This file is indexed.

/usr/share/tcltk/tcllib1.14/simulation/annealing.tcl is in tcllib 1.14-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
# annealing.tcl --
#     Package implementing simulated annealing for minimizing functions
#     of one or more parameters
#
# Copyright (c) 2007 by Arjen Markus <arjenmarkus@users.sourceforge.net>
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: annealing.tcl,v 1.4 2008/02/22 13:34:07 arjenmarkus Exp $
#------------------------------------------------------------------------------

package require Tcl 8.4

# ::simulation::annealing --
#     Create the namespace
#
namespace eval ::simulation::annealing {
}


# getOption --
#     Return the value of an option
#
# Arguments:
#     option         Name of the option (without -)
# Result:
#     The value or an error message if it does not exist
#
proc ::simulation::annealing::getOption {option} {
    variable ann_option

    if { [info exists ann_option(-$option)] } {
        return $ann_option(-$option)
    } else {
        return -code error "No such option: $option"
    }
}


# setOption --
#     Set the value of an option
#
# Arguments:
#     option         Name of the option (without -)
#     value          Value of the option
# Result:
#     None
#
proc ::simulation::annealing::setOption {option value} {
    variable ann_option

    set ann_option(-$option) $value
}


# hasOption --
#     Return whether the given option exists or not
#
# Arguments:
#     option         Name of the option (without -)
# Result:
#     1 if it exists, 0 if not
#
proc ::simulation::annealing::hasOption {option} {
    variable ann_option

    if { [info exists ann_option(-$option)] } {
        return 1
    } else {
        return 0
    }
}


# findMinimum --
#     Find the (global) minimum of a function using simulated annealing
#
# Arguments:
#     args            Option-value pairs:
#                     -parameters list - triples defining parameters and ranges
#                     -function expr   - expression defining the function
#                     -code body       - body of code to define the function
#                                        (takes precedence over -function)
#                                        should set the variable "result"
#                     -init code       - code to be run at start up
#                     -final code      - code to be run at the end
#                     -trials n        - number of trials before reducing the temperature
#                     -reduce factor   - reduce the temperature by this factor
#                                        (between 0 and 1)
#                     -initial-temp t  - initial temperature
#                     -scale s         - scale of the function (order of
#                                        magnitude of the values)
#                     -estimate-scale y/n - estimate the scale (only if -scale not present)
#                     -verbose y/n     - Turn verbose printing on (1) or off (0)
#                     -reportfile file - Channel to write verbose output to
#                     Any others can be used via the getOption procedure
#                     in the body.
#
# Result:
#     Estimated minimum and the parameters involved:
#     function value param1 value param2 value ...
#
proc ::simulation::annealing::findMinimum {args} {
    variable ann_option

    #
    # Handle the options
    #
    set ann_option(-parameters)     {}
    set ann_option(-function)       {}
    set ann_option(-code)           {}
    set ann_option(-init)           {}
    set ann_option(-final)          {}
    set ann_option(-trials)         300
    set ann_option(-reduce)         0.95
    set ann_option(-initial-temp)   1.0
    set ann_option(-scale)          {}
    set ann_option(-estimate-scale) 0
    set ann_option(-verbose)        0
    set ann_option(-reportfile)     stdout

    foreach {option value} $args {
        set ann_option($option) $value
    }

    if { $ann_option(-scale) == {} } {
        if { ! $ann_option(-estimate-scale) } {
            set ann_option(-scale) 1.0
        }
    }

    if { $ann_option(-code) != {} } {
        set ann_option(-function) {}
    }

    if { $ann_option(-code) == {} && $ann_option(-function) == {} } {
        return -code error "Neither code nor function given! Nothing to optimize"
    }
    if { $ann_option(-parameters) == {} } {
        return -code error "No parameters given! Nothing to optimize"
    }

    if { $ann_option(-function) != {} } {
        set ann_option(-code) "set result \[expr {$ann_option(-function)}\]"
    }

    #
    # Create the procedure
    #
    proc FindMin {} [string map \
        [list PARAMETERS $ann_option(-parameters) \
              CODE  $ann_option(-code) \
              INIT  $ann_option(-init) \
              FINAL $ann_option(-final)] {
        #
        # Give all parameters a value
        #
        foreach {_param_ _min_ _max_} {PARAMETERS} {
            set $_param_ $_min_
        }

        set _trials_ [getOption trials]
        set _temperature_ [getOption initial-temp]
        set _reduce_      [getOption reduce]
        set _noparams_    [expr {[llength {PARAMETERS}]/3}]
        set _verbose_     [getOption verbose]
        set _reportfile_  [getOption reportfile]

        INIT

        #
        # Estimate the scale
        #
        if { [getOption estimate-scale] == 1 } {
            set _sum_ 0.0
            for { set _trial_ 0 } { $_trial_ < $_trials_/3 } { incr _trial_ } {
                set _randp_ [expr {3*int($_noparams_*rand())}]
                set _param_ [lindex {PARAMETERS} $_randp_]
                set _min_   [lindex {PARAMETERS} [expr {$_randp_+1}]]
                set _max_   [lindex {PARAMETERS} [expr {$_randp_+2}]]
                set _old_param_ [set $_param_]
                set $_param_ [expr {$_min_ + rand()*($_max_-$_min_)}]

                CODE

                set _sum_  [expr {$_sum_ + abs($result)}]
            }
            set _scale_ [expr {3.0*$_sum_/$_trials_}]
        } else {
            set _scale_ [getOption scale]
        }
        if { $_verbose_ } {
            puts $_reportfile_ "Scale value: $_scale_"
        }

        #
        # Start the outer loop
        #
        set _changes_     1

        #
        # Get the initial value of the function
        #
        CODE
        set _old_result_ $result

        if { $_verbose_ } {
            puts $_reportfile_ "Result -- Mean of accepted values -- % accepted"
        }

        while {1} {
            set _sum_       $_old_result_
            set _accepted_  1
            for { set _trial_ 0 } { $_trial_ < $_trials_} { incr _trial_ } {
                set _randp_ [expr {3*int($_noparams_*rand())}]
                set _param_ [lindex {PARAMETERS} $_randp_]
                set _min_   [lindex {PARAMETERS} [expr {$_randp_+1}]]
                set _max_   [lindex {PARAMETERS} [expr {$_randp_+2}]]
                set _old_param_ [set $_param_]
                set $_param_ [expr {$_min_ + rand()*($_max_-$_min_)}]

                CODE

                #
                # Accept the new solution?
                #
                set _rand_  [expr {rand()}]
                if { log($_rand_) < -($result-$_old_result_)/($_scale_*$_temperature_) } {
                    incr _changes_
                    set _old_result_ $result
                    set _sum_        [expr {$_sum_ + $result}]
                    incr _accepted_
                } else {
                    set $_param_ $_old_param_
                }
            }

            if { $_verbose_ } {
                puts $_reportfile_ \
                    [format "%.5g -- %.5g -- %.2f %%" $_old_result_ \
                        [expr {$_sum_/$_accepted_}] [expr {100.0*double($_changes_)/$_trials_}]]
            }

            set _temperature_ [expr {$_reduce_ * $_temperature_}]
            if { $_changes_ == 0 } {
                break
            } else {
                set _changes_ 0
            }
        }

        set result [list result $_old_result_] ;# Note: we need the last accepted result!
        foreach {_param_ _min_ _max_} {PARAMETERS} {
            lappend result $_param_ [set $_param_]
        }

        FINAL

        return $result
    }]

    #
    # Do the actual computation and return the result
    #
    return [FindMin]
}


# findCombinatorialMinimum --
#     Find the (global) minimum of a combinatorial function using simulated annealing
#
# Arguments:
#     args            Option-value pairs:
#                     -number-params n     - number of (binary) parameters
#                     -initial-values list - list of parameter values to start with
#                     -function expr       - expression defining the function
#                     -code body           - body of code to define the function
#                                            (takes precedence over -function)
#                                            should set the variable "result"
#                                            The values of the solutions
#                                            are stored as a list in the
#                                            variable params
#                     -init code           - code to be run at start up
#                     -final code          - code to be run at the end
#                     -trials n            - number of trials before reducing the temperature
#                     -reduce factor       - reduce the temperature by this factor
#                                            (between 0 and 1)
#                     -initial-temp t      - initial temperature
#                     -scale s             - scale of the function (order of
#                                            magnitude of the values)
#                     -estimate-scale y/n  - estimate the scale (only if -scale not present)
#                     -verbose y/n         - Turn verbose printing on (1) or off (0)
#                     -reportfile file     - Channel to write verbose output to
#                     Any others can be used via the getOption procedure
#                     in the body.
#
# Result:
#     Estimated minimum and the parameters involved:
#     function value, list of values
#
# Note:
#     The parameters have the values 0 or 1
#
#     The stop criterion is that if the result value does not change in
#     sqrt(trials) then the iteration stops. Experiments with the
#     example below show that the function to be minimised can show
#     a very wide minimum due to the parameters being discrete.
#     sqrt(trials) is just an arbitrary value.
#
proc ::simulation::annealing::findCombinatorialMinimum {args} {
    variable ann_option

    #
    # Handle the options
    #
    set ann_option(-number-params)  {}
    set ann_option(-initial-values) {}
    set ann_option(-function)       {}
    set ann_option(-code)           {}
    set ann_option(-init)           {}
    set ann_option(-final)          {}
    set ann_option(-trials)         300
    set ann_option(-reduce)         0.95
    set ann_option(-initial-temp)   1.0
    set ann_option(-scale)          {}
    set ann_option(-estimate-scale) 0
    set ann_option(-verbose)        0
    set ann_option(-reportfile)     stdout

    foreach {option value} $args {
        set ann_option($option) $value
    }

    if { $ann_option(-scale) == {} } {
        if { ! $ann_option(-estimate-scale) } {
            set ann_option(-scale) 1.0
        }
    }

    if { $ann_option(-code) != {} } {
        set ann_option(-function) {}
    }

    if { $ann_option(-code) == {} && $ann_option(-function) == {} } {
        return -code error "Neither code nor function given! Nothing to optimize"
    }
    if { $ann_option(-number-params) == {} } {
        return -code error "Number of parameters not given! Nothing to optimize"
    }

    if { $ann_option(-initial-values) == {} } {
        for { set i 0 } { $i < $ann_option(-number-params) } { incr i } {
            lappend ann_option(-initial-values) 0
        }
    }

    if { $ann_option(-function) != {} } {
        set ann_option(-code) "set result \[expr {$ann_option(-function)}\]"
    }

    #
    # Create the procedure
    #
    proc FindCombMin {params} [string map \
        [list CODE  $ann_option(-code) \
              INIT  $ann_option(-init) \
              FINAL $ann_option(-final)] {

        set _trials_      [getOption trials]
        set _temperature_ [getOption initial-temp]
        set _reduce_      [getOption reduce]
        set _noparams_    [llength $params]
        set _verbose_     [getOption verbose]
        set _reportfile_  [getOption reportfile]

        INIT

        #
        # Estimate the scale
        #
        if { [getOption estimate-scale] == 1 } {
            set _sum_ 0.0
            set _old_params_ $params
            for { set _trial_ 0 } { $_trial_ < $_trials_/3 } { incr _trial_ } {
                set _randp_ [expr {int($_noparams_*rand())}]
                lset params $_randp_ [expr {rand()>0.5? 0 : 1}]

                CODE

                set _sum_  [expr {$_sum_ + abs($result)}]
            }
            set _scale_ [expr {3.0*$_sum_/$_trials_}]
            set params $_old_params_
        } else {
            set _scale_ [getOption scale]
        }
        if { $_verbose_ } {
            puts $_reportfile_ "Scale value: $_scale_"
        }

        #
        # Start the outer loop
        #
        set _changes_     1

        #
        # Get the initial value of the function
        #
        CODE
        set _old_result_        $result
        set _result_same_       0
        set _result_after_loop_ $result

        if { $_verbose_ } {
            puts $_reportfile_ "Result -- Mean of accepted values -- % accepted"
        }

        while {1} {
            set _sum_       $_old_result_
            set _accepted_  1
            for { set _trial_ 0 } { $_trial_ < $_trials_} { incr _trial_ } {
                set _old_params_ $params
                set _randp_ [expr {int($_noparams_*rand())}]
                lset params $_randp_ [expr {rand()>0.5? 0 : 1}]

                CODE

                #
                # Accept the new solution?
                #
                set _rand_  [expr {rand()}]
                if { log($_rand_) < -($result-$_old_result_)/($_scale_*$_temperature_) } {
                    incr _changes_
                    set _old_result_ $result
                    set _sum_        [expr {$_sum_ + $result}]
                    incr _accepted_
                } else {
                    set params $_old_params_
                }
            }

            if { $_verbose_ } {
                puts $_reportfile_ \
                    [format "%.5g -- %.5g -- %.2f %%" $_old_result_ \
                        [expr {$_sum_/$_accepted_}] [expr {100.0*double($_changes_)/$_trials_}]]
            }

            set _temperature_ [expr {$_reduce_ * $_temperature_}]
            if { $_changes_ == 0 || $_result_same_ > sqrt($_trials_) } {
                break
            } else {
                set _changes_ 0
            }

            if { $_result_after_loop_ == $_old_result_ } {
                incr _result_same_
            } else {
                set _result_after_loop_ $_old_result_
            }
        }

        set result [list result $_old_result_] ;# Note: we need the last accepted result!
        lappend result solution $params

        FINAL

        return $result
    }]

    #
    # Do the actual computation and return the result
    #
    return [FindCombMin $ann_option(-initial-values)]
}

# Announce the package
#
package provide simulation::annealing 0.2

# main --
#     Example
#
if { 0 } {
puts [::simulation::annealing::findMinimum \
    -trials 300 \
    -verbose 1 \
    -parameters {x -5.0 5.0 y -5.0 5.0} \
    -function {$x*$x+$y*$y+sin(10.0*$x)+4.0*cos(20.0*$y)}]

puts "Constrained:"
puts [::simulation::annealing::findMinimum \
    -trials 3000 \
    -reduce 0.98 \
    -parameters {x -5.0 5.0 y -5.0 5.0} \
    -code {
        if { hypot($x-5.0,$y-5.0) < 4.0 } {
            set result [expr {$x*$x+$y*$y+sin(10.0*$x)+4.0*cos(20.0*$y)}]
        } else {
           set result 1.0e100
        }
    }]
}

#
# A simple combinatorial problem:
# We have 100 items and the function is optimal if the first 10
# values are 1 and the result is 0. Can we find this solution?
#
# What if we have 1000 items? Or 10000 items?
#
# WARNING:
# 10000 items take a very long time!
#
if { 0 } {
    proc cost {params} {
        set cost 0
        foreach p [lrange $params 0 9] {
            if { $p == 0 } {
                incr cost
            }
        }
        foreach p [lrange $params 10 end] {
            if { $p == 1 } {
                incr cost
            }
        }
        return $cost
    }

    foreach n {100 1000 10000} {
        break
        puts "Problem size: $n"
        puts [::simulation::annealing::findCombinatorialMinimum \
            -trials 300 \
            -verbose 0 \
            -number-params $n \
            -code {set result [cost $params]}]
    }

    #
    # Second problem:
    #     Only the values of the first 10 items are important -
    #     they should be 1
    #
    proc cost2 {params} {
        set cost 0
        foreach p [lrange $params 0 9] {
            if { $p == 0 } {
                incr cost
            }
        }
        return $cost
    }

    foreach n {100 1000 10000} {
        puts "Problem size: $n"
        puts [::simulation::annealing::findCombinatorialMinimum \
            -trials 300 \
            -verbose 0 \
            -number-params $n \
            -code {set result [cost2 $params]}]
    }
}