/usr/share/tcltk/tcllib1.14/math/interpolate.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 | # interpolate.tcl --
#
# Package for interpolation methods (one- and two-dimensional)
#
# Remarks:
# None of the methods deal gracefully with missing values
#
# To do:
# Add B-splines as methods
# For spatial interpolation in two dimensions also quadrant method?
# Method for destroying a table
# Proper documentation
# Proper test cases
#
# version 0.1: initial implementation, january 2003
# version 0.2: added linear and Lagrange interpolation, straightforward
# spatial interpolation, april 2004
# version 0.3: added Neville algorithm.
# version 1.0: added cubic splines, september 2004
#
# Copyright (c) 2004 by Arjen Markus. All rights reserved.
# Copyright (c) 2004 by Kevin B. Kenny. All rights reserved.
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: interpolate.tcl,v 1.10 2009/10/22 18:19:52 arjenmarkus Exp $
#
#----------------------------------------------------------------------
package require Tcl 8.4
package require struct::matrix
# ::math::interpolate --
# Namespace holding the procedures and variables
#
namespace eval ::math::interpolate {
variable search_radius {}
variable inv_dist_pow 2
namespace export interp-1d-table interp-table interp-linear \
interp-lagrange
namespace export neville
}
# defineTable --
# Define a two-dimensional table of data
#
# Arguments:
# name Name of the table to be created
# cols Names of the columns (for convenience and for counting)
# values List of values to fill the table with (must be sorted
# w.r.t. first column or first column and first row)
#
# Results:
# Name of the new command
#
# Side effects:
# Creates a new command, which is used in subsequent calls
#
proc ::math::interpolate::defineTable { name cols values } {
set table ::math::interpolate::__$name
::struct::matrix $table
$table add columns [llength $cols]
$table add row
$table set row 0 $cols
set row 1
set first 0
set nocols [llength $cols]
set novals [llength $values]
while { $first < $novals } {
set last [expr {$first+$nocols-1}]
$table add row
$table set row $row [lrange $values $first $last]
incr first $nocols
incr row
}
return $table
}
# inter-1d-table --
# Interpolate in a one-dimensional table
# (first column is independent variable, all others dependent)
#
# Arguments:
# table Name of the table
# xval Value of the independent variable
#
# Results:
# List of interpolated values, including the x-variable
#
proc ::math::interpolate::interp-1d-table { table xval } {
#
# Search for the records that enclose the x-value
#
set xvalues [lrange [$table get column 0] 1 end]
foreach {row row2} [FindEnclosingEntries $xval $xvalues] break
set prev_values [$table get row $row]
set next_values [$table get row $row2]
set xprev [lindex $prev_values 0]
set xnext [lindex $next_values 0]
if { $row == $row2 } {
return [concat $xval [lrange $prev_values 1 end]]
} else {
set wprev [expr {($xnext-$xval)/($xnext-$xprev)}]
set wnext [expr {1.0-$wprev}]
set results {}
foreach vprev $prev_values vnext $next_values {
set vint [expr {$vprev*$wprev+$vnext*$wnext}]
lappend results $vint
}
return $results
}
}
# interp-table --
# Interpolate in a two-dimensional table
# (first column and first row are independent variables)
#
# Arguments:
# table Name of the table
# xval Value of the independent row-variable
# yval Value of the independent column-variable
#
# Results:
# Interpolated value
#
# Note:
# Use bilinear interpolation
#
proc ::math::interpolate::interp-table { table xval yval } {
#
# Search for the records that enclose the x-value
#
set xvalues [lrange [$table get column 0] 2 end]
foreach {row row2} [FindEnclosingEntries $xval $xvalues] break
incr row
incr row2
#
# Search for the columns that enclose the y-value
#
set yvalues [lrange [$table get row 1] 1 end]
foreach {col col2} [FindEnclosingEntries $yval $yvalues] break
set yvalues [concat "." $yvalues] ;# Prepend a dummy column!
set prev_values [$table get row $row]
set next_values [$table get row $row2]
set x1 [lindex $prev_values 0]
set x2 [lindex $next_values 0]
set y1 [lindex $yvalues $col]
set y2 [lindex $yvalues $col2]
set v11 [lindex $prev_values $col]
set v12 [lindex $prev_values $col2]
set v21 [lindex $next_values $col]
set v22 [lindex $next_values $col2]
#
# value = v0 + a*(x-x1) + b*(y-y1) + c*(x-x1)*(y-y1)
# if x == x1 and y == y1: value = v11
# if x == x1 and y == y2: value = v12
# if x == x2 and y == y1: value = v21
# if x == x2 and y == y2: value = v22
#
set a 0.0
if { $x1 != $x2 } {
set a [expr {($v21-$v11)/($x2-$x1)}]
}
set b 0.0
if { $y1 != $y2 } {
set b [expr {($v12-$v11)/($y2-$y1)}]
}
set c 0.0
if { $x1 != $x2 && $y1 != $y2 } {
set c [expr {($v11+$v22-$v12-$v21)/($x2-$x1)/($y2-$y1)}]
}
set result \
[expr {$v11+$a*($xval-$x1)+$b*($yval-$y1)+$c*($xval-$x1)*($yval-$y1)}]
return $result
}
# FindEnclosingEntries --
# Search within a sorted list
#
# Arguments:
# val Value to be searched
# values List of values to be examined
#
# Results:
# Returns a list of the previous and next indices
#
proc FindEnclosingEntries { val values } {
set found 0
set row2 1
foreach v $values {
if { $val <= $v } {
set row [expr {$row2-1}]
set found 1
break
}
incr row2
}
#
# Border cases: extrapolation needed
#
if { ! $found } {
incr row2 -1
set row $row2
}
if { $row == 0 } {
set row $row2
}
return [list $row $row2]
}
# interp-linear --
# Use linear interpolation
#
# Arguments:
# xyvalues List of x/y values to be interpolated
# xval x-value for which a value is sought
#
# Results:
# Estimated value at $xval
#
# Note:
# The list xyvalues must be sorted w.r.t. the x-value
#
proc ::math::interpolate::interp-linear { xyvalues xval } {
#
# Border cases first
#
if { [lindex $xyvalues 0] > $xval } {
return [lindex $xyvalues 1]
}
if { [lindex $xyvalues end-1] < $xval } {
return [lindex $xyvalues end]
}
#
# The ordinary case
#
set idxx -2
set idxy -1
foreach { x y } $xyvalues {
if { $xval < $x } {
break
}
incr idxx 2
incr idxy 2
}
set x2 [lindex $xyvalues $idxx]
set y2 [lindex $xyvalues $idxy]
if { $x2 != $x } {
set yval [expr {$y+($y2-$y)*($xval-$x)/($x2-$x)}]
} else {
set yval $y
}
return $yval
}
# interp-lagrange --
# Use the Lagrange interpolation method
#
# Arguments:
# xyvalues List of x/y values to be interpolated
# xval x-value for which a value is sought
#
# Results:
# Estimated value at $xval
#
# Note:
# The list xyvalues must be sorted w.r.t. the x-value
# Furthermore the Lagrange method is not a very practical
# method, as potentially the errors are unbounded
#
proc ::math::interpolate::interp-lagrange { xyvalues xval } {
#
# Border case: xval equals one of the "nodes"
#
foreach { x y } $xyvalues {
if { $x == $xval } {
return $y
}
}
#
# Ordinary case
#
set nonodes2 [llength $xyvalues]
set yval 0.0
for { set i 0 } { $i < $nonodes2 } { incr i 2 } {
set idxn 0
set xn [lindex $xyvalues $i]
set yn [lindex $xyvalues [expr {$i+1}]]
foreach { x y } $xyvalues {
if { $idxn != $i } {
set yn [expr {$yn*($x-$xval)/($x-$xn)}]
}
incr idxn 2
}
set yval [expr {$yval+$yn}]
}
return $yval
}
# interp-spatial --
# Use a straightforward interpolation method with weights as
# function of the inverse distance to interpolate in 2D and N-D
# space
#
# Arguments:
# xyvalues List of coordinates and values at these coordinates
# coord List of coordinates for which a value is sought
#
# Results:
# Estimated value(s) at $coord
#
# Note:
# The list xyvalues is a list of lists:
# { {x1 y1 z1 {v11 v12 v13 v14}
# {x2 y2 z2 {v21 v22 v23 v24}
# ...
# }
# The last element of each inner list is either a single number
# or a list in itself. In the latter case the return value is
# a list with the same number of elements.
#
# The method is influenced by the search radius and the
# power of the inverse distance
#
proc ::math::interpolate::interp-spatial { xyvalues coord } {
variable search_radius
variable inv_dist_pow
set result {}
foreach v [lindex [lindex $xyvalues 0] end] {
lappend result 0.0
}
set total_weight 0.0
if { $search_radius != {} } {
set max_radius2 [expr {$search_radius*$search_radius}]
} else {
set max_radius2 {}
}
foreach point $xyvalues {
set dist 0.0
foreach c [lrange $point 0 end-1] cc $coord {
set dist [expr {$dist+($c-$cc)*($c-$cc)}]
}
if { $max_radius2 == {} || $dist <= $max_radius2 } {
if { $inv_dist_pow == 1 } {
set dist [expr {sqrt($dist)}]
}
set total_weight [expr {$total_weight+1.0/$dist}]
set idx 0
foreach v [lindex $point end] r $result {
lset result $idx [expr {$r+$v/$dist}]
incr idx
}
}
}
if { $total_weight == 0.0 } {
set idx 0
foreach r $result {
lset result $idx {}
incr idx
}
} else {
set idx 0
foreach r $result {
lset result $idx [expr {$r/$total_weight}]
incr idx
}
}
return $result
}
# interp-spatial-params --
# Set the parameters for spatial interpolation
#
# Arguments:
# max_search Search radius (if none: use {} or "")
# power Power for the inverse distance (1 or 2, defaults to 2)
#
# Results:
# None
#
proc ::math::interpolate::interp-spatial-params { max_search {power 2} } {
variable search_radius
variable inv_dist_pow
set search_radius $max_search
if { $power == 1 } {
set inv_dist_pow 1
} else {
set inv_dist_pow 2
}
}
#----------------------------------------------------------------------
#
# neville --
#
# Interpolate a function between tabulated points using Neville's
# algorithm.
#
# Parameters:
# xtable - Table of abscissae.
# ytable - Table of ordinates. Must be a list of the same
# length as 'xtable.'
# x - Abscissa for which the function value is desired.
#
# Results:
# Returns a two-element list. The first element is the
# requested ordinate. The second element is a rough estimate
# of the absolute error, that is, the magnitude of the first
# neglected term of a power series.
#
# Side effects:
# None.
#
#----------------------------------------------------------------------
proc ::math::interpolate::neville { xtable ytable x } {
set n [llength $xtable]
# Initialization. Set c and d to the ordinates, and set ns to the
# index of the nearest abscissa. Set y to the zero-order approximation
# of the nearest ordinate, and dif to the difference between x
# and the nearest tabulated abscissa.
set c [list]
set d [list]
set i 0
set ns 0
set dif [expr { abs( $x - [lindex $xtable 0] ) }]
set y [lindex $ytable 0]
foreach xi $xtable yi $ytable {
set dift [expr { abs ( $x - $xi ) }]
if { $dift < $dif } {
set ns $i
set y $yi
set dif $dift
}
lappend c $yi
lappend d $yi
incr i
}
# Compute successively higher-degree approximations to the fit
# function by using the recurrence:
# d_m[i] = ( c_{m-1}[i+1] - d{m-1}[i] ) * (x[i+m]-x) /
# (x[i] - x[i+m])
# c_m[i] = ( c_{m-1}[i+1] - d{m-1}[i] ) * (x[i]-x) /
# (x[i] - x[i+m])
for { set m 1 } { $m < $n } { incr m } {
for { set i 0 } { $i < $n - $m } { set i $ip1 } {
set ip1 [expr { $i + 1 }]
set ipm [expr { $i + $m }]
set ho [expr { [lindex $xtable $i] - $x }]
set hp [expr { [lindex $xtable $ipm] - $x }]
set w [expr { [lindex $c $ip1] - [lindex $d $i] }]
set q [expr { $w / ( $ho - $hp ) }]
lset d $i [expr { $hp * $q }]
lset c $i [expr { $ho * $q }]
}
# Take the straighest path possible through the tableau of c
# and d approximations back to the tabulated value
if { 2 * $ns < $n - $m } {
set dy [lindex $c $ns]
} else {
incr ns -1
set dy [lindex $d $ns]
}
set y [expr { $y + $dy }]
}
# Return the approximation and the highest-order correction term.
return [list $y [expr { abs($dy) }]]
}
# prepare-cubic-splines --
# Prepare interpolation based on cubic splines
#
# Arguments:
# xcoord The x-coordinates
# ycoord Y-values for these x-coordinates
# Result:
# Intermediate parameters describing the spline function,
# to be used in the second step, interp-cubic-splines.
# Note:
# Implicitly it is assumed that the function decribed by xcoord
# and ycoord has a second derivative 0 at the end points.
# To minimise the work if more than one value is needed, the
# algorithm is divided in two steps
# (Derived from the routine SPLINT in Davis and Rabinowitz:
# Methods for Numerical Integration, AP, 1984)
#
proc ::math::interpolate::prepare-cubic-splines {xcoord ycoord} {
if { [llength $xcoord] < 3 } {
return -code error "At least three points are required"
}
if { [llength $xcoord] != [llength $ycoord] } {
return -code error "Equal number of x and y values required"
}
set m2 [expr {[llength $xcoord]-1}]
set s 0.0
set h {}
set c {}
for { set i 0 } { $i < $m2 } { incr i } {
set ip1 [expr {$i+1}]
set h1 [expr {[lindex $xcoord $ip1]-[lindex $xcoord $i]}]
lappend h $h1
if { $h1 <= 0.0 } {
return -code error "X values must be strictly ascending"
}
set r [expr {([lindex $ycoord $ip1]-[lindex $ycoord $i])/$h1}]
lappend c [expr {$r-$s}]
set s $r
}
set s 0.0
set r 0.0
set t {--}
lset c 0 0.0
for { set i 1 } { $i < $m2 } { incr i } {
set ip1 [expr {$i+1}]
set im1 [expr {$i-1}]
set y2 [expr {[lindex $c $i]+$r*[lindex $c $im1]}]
set t1 [expr {2.0*([lindex $xcoord $im1]-[lindex $xcoord $ip1])-$r*$s}]
set s [lindex $h $i]
set r [expr {$s/$t1}]
lset c $i $y2
lappend t $t1
}
lappend c 0.0
for { set j 1 } { $j < $m2 } { incr j } {
set i [expr {$m2-$j}]
set ip1 [expr {$i+1}]
set h1 [lindex $h $i]
set yp1 [lindex $c $ip1]
set y1 [lindex $c $i]
set t1 [lindex $t $i]
lset c $i [expr {($h1*$yp1-$y1)/$t1}]
}
set b {}
set d {}
for { set i 0 } { $i < $m2 } { incr i } {
set ip1 [expr {$i+1}]
set s [lindex $h $i]
set yp1 [lindex $c $ip1]
set y1 [lindex $c $i]
set r [expr {$yp1-$y1}]
lappend d [expr {$r/$s}]
set y1 [expr {3.0*$y1}]
lset c $i $y1
lappend b [expr {([lindex $ycoord $ip1]-[lindex $ycoord $i])/$s
-($y1+$r)*$s}]
}
lappend d 0.0
lappend b 0.0
return [list $d $c $b $ycoord $xcoord]
}
# interp-cubic-splines --
# Interpolate based on cubic splines
#
# Arguments:
# coeffs Coefficients resulting from the preparation step
# x The x-coordinate for which to estimate the value
# Result:
# Interpolated value at x
#
proc ::math::interpolate::interp-cubic-splines {coeffs x} {
foreach {dcoef ccoef bcoef acoef xcoord} $coeffs {break}
#
# Check the bounds - no extrapolation
#
if { $x < [lindex $xcoord 0] } {error "X value too small"}
if { $x > [lindex $xcoord end] } {error "X value too large"}
#
# Which interval?
#
set idx -1
foreach xv $xcoord {
if { $xv > $x } {
break
}
incr idx
}
set a [lindex $acoef $idx]
set b [lindex $bcoef $idx]
set c [lindex $ccoef $idx]
set d [lindex $dcoef $idx]
set dx [expr {$x-[lindex $xcoord $idx]}]
return [expr {(($d*$dx+$c)*$dx+$b)*$dx+$a}]
}
#
# Announce our presence
#
package provide math::interpolate 1.0.3
|