/usr/share/tcltk/tcllib1.14/sha1/sha256.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 | # sha256.tcl - Copyright (C) 2005 Pat Thoyts <patthoyts@users.sourceforge.net>
#
# SHA1 defined by FIPS 180-2, "The Secure Hash Standard"
# HMAC defined by RFC 2104, "Keyed-Hashing for Message Authentication"
#
# This is an implementation of the secure hash algorithms specified in the
# FIPS 180-2 document.
#
# This implementation permits incremental updating of the hash and
# provides support for external compiled implementations using critcl.
#
# This implementation permits incremental updating of the hash and
# provides support for external compiled implementations either using
# critcl (sha256c).
#
# Ref: http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
# http://csrc.nist.gov/publications/fips/fips180-2/fips180-2withchangenotice.pdf
#
# -------------------------------------------------------------------------
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
# -------------------------------------------------------------------------
#
# @mdgen EXCLUDE: sha256c.tcl
package require Tcl 8.2; # tcl minimum version
namespace eval ::sha2 {
variable version 1.0.3
variable rcsid {$Id: sha256.tcl,v 1.7 2010/07/06 20:16:39 andreas_kupries Exp $}
variable accel
array set accel {tcl 0 critcl 0}
variable loaded {}
namespace export sha256 hmac \
SHA256Init SHA256Update SHA256Final
variable uid
if {![info exists uid]} {
set uid 0
}
variable K
if {![info exists K]} {
# FIPS 180-2: 4.2.2 SHA-256 constants
set K [list \
0x428a2f98 0x71374491 0xb5c0fbcf 0xe9b5dba5 \
0x3956c25b 0x59f111f1 0x923f82a4 0xab1c5ed5 \
0xd807aa98 0x12835b01 0x243185be 0x550c7dc3 \
0x72be5d74 0x80deb1fe 0x9bdc06a7 0xc19bf174 \
0xe49b69c1 0xefbe4786 0x0fc19dc6 0x240ca1cc \
0x2de92c6f 0x4a7484aa 0x5cb0a9dc 0x76f988da \
0x983e5152 0xa831c66d 0xb00327c8 0xbf597fc7 \
0xc6e00bf3 0xd5a79147 0x06ca6351 0x14292967 \
0x27b70a85 0x2e1b2138 0x4d2c6dfc 0x53380d13 \
0x650a7354 0x766a0abb 0x81c2c92e 0x92722c85 \
0xa2bfe8a1 0xa81a664b 0xc24b8b70 0xc76c51a3 \
0xd192e819 0xd6990624 0xf40e3585 0x106aa070 \
0x19a4c116 0x1e376c08 0x2748774c 0x34b0bcb5 \
0x391c0cb3 0x4ed8aa4a 0x5b9cca4f 0x682e6ff3 \
0x748f82ee 0x78a5636f 0x84c87814 0x8cc70208 \
0x90befffa 0xa4506ceb 0xbef9a3f7 0xc67178f2 \
]
}
}
# -------------------------------------------------------------------------
# Management of sha256 implementations.
# LoadAccelerator --
#
# This package can make use of a number of compiled extensions to
# accelerate the digest computation. This procedure manages the
# use of these extensions within the package. During normal usage
# this should not be called, but the test package manipulates the
# list of enabled accelerators.
#
proc ::sha2::LoadAccelerator {name} {
variable accel
set r 0
switch -exact -- $name {
tcl {
# Already present (this file)
set r 1
}
critcl {
if {![catch {package require tcllibc}]
|| ![catch {package require sha256c}]} {
set r [expr {[info command ::sha2::sha256c_update] != {}}]
}
}
default {
return -code error "invalid accelerator $key:\
must be one of [join [KnownImplementations] {, }]"
}
}
set accel($name) $r
return $r
}
# ::sha2::Implementations --
#
# Determines which implementations are
# present, i.e. loaded.
#
# Arguments:
# None.
#
# Results:
# A list of implementation keys.
proc ::sha2::Implementations {} {
variable accel
set res {}
foreach n [array names accel] {
if {!$accel($n)} continue
lappend res $n
}
return $res
}
# ::sha2::KnownImplementations --
#
# Determines which implementations are known
# as possible implementations.
#
# Arguments:
# None.
#
# Results:
# A list of implementation keys. In the order
# of preference, most prefered first.
proc ::sha2::KnownImplementations {} {
return {critcl tcl}
}
proc ::sha2::Names {} {
return {
critcl {tcllibc based}
tcl {pure Tcl}
}
}
# ::sha2::SwitchTo --
#
# Activates a loaded named implementation.
#
# Arguments:
# key Name of the implementation to activate.
#
# Results:
# None.
proc ::sha2::SwitchTo {key} {
variable accel
variable loaded
if {[string equal $key $loaded]} {
# No change, nothing to do.
return
} elseif {![string equal $key ""]} {
# Validate the target implementation of the switch.
if {![info exists accel($key)]} {
return -code error "Unable to activate unknown implementation \"$key\""
} elseif {![info exists accel($key)] || !$accel($key)} {
return -code error "Unable to activate missing implementation \"$key\""
}
}
# Deactivate the previous implementation, if there was any.
if {![string equal $loaded ""]} {
foreach c {
SHA256Init SHA224Init
SHA256Final SHA224Final
SHA256Update
} {
rename ::sha2::$c ::sha2::${c}-${loaded}
}
}
# Activate the new implementation, if there is any.
if {![string equal $key ""]} {
foreach c {
SHA256Init SHA224Init
SHA256Final SHA224Final
SHA256Update
} {
rename ::sha2::${c}-${key} ::sha2::$c
}
}
# Remember the active implementation, for deactivation by future
# switches.
set loaded $key
return
}
# -------------------------------------------------------------------------
# SHA256Init --
#
# Create and initialize an SHA256 state variable. This will be
# cleaned up when we call SHA256Final
#
proc ::sha2::SHA256Init-tcl {} {
variable uid
set token [namespace current]::[incr uid]
upvar #0 $token tok
# FIPS 180-2: 5.3.2 Setting the initial hash value
array set tok \
[list \
A [expr {int(0x6a09e667)}] \
B [expr {int(0xbb67ae85)}] \
C [expr {int(0x3c6ef372)}] \
D [expr {int(0xa54ff53a)}] \
E [expr {int(0x510e527f)}] \
F [expr {int(0x9b05688c)}] \
G [expr {int(0x1f83d9ab)}] \
H [expr {int(0x5be0cd19)}] \
n 0 i "" v 256]
return $token
}
proc ::sha2::SHA256Init-critcl {} {
variable uid
set token [namespace current]::[incr uid]
upvar #0 $token tok
# FIPS 180-2: 5.3.2 Setting the initial hash value
set tok(sha256c) [sha256c_init256]
return $token
}
# SHA256Update --
#
# This is called to add more data into the hash. You may call this
# as many times as you require. Note that passing in "ABC" is equivalent
# to passing these letters in as separate calls -- hence this proc
# permits hashing of chunked data
#
# If we have a C-based implementation available, then we will use
# it here in preference to the pure-Tcl implementation.
#
proc ::sha2::SHA256Update-tcl {token data} {
upvar #0 $token state
# Update the state values
incr state(n) [string length $data]
append state(i) $data
# Calculate the hash for any complete blocks
set len [string length $state(i)]
for {set n 0} {($n + 64) <= $len} {} {
SHA256Transform $token [string range $state(i) $n [incr n 64]]
}
# Adjust the state for the blocks completed.
set state(i) [string range $state(i) $n end]
return
}
proc ::sha2::SHA256Update-critcl {token data} {
upvar #0 $token state
set state(sha256c) [sha256c_update $data $state(sha256c)]
return
}
# SHA256Final --
#
# This procedure is used to close the current hash and returns the
# hash data. Once this procedure has been called the hash context
# is freed and cannot be used again.
#
# Note that the output is 256 bits represented as binary data.
#
proc ::sha2::SHA256Final-tcl {token} {
upvar #0 $token state
SHA256Penultimate $token
# Output
set r [bytes $state(A)][bytes $state(B)][bytes $state(C)][bytes $state(D)][bytes $state(E)][bytes $state(F)][bytes $state(G)][bytes $state(H)]
unset state
return $r
}
proc ::sha2::SHA256Final-critcl {token} {
upvar #0 $token state
set r $state(sha256c)
unset state
return $r
}
# SHA256Penultimate --
#
#
proc ::sha2::SHA256Penultimate {token} {
upvar #0 $token state
# FIPS 180-2: 5.1.1: Padding the message
#
set len [string length $state(i)]
set pad [expr {56 - ($len % 64)}]
if {$len % 64 > 56} {
incr pad 64
}
if {$pad == 0} {
incr pad 64
}
append state(i) [binary format a$pad \x80]
# Append length in bits as big-endian wide int.
set dlen [expr {8 * $state(n)}]
append state(i) [binary format II 0 $dlen]
# Calculate the hash for the remaining block.
set len [string length $state(i)]
for {set n 0} {($n + 64) <= $len} {} {
SHA256Transform $token [string range $state(i) $n [incr n 64]]
}
}
# -------------------------------------------------------------------------
proc ::sha2::SHA224Init-tcl {} {
variable uid
set token [namespace current]::[incr uid]
upvar #0 $token tok
# FIPS 180-2 (change notice 1) (1): SHA-224 initialization values
array set tok \
[list \
A [expr {int(0xc1059ed8)}] \
B [expr {int(0x367cd507)}] \
C [expr {int(0x3070dd17)}] \
D [expr {int(0xf70e5939)}] \
E [expr {int(0xffc00b31)}] \
F [expr {int(0x68581511)}] \
G [expr {int(0x64f98fa7)}] \
H [expr {int(0xbefa4fa4)}] \
n 0 i "" v 224]
return $token
}
proc ::sha2::SHA224Init-critcl {} {
variable uid
set token [namespace current]::[incr uid]
upvar #0 $token tok
# FIPS 180-2 (change notice 1) (1): SHA-224 initialization values
set tok(sha256c) [sha256c_init224]
return $token
}
interp alias {} ::sha2::SHA224Update {} ::sha2::SHA256Update
proc ::sha2::SHA224Final-tcl {token} {
upvar #0 $token state
SHA256Penultimate $token
# Output
set r [bytes $state(A)][bytes $state(B)][bytes $state(C)][bytes $state(D)][bytes $state(E)][bytes $state(F)][bytes $state(G)]
unset state
return $r
}
proc ::sha2::SHA224Final-critcl {token} {
upvar #0 $token state
# Trim result down to 224 bits (by 4 bytes).
# See output below, A..G, not A..H
set r [string range $state(sha256c) 0 end-4]
unset state
return $r
}
# -------------------------------------------------------------------------
# HMAC Hashed Message Authentication (RFC 2104)
#
# hmac = H(K xor opad, H(K xor ipad, text))
#
# HMACInit --
#
# This is equivalent to the SHA1Init procedure except that a key is
# added into the algorithm
#
proc ::sha2::HMACInit {K} {
# Key K is adjusted to be 64 bytes long. If K is larger, then use
# the SHA1 digest of K and pad this instead.
set len [string length $K]
if {$len > 64} {
set tok [SHA256Init]
SHA256Update $tok $K
set K [SHA256Final $tok]
set len [string length $K]
}
set pad [expr {64 - $len}]
append K [string repeat \0 $pad]
# Cacluate the padding buffers.
set Ki {}
set Ko {}
binary scan $K i16 Ks
foreach k $Ks {
append Ki [binary format i [expr {$k ^ 0x36363636}]]
append Ko [binary format i [expr {$k ^ 0x5c5c5c5c}]]
}
set tok [SHA256Init]
SHA256Update $tok $Ki; # initialize with the inner pad
# preserve the Ko value for the final stage.
# FRINK: nocheck
set [subst $tok](Ko) $Ko
return $tok
}
# HMACUpdate --
#
# Identical to calling SHA256Update
#
proc ::sha2::HMACUpdate {token data} {
SHA256Update $token $data
return
}
# HMACFinal --
#
# This is equivalent to the SHA256Final procedure. The hash context is
# closed and the binary representation of the hash result is returned.
#
proc ::sha2::HMACFinal {token} {
upvar #0 $token state
set tok [SHA256Init]; # init the outer hashing function
SHA256Update $tok $state(Ko); # prepare with the outer pad.
SHA256Update $tok [SHA256Final $token]; # hash the inner result
return [SHA256Final $tok]
}
# -------------------------------------------------------------------------
# Description:
# This is the core SHA1 algorithm. It is a lot like the MD4 algorithm but
# includes an extra round and a set of constant modifiers throughout.
#
set ::sha2::SHA256Transform_body {
variable K
upvar #0 $token state
# FIPS 180-2: 6.2.2 SHA-256 Hash computation.
binary scan $msg I* blocks
set blockLen [llength $blocks]
for {set i 0} {$i < $blockLen} {incr i 16} {
set W [lrange $blocks $i [expr {$i+15}]]
# FIPS 180-2: 6.2.2 (1) Prepare the message schedule
# For t = 16 to 64
# let Wt = (sigma1(Wt-2) + Wt-7 + sigma0(Wt-15) + Wt-16)
set t2 13
set t7 8
set t15 0
set t16 -1
for {set t 16} {$t < 64} {incr t} {
lappend W [expr {([sigma1 [lindex $W [incr t2]]] \
+ [lindex $W [incr t7]] \
+ [sigma0 [lindex $W [incr t15]]] \
+ [lindex $W [incr t16]]) & 0xffffffff}]
}
# FIPS 180-2: 6.2.2 (2) Initialise the working variables
set A $state(A)
set B $state(B)
set C $state(C)
set D $state(D)
set E $state(E)
set F $state(F)
set G $state(G)
set H $state(H)
# FIPS 180-2: 6.2.2 (3) Do permutation rounds
# For t = 0 to 63 do
# T1 = h + SIGMA1(e) + Ch(e,f,g) + Kt + Wt
# T2 = SIGMA0(a) + Maj(a,b,c)
# h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a;
# a = T1 + T2
#
for {set t 0} {$t < 64} {incr t} {
set T1 [expr {($H + [SIGMA1 $E] + [Ch $E $F $G]
+ [lindex $K $t] + [lindex $W $t]) & 0xffffffff}]
set T2 [expr {([SIGMA0 $A] + [Maj $A $B $C]) & 0xffffffff}]
set H $G
set G $F
set F $E
set E [expr {($D + $T1) & 0xffffffff}]
set D $C
set C $B
set B $A
set A [expr {($T1 + $T2) & 0xffffffff}]
}
# FIPS 180-2: 6.2.2 (4) Compute the intermediate hash
incr state(A) $A
incr state(B) $B
incr state(C) $C
incr state(D) $D
incr state(E) $E
incr state(F) $F
incr state(G) $G
incr state(H) $H
}
return
}
# -------------------------------------------------------------------------
# FIPS 180-2: 4.1.2 equation 4.2
proc ::sha2::Ch {x y z} {
return [expr {($x & $y) ^ (~$x & $z)}]
}
# FIPS 180-2: 4.1.2 equation 4.3
proc ::sha2::Maj {x y z} {
return [expr {($x & $y) ^ ($x & $z) ^ ($y & $z)}]
}
# FIPS 180-2: 4.1.2 equation 4.4
# (x >>> 2) ^ (x >>> 13) ^ (x >>> 22)
proc ::sha2::SIGMA0 {x} {
return [expr {[>>> $x 2] ^ [>>> $x 13] ^ [>>> $x 22]}]
}
# FIPS 180-2: 4.1.2 equation 4.5
# (x >>> 6) ^ (x >>> 11) ^ (x >>> 25)
proc ::sha2::SIGMA1 {x} {
return [expr {[>>> $x 6] ^ [>>> $x 11] ^ [>>> $x 25]}]
}
# FIPS 180-2: 4.1.2 equation 4.6
# s0 = (x >>> 7) ^ (x >>> 18) ^ (x >> 3)
proc ::sha2::sigma0 {x} {
#return [expr {[>>> $x 7] ^ [>>> $x 18] ^ (($x >> 3) & 0x1fffffff)}]
return [expr {((($x<<25) | (($x>>7) & (0x7FFFFFFF>>6))) \
^ (($x<<14) | (($x>>18) & (0x7FFFFFFF>>17))) & 0xFFFFFFFF) \
^ (($x>>3) & 0x1fffffff)}]
}
# FIPS 180-2: 4.1.2 equation 4.7
# s1 = (x >>> 17) ^ (x >>> 19) ^ (x >> 10)
proc ::sha2::sigma1 {x} {
#return [expr {[>>> $x 17] ^ [>>> $x 19] ^ (($x >> 10) & 0x003fffff)}]
return [expr {((($x<<15) | (($x>>17) & (0x7FFFFFFF>>16))) \
^ (($x<<13) | (($x>>19) & (0x7FFFFFFF>>18))) & 0xFFFFFFFF) \
^ (($x >> 10) & 0x003fffff)}]
}
# 32bit rotate-right
proc ::sha2::>>> {v n} {
return [expr {(($v << (32 - $n)) \
| (($v >> $n) & (0x7FFFFFFF >> ($n - 1)))) \
& 0xFFFFFFFF}]
}
# 32bit rotate-left
proc ::sha2::<<< {v n} {
return [expr {((($v << $n) \
| (($v >> (32 - $n)) \
& (0x7FFFFFFF >> (31 - $n))))) \
& 0xFFFFFFFF}]
}
# -------------------------------------------------------------------------
# We speed up the SHA256Transform code while maintaining readability in the
# source code by substituting inline for a number of functions.
# The idea is to reduce the number of [expr] calls.
# Inline the Ch function
regsub -all -line \
{\[Ch (\$[ABCDEFGH]) (\$[ABCDEFGH]) (\$[ABCDEFGH])\]} \
$::sha2::SHA256Transform_body \
{((\1 \& \2) ^ ((~\1) \& \3))} \
::sha2::SHA256Transform_body
# Inline the Maj function
regsub -all -line \
{\[Maj (\$[ABCDEFGH]) (\$[ABCDEFGH]) (\$[ABCDEFGH])\]} \
$::sha2::SHA256Transform_body \
{((\1 \& \2) ^ (\1 \& \3) ^ (\2 \& \3))} \
::sha2::SHA256Transform_body
# Inline the SIGMA0 function
regsub -all -line \
{\[SIGMA0 (\$[ABCDEFGH])\]} \
$::sha2::SHA256Transform_body \
{((((\1<<30) | ((\1>>2) \& (0x7FFFFFFF>>1))) \& 0xFFFFFFFF) \
^ (((\1<<19) | ((\1>>13) \& (0x7FFFFFFF>>12))) \& 0xFFFFFFFF) \
^ (((\1<<10) | ((\1>>22) \& (0x7FFFFFFF>>21))) \& 0xFFFFFFFF) \
)} \
::sha2::SHA256Transform_body
# Inline the SIGMA1 function
regsub -all -line \
{\[SIGMA1 (\$[ABCDEFGH])\]} \
$::sha2::SHA256Transform_body \
{((((\1<<26) | ((\1>>6) \& (0x7FFFFFFF>>5))) \& 0xFFFFFFFF) \
^ (((\1<<21) | ((\1>>11) \& (0x7FFFFFFF>>10))) \& 0xFFFFFFFF) \
^ (((\1<<7) | ((\1>>25) \& (0x7FFFFFFF>>24))) \& 0xFFFFFFFF) \
)} \
::sha2::SHA256Transform_body
proc ::sha2::SHA256Transform {token msg} $::sha2::SHA256Transform_body
# -------------------------------------------------------------------------
# Convert a integer value into a binary string in big-endian order.
proc ::sha2::byte {n v} {expr {((0xFF << (8 * $n)) & $v) >> (8 * $n)}}
proc ::sha2::bytes {v} {
#format %c%c%c%c [byte 3 $v] [byte 2 $v] [byte 1 $v] [byte 0 $v]
format %c%c%c%c \
[expr {((0xFF000000 & $v) >> 24) & 0xFF}] \
[expr {(0xFF0000 & $v) >> 16}] \
[expr {(0xFF00 & $v) >> 8}] \
[expr {0xFF & $v}]
}
# -------------------------------------------------------------------------
proc ::sha2::Hex {data} {
binary scan $data H* result
return $result
}
# -------------------------------------------------------------------------
# Description:
# Pop the nth element off a list. Used in options processing.
#
proc ::sha2::Pop {varname {nth 0}} {
upvar $varname args
set r [lindex $args $nth]
set args [lreplace $args $nth $nth]
return $r
}
# -------------------------------------------------------------------------
# fileevent handler for chunked file hashing.
#
proc ::sha2::Chunk {token channel {chunksize 4096}} {
upvar #0 $token state
if {[eof $channel]} {
fileevent $channel readable {}
set state(reading) 0
}
SHA256Update $token [read $channel $chunksize]
}
# -------------------------------------------------------------------------
proc ::sha2::_sha256 {ver args} {
array set opts {-hex 0 -filename {} -channel {} -chunksize 4096}
if {[llength $args] == 1} {
set opts(-hex) 1
} else {
while {[string match -* [set option [lindex $args 0]]]} {
switch -glob -- $option {
-hex { set opts(-hex) 1 }
-bin { set opts(-hex) 0 }
-file* { set opts(-filename) [Pop args 1] }
-channel { set opts(-channel) [Pop args 1] }
-chunksize { set opts(-chunksize) [Pop args 1] }
default {
if {[llength $args] == 1} { break }
if {[string compare $option "--"] == 0} { Pop args; break }
set err [join [lsort [concat -bin [array names opts]]] ", "]
return -code error "bad option $option:\
must be one of $err"
}
}
Pop args
}
}
if {$opts(-filename) != {}} {
set opts(-channel) [open $opts(-filename) r]
fconfigure $opts(-channel) -translation binary
}
if {$opts(-channel) == {}} {
if {[llength $args] != 1} {
return -code error "wrong # args: should be\
\"[namespace current]::sha$ver ?-hex|-bin? -filename file\
| -channel channel | string\""
}
set tok [SHA${ver}Init]
SHA${ver}Update $tok [lindex $args 0]
set r [SHA${ver}Final $tok]
} else {
set tok [SHA${ver}Init]
# FRINK: nocheck
set [subst $tok](reading) 1
fileevent $opts(-channel) readable \
[list [namespace origin Chunk] \
$tok $opts(-channel) $opts(-chunksize)]
# FRINK: nocheck
vwait [subst $tok](reading)
set r [SHA${ver}Final $tok]
# If we opened the channel - we should close it too.
if {$opts(-filename) != {}} {
close $opts(-channel)
}
}
if {$opts(-hex)} {
set r [Hex $r]
}
return $r
}
interp alias {} ::sha2::sha256 {} ::sha2::_sha256 256
interp alias {} ::sha2::sha224 {} ::sha2::_sha256 224
# -------------------------------------------------------------------------
proc ::sha2::hmac {args} {
array set opts {-hex 1 -filename {} -channel {} -chunksize 4096}
if {[llength $args] != 2} {
while {[string match -* [set option [lindex $args 0]]]} {
switch -glob -- $option {
-key { set opts(-key) [Pop args 1] }
-hex { set opts(-hex) 1 }
-bin { set opts(-hex) 0 }
-file* { set opts(-filename) [Pop args 1] }
-channel { set opts(-channel) [Pop args 1] }
-chunksize { set opts(-chunksize) [Pop args 1] }
default {
if {[llength $args] == 1} { break }
if {[string compare $option "--"] == 0} { Pop args; break }
set err [join [lsort [array names opts]] ", "]
return -code error "bad option $option:\
must be one of $err"
}
}
Pop args
}
}
if {[llength $args] == 2} {
set opts(-key) [Pop args]
}
if {![info exists opts(-key)]} {
return -code error "wrong # args:\
should be \"hmac ?-hex? -key key -filename file | string\""
}
if {$opts(-filename) != {}} {
set opts(-channel) [open $opts(-filename) r]
fconfigure $opts(-channel) -translation binary
}
if {$opts(-channel) == {}} {
if {[llength $args] != 1} {
return -code error "wrong # args:\
should be \"hmac ?-hex? -key key -filename file | string\""
}
set tok [HMACInit $opts(-key)]
HMACUpdate $tok [lindex $args 0]
set r [HMACFinal $tok]
} else {
set tok [HMACInit $opts(-key)]
# FRINK: nocheck
set [subst $tok](reading) 1
fileevent $opts(-channel) readable \
[list [namespace origin Chunk] \
$tok $opts(-channel) $opts(-chunksize)]
# FRINK: nocheck
vwait [subst $tok](reading)
set r [HMACFinal $tok]
# If we opened the channel - we should close it too.
if {$opts(-filename) != {}} {
close $opts(-channel)
}
}
if {$opts(-hex)} {
set r [Hex $r]
}
return $r
}
# -------------------------------------------------------------------------
# Try and load a compiled extension to help.
namespace eval ::sha2 {
variable e {}
foreach e [KnownImplementations] {
if {[LoadAccelerator $e]} {
SwitchTo $e
break
}
}
unset e
}
package provide sha256 $::sha2::version
# -------------------------------------------------------------------------
# Local Variables:
# mode: tcl
# indent-tabs-mode: nil
# End:
|