize [list F $number [expr {-$binaryExp}] [incr delta]]]
}
################################################################################
# fromdouble :
# like fromstr, but for a double scalar value
# arguments :
# double - the number to convert to a BigFloat
# exp (optional) - the total number of digits
################################################################################
proc ::math::bigfloat::fromdouble {double {exp {}}} {
set mantissa [lindex [split $double e] 0]
# line added by SArnold on 05/08/2005
set mantissa [string trimleft [string map {+ "" - ""} $mantissa] 0]
set precision [string length [string map {. ""} $mantissa]]
if { $exp != {} && [incr exp]>$precision } {
return [fromstr $double [expr {$exp-$precision}]]
} else {
# tests have failed : not enough precision or no exp argument
return [fromstr $double]
}
}
################################################################################
# converts a BigInt into a BigFloat with a given decimal precision
################################################################################
proc ::math::bigfloat::int2float {int {decimals 1}} {
# it seems like we need some kind of type handling
# very odd in this Tcl world :-(
if {![isInt $int]} {
error "first argument is not an integer"
}
if {$decimals<1} {
error "non-positive decimals number"
}
# the lowest number of decimals is 1, because
# [tostr [fromstr 10.0]] returns 10.
# (we lose 1 digit when converting back to string)
set int [expr {$int*10**$decimals}]
return [_fromstr $int [expr {-$decimals}]]
}
################################################################################
# multiplies 'leftop' by 'rightop' and rshift the result by 'shift'
################################################################################
proc ::math::bigfloat::intMulShift {leftop rightop shift} {
return [::math::bignum::rshift [::math::bignum::mul $leftop $rightop] $shift]
}
################################################################################
# returns 1 if x is a BigFloat, 0 elsewhere
################################################################################
proc ::math::bigfloat::isFloat {x} {
# a BigFloat is a list of : "F" mantissa exponent delta
if {[llength $x]!=4} {
return 0
}
# the marker is the letter "F"
if {[string equal [lindex $x 0] F]} {
return 1
}
return 0
}
################################################################################
# checks that n is a BigInt (a number create by math::bignum::fromstr)
################################################################################
proc ::math::bigfloat::isInt {n} {
if {[llength $n]>1} {
return 0
}
# if {[string is digit $n]} {
# return 1
# }
return 1
}
################################################################################
# returns 1 if x is null, 0 otherwise
################################################################################
proc ::math::bigfloat::iszero {x} {
if {[isInt $x]} {
return [expr {$x==0}]
}
checkFloat $x
# now we do some interval rounding : if a number's interval englobs 0,
# it is considered to be equal to zero
foreach {dummy integer exp delta} $x {break}
if {$delta>=abs($integer)} {return 1}
return 0
}
################################################################################
# compute log(X)
################################################################################
proc ::math::bigfloat::log {x} {
checkFloat $x
foreach {dummy integer exp delta} $x {break}
if {$integer<=0} {
error "zero logarithm error"
}
if {[iszero $x]} {
error "number equals zero"
}
set precision [bits $integer]
# uncertainty of the logarithm
set delta [_logOnePlusEpsilon $delta $integer $precision]
incr delta
# we got : x = 1xxxxxx (binary number with 'precision' bits) * 2^exp
# we need : x = 0.1xxxxxx(binary) *2^(exp+precision)
incr exp $precision
foreach {integer deltaIncr} [_log $integer] {break}
incr delta $deltaIncr
# log(a * 2^exp)= log(a) + exp*log(2)
# result = log(x) + exp*log(2)
# as x<1 log(x)<0 but 'integer' (result of '_log') is the absolute value
# that is why we substract $integer to log(2)*$exp
set integer [expr {[_log2 $precision]*$exp-$integer}]
incr delta [expr {abs($exp)}]
return [normalize [list F $integer -$precision $delta]]
}
################################################################################
# compute log(1-epsNum/epsDenom)=log(1-'epsilon')
# Taylor development gives -x -x^2/2 -x^3/3 -x^4/4 ...
# used by 'log' command because log(x+/-epsilon)=log(x)+log(1+/-(epsilon/x))
# so the uncertainty equals abs(log(1-epsilon/x))
# ================================================
# arguments :
# epsNum IN (the numerator of epsilon)
# epsDenom IN (the denominator of epsilon)
# precision IN (the number of bits after the dot)
#
# 'epsilon' = epsNum*2^-precision/epsDenom
################################################################################
proc ::math::bigfloat::_logOnePlusEpsilon {epsNum epsDenom precision} {
if {$epsNum>=$epsDenom} {
error "number is null"
}
set s [expr {($epsNum<<$precision)/$epsDenom}]
set divider 2
set t [expr {$s*$epsNum/$epsDenom}]
set u [expr {$t/$divider}]
# when u (the current term of the development) is zero, we have reached our goal
# it has converged
while {$u!=0} {
incr s $u
# divider = order of the term = 'n'
incr divider
# t = (epsilon)^n
set t [expr {$t*$epsNum/$epsDenom}]
# u = t/n = (epsilon)^n/n and is the nth term of the Taylor development
set u [expr {$t/$divider}]
}
return $s
}
################################################################################
# compute log(0.xxxxxxxx) : log(1-epsilon)=-eps-eps^2/2-eps^3/3...-eps^n/n
################################################################################
proc ::math::bigfloat::_log {integer} {
# the uncertainty is nbSteps with nbSteps<=nbBits
# take nbSteps=nbBits (the worse case) and log(nbBits+increment)=increment
set precision [bits $integer]
set n [expr {int(log($precision+2*log($precision)))}]
set integer [expr {$integer<<$n}]
incr precision $n
set delta 3
# 1-epsilon=integer
set integer [expr {(1<<$precision)-$integer}]
set s $integer
# t=x^2
set t [expr {$integer*$integer>>$precision}]
set denom 2
# u=x^2/2 (second term)
set u [expr {$t/$denom}]
while {$u!=0} {
# while the current term is not zero, it has not converged
incr s $u
incr delta
# t=x^n
set t [expr {$t*$integer>>$precision}]
# denom = n (the order of the current development term)
# u = x^n/n (the nth term of Taylor development)
set u [expr {$t/[incr denom]}]
}
# shift right to restore the precision
set delta
return [list [expr {$s>>$n}] [expr {($delta>>$n)+1}]]
}
################################################################################
# computes log(num/denom) with 'precision' bits
# used to compute some analysis constants with a given accuracy
# you might not call this procedure directly : it assumes 'num/denom'>4/5
# and 'num/denom'<1
################################################################################
proc ::math::bigfloat::__log {num denom precision} {
# Please Note : we here need a precision increment, in order to
# keep accuracy at $precision digits. If we just hold $precision digits,
# each number being precise at the last digit +/- 1,
# we would lose accuracy because small uncertainties add to themselves.
# Example : 0.0001 + 0.0010 = 0.0011 +/- 0.0002
# This is quite the same reason that made tcl_precision defaults to 12 :
# internally, doubles are computed with 17 digits, but to keep precision
# we need to limit our results to 12.
# The solution : given a precision target, increment precision with a
# computed value so that all digits of he result are exacts.
#
# p is the precision
# pk is the precision increment
# 2 power pk is also the maximum number of iterations
# for a number close to 1 but lower than 1,
# (denom-num)/denum is (in our case) lower than 1/5
# so the maximum nb of iterations is for:
# 1/5*(1+1/5*(1/2+1/5*(1/3+1/5*(...))))
# the last term is 1/n*(1/5)^n
# for the last term to be lower than 2^(-p-pk)
# the number of iterations has to be
# 2^(-pk).(1/5)^(2^pk) < 2^(-p-pk)
# log(1/5).2^pk < -p
# 2^pk > p/log(5)
# pk > log(2)*log(p/log(5))
# now set the variable n to the precision increment i.e. pk
set n [expr {int(log(2)*log($precision/log(5)))+1}]
incr precision $n
# log(num/denom)=log(1-(denom-num)/denom)
# log(1+x) = x + x^2/2 + x^3/3 + ... + x^n/n
# = x(1 + x(1/2 + x(1/3 + x(...+ x(1/(n-1) + x/n)...))))
set num [expr {$denom-$num}]
# $s holds the result
set s [expr {($num<<$precision)/$denom}]
# $t holds x^n
set t [expr {$s*$num/$denom}]
set d 2
# $u holds x^n/n
set u [expr {$t/$d}]
while {$u!=0} {
incr s $u
# get x^n * x
set t [expr {$t*$num/$denom}]
# get n+1
incr d
# then : $u = x^(n+1)/(n+1)
set u [expr {$t/$d}]
}
# see head of the proc : we return the value with its target precision
return [expr {$s>>$n}]
}
################################################################################
# computes log(2) with 'precision' bits and caches it into a namespace variable
################################################################################
proc ::math::bigfloat::__logbis {precision} {
set increment [expr {int(log($precision)/log(2)+1)}]
incr precision $increment
# ln(2)=3*ln(1-4/5)+ln(1-125/128)
set a [__log 125 128 $precision]
set b [__log 4 5 $precision]
set r [expr {$b*3+$a}]
set ::math::bigfloat::Log2 [expr {$r>>$increment}]
# formerly (when BigFloats were stored in ten radix) we had to compute log(10)
# ln(10)=10.ln(1-4/5)+3*ln(1-125/128)
}
################################################################################
# retrieves log(2) with 'precision' bits ; the result is cached
################################################################################
proc ::math::bigfloat::_log2 {precision} {
variable Log2
if {![info exists Log2]} {
__logbis $precision
} else {
# the constant is cached and computed again when more precision is needed
set l [bits $Log2]
if {$precision>$l} {
__logbis $precision
}
}
# return log(2) with 'precision' bits even when the cached value has more bits
return [_round $Log2 $precision]
}
################################################################################
# returns A modulo B (like with fmod() math function)
################################################################################
proc ::math::bigfloat::mod {a b} {
checkNumber $a
checkNumber $b
if {[isInt $a] && [isInt $b]} {return [expr {$a%$b}]}
if {[isInt $a]} {error "trying to divide an integer by a BigFloat"}
set quotient [div $a $b]
# examples : fmod(3,2)=1 quotient=1.5
# fmod(1,2)=1 quotient=0.5
# quotient>0 and b>0 : get floor(quotient)
# fmod(-3,-2)=-1 quotient=1.5
# fmod(-1,-2)=-1 quotient=0.5
# quotient>0 and b<0 : get floor(quotient)
# fmod(-3,2)=-1 quotient=-1.5
# fmod(-1,2)=-1 quotient=-0.5
# quotient<0 and b>0 : get ceil(quotient)
# fmod(3,-2)=1 quotient=-1.5
# fmod(1,-2)=1 quotient=-0.5
# quotient<0 and b<0 : get ceil(quotient)
if {[sign $quotient]} {
set quotient [ceil $quotient]
} else {
set quotient [floor $quotient]
}
return [sub $a [mul $quotient $b]]
}
################################################################################
# returns A times B
################################################################################
proc ::math::bigfloat::mul {a b} {
checkNumber $a
checkNumber $b
# dispatch the command to appropriate commands regarding types (BigInt & BigFloat)
if {[isInt $a]} {
if {[isInt $b]} {
return [expr {$a*$b}]
}
return [mulFloatByInt $b $a]
}
if {[isInt $b]} {return [mulFloatByInt $a $b]}
# now we are sure that 'a' and 'b' are BigFloats
foreach {dummy integerA expA deltaA} $a {break}
foreach {dummy integerB expB deltaB} $b {break}
# 2^expA * 2^expB = 2^(expA+expB)
set exp [expr {$expA+$expB}]
# mantissas are multiplied
set integer [expr {$integerA*$integerB}]
# compute precisely the uncertainty
set delta [expr {$deltaA*(abs($integerB)+$deltaB)+abs($integerA)*$deltaB+1}]
# we have to normalize because 'delta' may be too big
return [normalize [list F $integer $exp $delta]]
}
################################################################################
# returns A times B, where B is a positive integer
################################################################################
proc ::math::bigfloat::mulFloatByInt {a b} {
checkFloat $a
foreach {dummy integer exp delta} $a {break}
if {$b==0} {
return [list F 0 $exp $delta]
}
# Mantissa and Delta are simply multplied by $b
set integer [expr {$integer*$b}]
set delta [expr {$delta*$b}]
# We normalize because Delta could have seriously increased
return [normalize [list F $integer $exp $delta]]
}
################################################################################
# normalizes a number : Delta (accuracy of the BigFloat)
# has to be limited, because the memory use increase
# quickly when we do some computations, as the Mantissa and Delta
# increase together
# The solution : limit the size of Delta to 16 bits
################################################################################
proc ::math::bigfloat::normalize {number} {
checkFloat $number
foreach {dummy integer exp delta} $number {break}
set l [bits $delta]
if {$l>16} {
incr l -16
# $l holds the supplementary size (in bits)
# now we can shift right by $l bits
# always round upper the Delta
set delta [expr {$delta>>$l}]
incr delta
set integer [expr {$integer>>$l}]
incr exp $l
}
return [list F $integer $exp $delta]
}
################################################################################
# returns -A (the opposite)
################################################################################
proc ::math::bigfloat::opp {a} {
checkNumber $a
if {[iszero $a]} {
return $a
}
if {[isInt $a]} {
return [expr {-$a}]
}
# recursive call
lset a 1 [expr {-[lindex $a 1]}]
return $a
}
################################################################################
# gets Pi with precision bits
# after the dot (after you call [tostr] on the result)
################################################################################
proc ::math::bigfloat::pi {precision {binary 0}} {
if {![isInt $precision]} {
error "'$precision' expected to be an integer"
}
if {!$binary} {
# convert decimal digit length into bit length
set precision [expr {int(ceil($precision*log(10)/log(2)))}]
}
return [list F [_pi $precision] -$precision 1]
}
#
# Procedure that resets the stored cached Pi constant
#
proc ::math::bigfloat::reset {} {
variable _pi0
if {[info exists _pi0]} {unset _pi0}
}
proc ::math::bigfloat::_pi {precision} {
# the constant Pi begins with 3.xxx
# so we need 2 digits to store the digit '3'
# and then we will have precision+2 bits in the mantissa
variable _pi0
if {![info exists _pi0]} {
set _pi0 [__pi $precision]
}
set lenPiGlobal [bits $_pi0]
if {$lenPiGlobal<$precision} {
set _pi0 [__pi $precision]
}
return [expr {$_pi0 >> [bits $_pi0]-2-$precision}]
}
################################################################################
# computes an integer representing Pi in binary radix, with precision bits
################################################################################
proc ::math::bigfloat::__pi {precision} {
set safetyLimit 8
# for safety and for the better precision, we do so ...
incr precision $safetyLimit
# formula found in the Math litterature (on Wikipedia
# Pi/4 = 44.atan(1/57) + 7.atan(1/239) - 12.atan(1/682) + 24.atan(1/12943)
set a [expr {[_atanfract 57 $precision]*44}]
incr a [expr {[_atanfract 239 $precision]*7}]
set a [expr {$a - [_atanfract 682 $precision]*12}]
incr a [expr {[_atanfract 12943 $precision]*24}]
return [expr {$a>>$safetyLimit-2}]
}
################################################################################
# shift right an integer until it haves $precision bits
# round at the same time
################################################################################
proc ::math::bigfloat::_round {integer precision} {
set shift [expr {[bits $integer]-$precision}]
if {$shift==0} {
return $integer
}
# $result holds the shifted integer
set result [expr {$integer>>$shift}]
# $shift-1 is the bit just rights the last bit of the result
# Example : integer=1000010 shift=2
# => result=10000 and the tested bit is '1'
if {$integer & (1<<($shift-1))} {
# we round to the upper limit
return [incr result]
}
return $result
}
################################################################################
# returns A power B, where B is a positive integer
################################################################################
proc ::math::bigfloat::pow {a b} {
checkNumber $a
if {$b<0} {
error "pow : exponent is not a positive integer"
}
# case where it is obvious that we should use the appropriate command
# from math::bignum (added 5th March 2005)
if {[isInt $a]} {
return [expr {$a**$b}]
}
# algorithm : exponent=$b = Sum(i=0..n) b(i)2^i
# $a^$b = $a^( b(0) + 2b(1) + 4b(2) + ... + 2^n*b(n) )
# we have $a^(x+y)=$a^x * $a^y
# then $a^$b = Product(i=0...n) $a^(2^i*b(i))
# b(i) is boolean so $a^(2^i*b(i))= 1 when b(i)=0 and = $a^(2^i) when b(i)=1
# then $a^$b = Product(i=0...n and b(i)=1) $a^(2^i) and 1 when $b=0
if {$b==0} {return 1}
# $res holds the result
set res 1
while {1} {
# at the beginning i=0
# $remainder is b(i)
set remainder [expr {$b&1}]
# $b 'rshift'ed by 1 bit : i=i+1
# so next time we will test bit b(i+1)
set b [expr {$b>>1}]
# if b(i)=1
if {$remainder} {
# mul the result by $a^(2^i)
# if i=0 we multiply by $a^(2^0)=$a^1=$a
set res [mul $res $a]
}
# no more bits at '1' in $b : $res is the result
if {$b==0} {
return [normalize $res]
}
# i=i+1 : $a^(2^(i+1)) = square of $a^(2^i)
set a [mul $a $a]
}
}
################################################################################
# converts angles for radians to degrees
################################################################################
proc ::math::bigfloat::rad2deg {x} {
checkFloat $x
set xLen [expr {-[lindex $x 2]}]
if {$xLen<3} {
error "number too loose to convert to degrees"
}
# $rad/Pi=$deg/180
# so result in deg = $radians*180/Pi
return [div [mul $x 180] [pi $xLen 1]]
}
################################################################################
# retourne la partie entière (ou 0) du nombre "number"
################################################################################
proc ::math::bigfloat::round {number} {
checkFloat $number
#set number [normalize $number]
# fetching integers (or BigInts) from the internal representation
foreach {dummy integer exp delta} $number {break}
if {$integer==0} {
return 0
}
if {$exp>=0} {
error "not enough precision to round (in round)"
}
set exp [expr {-$exp}]
# saving the sign, ...
set sign [expr {$integer<0}]
set integer [expr {abs($integer)}]
# integer part of the number
set try [expr {$integer>>$exp}]
# first bit after the dot
set way [expr {$integer>>($exp-1)&1}]
# delta is shifted so it gives the integer part of 2*delta
set delta [expr {$delta>>($exp-1)}]
# when delta is too big to compute rounded value (
if {$delta!=0} {
error "not enough precision to round (in round)"
}
if {$way} {
incr try
}
# ... restore the sign now
if {$sign} {return [expr {-$try}]}
return $try
}
################################################################################
# round and divide by 10^n
################################################################################
proc ::math::bigfloat::roundshift {integer n} {
# $exp= 10^$n
incr n -1
set exp [expr {10**$n}]
set toround [expr {$integer/$exp}]
if {$toround%10>=5} {
return [expr {$toround/10+1}]
}
return [expr {$toround/10}]
}
################################################################################
# gets the sign of either a bignum, or a BitFloat
# we keep the bignum convention : 0 for positive, 1 for negative
################################################################################
proc ::math::bigfloat::sign {n} {
if {[isInt $n]} {
return [expr {$n<0}]
}
checkFloat $n
# sign of 0=0
if {[iszero $n]} {return 0}
# the sign of the Mantissa, which is a BigInt
return [sign [lindex $n 1]]
}
################################################################################
# gets sin(x)
################################################################################
proc ::math::bigfloat::sin {x} {
checkFloat $x
foreach {dummy integer exp delta} $x {break}
if {$exp>-2} {
error "sin : not enough precision"
}
set precision [expr {-$exp}]
# sin(2kPi+x)=sin(x)
# $integer is now the modulo of the division of the mantissa by Pi/4
# and $n is the quotient
foreach {n integer} [divPiQuarter $integer $precision] {break}
incr delta $n
set d [expr {$n%4}]
# now integer>=0
# x = $n*Pi/4 + $integer and $n belongs to [0,3]
# sin(2Pi-x)=-sin(x)
# sin(Pi-x)=sin(x)
# sin(Pi/2+x)=cos(x)
set sign 0
switch -- $d {
0 {set l [_sin2 $integer $precision $delta]}
1 {set l [_cos2 $integer $precision $delta]}
2 {set sign 1;set l [_sin2 $integer $precision $delta]}
3 {set sign 1;set l [_cos2 $integer $precision $delta]}
default {error "internal error"}
}
# $l is a list : {Mantissa Precision Delta}
# precision --> the opposite of the exponent
# 1.000 = 1000*10^-3 so exponent=-3 and precision=3 digits
lset l 1 [expr {-([lindex $l 1])}]
# the sign depends on the switch statement below
#::math::bignum::setsign integer $sign
if {$sign} {
lset l 0 [expr {-[lindex $l 0]}]
}
# we insert the Bigfloat tag (F) and normalize the final result
return [normalize [linsert $l 0 F]]
}
proc ::math::bigfloat::_sin2 {x precision delta} {
set pi [_pi $precision]
# shift right by 1 = divide by 2
# shift right by 2 = divide by 4
set pis2 [expr {$pi>>1}]
set pis4 [expr {$pis2>>1}]
if {$x>=$pis4} {
# sin(Pi/2-x)=cos(x)
incr delta
set x [expr {$pis2-$x}]
return [_cos $x $precision $delta]
}
return [_sin $x $precision $delta]
}
################################################################################
# sin(x) with 'x' lower than Pi/4 and positive
# 'x' is the Mantissa - 'delta' is Delta
# 'precision' is the opposite of the exponent
################################################################################
proc ::math::bigfloat::_sin {x precision delta} {
# $s holds the result
set s $x
# sin(x) = x - x^3/3! + x^5/5! - ... + (-1)^n*x^(2n+1)/(2n+1)!
# = x * (1 - x^2/(2*3) * (1 - x^2/(4*5) * (...* (1 - x^2/(2n*(2n+1)) )...)))
# The second expression allows us to compute the less we can
# $double holds the uncertainty (Delta) of x^2 : 2*(Mantissa*Delta) + Delta^2
# (Mantissa+Delta)^2=Mantissa^2 + 2*Mantissa*Delta + Delta^2
set double [expr {$x*$delta>>$precision-1}]
incr double [expr {1+$delta*$delta>>$precision}]
# $x holds the Mantissa of x^2
set x [expr {$x*$x>>$precision}]
set dt [expr {$x*$delta+$double*($s+$delta)>>$precision}]
incr dt
# $t holds $s * -(x^2) / (2n*(2n+1))
# mul by x^2
set t [expr {$s*$x>>$precision}]
set denom2 2
set denom3 3
# mul by -1 (opp) and divide by 2*3
set t [expr {-$t/($denom2*$denom3)}]
while {$t!=0} {
incr s $t
incr delta $dt
# incr n => 2n --> 2n+2 and 2n+1 --> 2n+3
incr denom2 2
incr denom3 2
# $dt is the Delta corresponding to $t
# $double "" "" "" "" $x (x^2)
# ($t+$dt) * ($x+$double) = $t*$x + ($dt*$x + $t*$double) + $dt*$double
# Mantissa^ ^--------Delta-------------------^
set dt [expr {$x*$dt+($t+$dt)*$double>>$precision}]
set t [expr {$t*$x>>$precision}]
# removed 2005/08/31 by sarnold75
#set dt [::math::bignum::add $dt $double]
set denom [expr {$denom2*$denom3}]
# now computing : div by -2n(2n+1)
set dt [expr {1+$dt/$denom}]
set t [expr {-$t/$denom}]
}
return [list $s $precision $delta]
}
################################################################################
# procedure for extracting the square root of a BigFloat
################################################################################
proc ::math::bigfloat::sqrt {x} {
checkFloat $x
foreach {dummy integer exp delta} $x {break}
# if x=0, return 0
if {[iszero $x]} {
# return zero, taking care of its precision ($exp)
return [list F 0 $exp $delta]
}
# we cannot get sqrt(x) if x<0
if {[lindex $integer 0]<0} {
error "negative sqrt input"
}
# (1+epsilon)^p = 1 + epsilon*(p-1) + epsilon^2*(p-1)*(p-2)/2! + ...
# + epsilon^n*(p-1)*...*(p-n)/n!
# sqrt(1 + epsilon) = (1 + epsilon)^(1/2)
# = 1 - epsilon/2 - epsilon^2*3/(4*2!) - ...
# - epsilon^n*(3*5*..*(2n-1))/(2^n*n!)
# sqrt(1 - epsilon) = 1 + Sum(i=1..infinity) epsilon^i*(3*5*...*(2i-1))/(i!*2^i)
# sqrt(n +/- delta)=sqrt(n) * sqrt(1 +/- delta/n)
# so the uncertainty on sqrt(n +/- delta) equals sqrt(n) * (sqrt(1 - delta/n) - 1)
# sqrt(1+eps) < sqrt(1-eps) because their logarithm compare as :
# -ln(2)(1+eps) < -ln(2)(1-eps)
# finally :
# Delta = sqrt(n) * Sum(i=1..infinity) (delta/n)^i*(3*5*...*(2i-1))/(i!*2^i)
# here we compute the second term of the product by _sqrtOnePlusEpsilon
set delta [_sqrtOnePlusEpsilon $delta $integer]
set intLen [bits $integer]
# removed 2005/08/31 by sarnold75, readded 2005/08/31
set precision $intLen
# intLen + exp = number of bits before the dot
#set precision [expr {-$exp}]
# square root extraction
set integer [expr {$integer<<$intLen}]
incr exp -$intLen
incr intLen $intLen
# there is an exponent 2^$exp : when $exp is odd, we would need to compute sqrt(2)
# so we decrement $exp, in order to get it even, and we do not need sqrt(2) anymore !
if {$exp&1} {
incr exp -1
set integer [expr {$integer<<1}]
incr intLen
incr precision
}
# using a low-level (taken from math::bignum) root extraction procedure
# using binary operators
set integer [_sqrt $integer]
# delta has to be multiplied by the square root
set delta [expr {$delta*$integer>>$precision}]
# round to the ceiling the uncertainty (worst precision, the fastest to compute)
incr delta
# we are sure that $exp is even, see above
return [normalize [list F $integer [expr {$exp/2}] $delta]]
}
################################################################################
# compute abs(sqrt(1-delta/integer)-1)
# the returned value is a relative uncertainty
################################################################################
proc ::math::bigfloat::_sqrtOnePlusEpsilon {delta integer} {
# sqrt(1-x) - 1 = x/2 + x^2*3/(2^2*2!) + x^3*3*5/(2^3*3!) + ...
# = x/2 * (1 + x*3/(2*2) * ( 1 + x*5/(2*3) *
# (...* (1 + x*(2n-1)/(2n) ) )...)))
set l [bits $integer]
# to compute delta/integer we have to shift left to keep the same precision level
# we have a better accuracy computing (delta << lg(integer))/integer
# than computing (delta/integer) << lg(integer)
set x [expr {($delta<<$l)/$integer}]
# denom holds 2n
set denom 4
# x/2
set result [expr {$x>>1}]
# x^2*3/(2!*2^2)
# numerator holds 2n-1
set numerator 3
set temp [expr {($result*$delta*$numerator)/($integer*$denom)}]
incr temp
while {$temp!=0} {
incr result $temp
incr numerator 2
incr denom 2
# n = n+1 ==> num=num+2 denom=denom+2
# num=2n+1 denom=2n+2
set temp [expr {($temp*$delta*$numerator)/($integer*$denom)}]
}
return $result
}
#
# Computes the square root of an integer
# Returns an integer
#
proc ::math::bigfloat::_sqrt {n} {
set i [expr {(([bits $n]-1)/2)+1}]
set b [expr {$i*2}] ; # Bit to set to get 2^i*2^i
set r 0 ; # guess
set x 0 ; # guess^2
set s 0 ; # guess^2 backup
set t 0 ; # intermediate result
for {} {$i >= 0} {incr i -1; incr b -2} {
set x [expr {$s+($t|(1<<$b))}]
if {abs($x)<= abs($n)} {
set s $x
set r [expr {$r|(1<<$i)}]
set t [expr {$t|(1<<$b+1)}]
}
set t [expr {$t>>1}]
}
return $r
}
################################################################################
# substracts B to A
################################################################################
proc ::math::bigfloat::sub {a b} {
checkNumber $a
checkNumber $b
if {[isInt $a] && [isInt $b]} {
# the math::bignum::sub proc is designed to work with BigInts
return [expr {$a-$b}]
}
return [add $a [opp $b]]
}
################################################################################
# tangent (trivial algorithm)
################################################################################
proc ::math::bigfloat::tan {x} {
return [::math::bigfloat::div [::math::bigfloat::sin $x] [::math::bigfloat::cos $x]]
}
################################################################################
# returns a power of ten
################################################################################
proc ::math::bigfloat::tenPow {n} {
return [expr {10**$n}]
}
################################################################################
# converts a BigInt to a double (basic floating-point type)
# with respect to the global variable 'tcl_precision'
################################################################################
proc ::math::bigfloat::todouble {x} {
global tcl_precision
set precision $tcl_precision
if {$precision==0} {
# this is a cheat, I must admit, for Tcl 8.5
set precision 16
}
checkFloat $x
# get the string repr of x without the '+' sign
# please note: here we call math::bigfloat::tostr
set result [string trimleft [tostr $x] +]
set minus ""
if {[string index $result 0]=="-"} {
set minus -
set result [string range $result 1 end]
}
set l [split $result e]
set exp 0
if {[llength $l]==2} {
# exp : x=Mantissa*2^Exp
set exp [lindex $l 1]
}
# caution with octal numbers : we have to remove heading zeros
# but count them as digits
regexp {^0*} $result zeros
incr exp -[string length $zeros]
# Mantissa = integerPart.fractionalPart
set l [split [lindex $l 0] .]
set integerPart [lindex $l 0]
set integerLen [string length $integerPart]
set fractionalPart [lindex $l 1]
# The number of digits in Mantissa, excluding the dot and the leading zeros, of course
set integer [string trimleft $integerPart$fractionalPart 0]
if {$integer eq ""} {
set integer 0
}
set len [string length $integer]
# Now Mantissa is stored in $integer
if {$len>$precision} {
set lenDiff [expr {$len-$precision}]
# true when the number begins with a zero
set zeroHead 0
if {[string index $integer 0]==0} {
incr lenDiff -1
set zeroHead 1
}
set integer [roundshift $integer $lenDiff]
if {$zeroHead} {
set integer 0$integer
}
set len [string length $integer]
if {$len<$integerLen} {
set exp [expr {$integerLen-$len}]
# restore the true length
set integerLen $len
}
}
# number = 'sign'*'integer'*10^'exp'
if {$exp==0} {
# no scientific notation
set exp ""
} else {
# scientific notation
set exp e$exp
}
# place the dot just before the index $integerLen in the Mantissa
set result [string range $integer 0 [expr {$integerLen-1}]]
append result .[string range $integer $integerLen end]
# join the Mantissa with the sign before and the exponent after
return $minus$result$exp
}
################################################################################
# converts a number stored as a list to a string in which all digits are true
################################################################################
proc ::math::bigfloat::tostr {args} {
if {[llength $args]==2} {
if {![string equal [lindex $args 0] -nosci]} {error "unknown option: should be -nosci"}
set nosci yes
set number [lindex $args 1]
} else {
if {[llength $args]!=1} {error "syntax error: should be tostr ?-nosci? number"}
set nosci no
set number [lindex $args 0]
}
if {[isInt $number]} {
return $number
}
checkFloat $number
foreach {dummy integer exp delta} $number {break}
if {[iszero $number]} {
# we do matter how much precision $number has :
# it can be 0.0000000 or 0.0, the result is not the same zero
#return 0
}
if {$exp>0} {
# the power of ten the closest but greater than 2^$exp
# if it was lower than the power of 2, we would have more precision
# than existing in the number
set newExp [expr {int(ceil($exp*log(2)/log(10)))}]
# 'integer' <- 'integer' * 2^exp / 10^newExp
# equals 'integer' * 2^(exp-newExp) / 5^newExp
set binExp [expr {$exp-$newExp}]
if {$binExp<0} {
# it cannot happen
error "internal error"
}
# 5^newExp
set fivePower [expr {5**$newExp}]
# 'lshift'ing $integer by $binExp bits is like multiplying it by 2^$binExp
# but much, much faster
set integer [expr {($integer<<$binExp)/$fivePower}]
# $integer is the Mantissa - Delta should follow the same operations
set delta [expr {($delta<<$binExp)/$fivePower}]
set exp $newExp
} elseif {$exp<0} {
# the power of ten the closest but lower than 2^$exp
# same remark about the precision
set newExp [expr {int(floor(-$exp*log(2)/log(10)))}]
# 'integer' <- 'integer' * 10^newExp / 2^(-exp)
# equals 'integer' * 5^(newExp) / 2^(-exp-newExp)
set binShift [expr {-$exp-$newExp}]
set fivePower [expr {5**$newExp}]
# rshifting is like dividing by 2^$binShift, but faster as we said above about lshift
set integer [expr {$integer*$fivePower>>$binShift}]
set delta [expr {$delta*$fivePower>>$binShift}]
set exp -$newExp
}
# saving the sign, to restore it into the result
set result [expr {abs($integer)}]
set sign [expr {$integer<0}]
# rounded 'integer' +/- 'delta'
set up [expr {$result+$delta}]
set down [expr {$result-$delta}]
if {($up<0 && $down>0)||($up>0 && $down<0)} {
# $up>0 and $down<0 or vice-versa : then the number is considered equal to zero
set isZero yes
# delta <= 2**n (n = bits(delta))
# 2**n <= 10**exp , then
# exp >= n.log(2)/log(10)
# delta <= 10**(n.log(2)/log(10))
incr exp [expr {int(ceil([bits $delta]*log(2)/log(10)))}]
set result 0
} else {
# iterate until the convergence of the rounding
# we incr $shift until $up and $down are rounded to the same number
# at each pass we lose one digit of precision, so necessarly it will success
for {set shift 1} {
[roundshift $up $shift]!=[roundshift $down $shift]
} {
incr shift
} {}
incr exp $shift
set result [roundshift $up $shift]
set isZero no
}
set l [string length $result]
# now formatting the number the most nicely for having a clear reading
# would'nt we allow a number being constantly displayed
# as : 0.2947497845e+012 , would we ?
if {$nosci} {
if {$exp >= 0} {
append result [string repeat 0 $exp].
} elseif {$l + $exp > 0} {
set result [string range $result 0 end-[expr {-$exp}]].[string range $result end-[expr {-1-$exp}] end]
} else {
set result 0.[string repeat 0 [expr {-$exp-$l}]]$result
}
} else {
if {$exp>0} {
# we display 423*10^6 as : 4.23e+8
# Length of mantissa : $l
# Increment exp by $l-1 because the first digit is placed before the dot,
# the other ($l-1) digits following the dot.
incr exp [incr l -1]
set result [string index $result 0].[string range $result 1 end]
append result "e+$exp"
} elseif {$exp==0} {
# it must have a dot to be a floating-point number (syntaxically speaking)
append result .
} else {
set exp [expr {-$exp}]
if {$exp < $l} {
# we can display the number nicely as xxxx.yyyy*
# the problem of the sign is solved finally at the bottom of the proc
set n [string range $result 0 end-$exp]
incr exp -1
append n .[string range $result end-$exp end]
set result $n
} elseif {$l==$exp} {
# we avoid to use the scientific notation
# because it is harder to read
set result "0.$result"
} else {
# ... but here there is no choice, we should not represent a number
# with more than one leading zero
set result [string index $result 0].[string range $result 1 end]e-[expr {$exp-$l+1}]
}
}
}
# restore the sign : we only put a minus on numbers that are different from zero
if {$sign==1 && !$isZero} {set result "-$result"}
return $result
}
################################################################################
# PART IV
# HYPERBOLIC FUNCTIONS
################################################################################
################################################################################
# hyperbolic cosinus
################################################################################
proc ::math::bigfloat::cosh {x} {
# cosh(x) = (exp(x)+exp(-x))/2
# dividing by 2 is done faster by 'rshift'ing
return [floatRShift [add [exp $x] [exp [opp $x]]] 1]
}
################################################################################
# hyperbolic sinus
################################################################################
proc ::math::bigfloat::sinh {x} {
# sinh(x) = (exp(x)-exp(-x))/2
# dividing by 2 is done faster by 'rshift'ing
return [floatRShift [sub [exp $x] [exp [opp $x]]] 1]
}
################################################################################
# hyperbolic tangent
################################################################################
proc ::math::bigfloat::tanh {x} {
set up [exp $x]
set down [exp [opp $x]]
# tanh(x)=sinh(x)/cosh(x)= (exp(x)-exp(-x))/2/ [(exp(x)+exp(-x))/2]
# =(exp(x)-exp(-x))/(exp(x)+exp(-x))
# =($up-$down)/($up+$down)
return [div [sub $up $down] [add $up $down]]
}
# exporting public interface
namespace eval ::math::bigfloat {
foreach function {
add mul sub div mod pow
iszero compare equal
fromstr tostr fromdouble todouble
int2float isInt isFloat
exp log sqrt round ceil floor
sin cos tan cotan asin acos atan
cosh sinh tanh abs opp
pi deg2rad rad2deg
} {
namespace export $function
}
}
# (AM) No "namespace import" - this should be left to the user!
#namespace import ::math::bigfloat::*
package provide math::bigfloat 2.0.1
|