This file is indexed.

/usr/share/tcltk/tcllib1.14/simulation/random.tcl is in tcllib 1.14-dfsg-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
# random.tcl --
#     Create procedures that return various types of pseudo-random
#     number generators (PRNGs)
#
# Copyright (c) 2007 by Arjen Markus <arjenmarkus@users.sourceforge.net>
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# TODO:
# - Beta
# - Weighted discrete
# - Poisson
# - Cauchy
# - Binomial
#
#     Note:
#     Several formulae and algorithms come from "Monte Carlo Simulation"
#     by C. Mooney (Sage Publications, 1997)
#
# RCS: @(#) $Id: random.tcl,v 1.4 2011/06/17 06:40:14 arjenmarkus Exp $
#------------------------------------------------------------------------------

package require Tcl 8.4

# ::simulation::random --
#     Create the namespace
#
namespace eval ::simulation::random {
    variable count 0
    variable pi    [expr {4.0*atan(1.0)}]
}


# prng_Bernoulli --
#     Create a PRNG with a Bernoulli distribution
#
# Arguments:
#     p         Probability that the outcome will be 1
#
# Result:
#     Name of a procedure that returns a Bernoulli-distributed random number
#
proc ::simulation::random::prng_Bernoulli {p} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list P $p] {return [expr {rand()<P? 1 : 0}]}]

    return $name
}


# prng_Uniform --
#     Create a PRNG with a uniform distribution in a given range
#
# Arguments:
#     min       Minimum value
#     max       Maximum value
#
# Result:
#     Name of a procedure that returns a uniformly distributed
#     random number
#
proc ::simulation::random::prng_Uniform {min max} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    set range [expr {$max-$min}]
    proc $name {} [string map [list MIN $min RANGE $range] {return [expr {MIN+RANGE*rand()}]}]

    return $name
}


# prng_Exponential --
#     Create a PRNG with an exponential distribution with given mean
#
# Arguments:
#     min       Minimum value
#     mean      Mean value
#
# Result:
#     Name of a procedure that returns an exponentially distributed
#     random number
#
proc ::simulation::random::prng_Exponential {min mean} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    set b [expr {$mean-$min}]
    proc $name {} [string map [list MIN $min B $b] {return [expr {MIN-B*log(rand())}]}]

    return $name
}


# prng_Discrete --
#     Create a PRNG with a uniform but discrete distribution
#
# Arguments:
#     n         Outcome is an integer between 0 and n-1
#
# Result:
#     Name of a procedure that returns such a random number
#
proc ::simulation::random::prng_Discrete {n} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list N $n] {return [expr {int(N*rand())}]}]

    return $name
}


# prng_Poisson --
#     Create a PRNG with a Poisson distribution
#
# Arguments:
#     lambda    The one parameter of the Poisson distribution
#
# Result:
#     Name of a procedure that returns such a random number
#
proc ::simulation::random::prng_Poisson {lambda} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count

    set explambda [expr {exp(-$lambda)}]

    proc $name {} [string map [list INIT $explambda LAMBDA $lambda] {
        set r      [expr {rand()}]
        set number 0
        set sum    INIT
        set rfact  INIT

        while { $r > $sum } {
            set rfact [expr {$rfact * LAMBDA /($number+1.0)}]
            set sum [expr {$sum + $rfact}]
            incr number
        }
        return $number
    }]

    return $name
}


# prng_Normal --
#     Create a PRNG with a normal distribution
#
# Arguments:
#     mean      Mean of the distribution
#     stdev     Standard deviation of the distribution
#
# Result:
#     Name of a procedure that returns such a random number
#
# Note:
#     Use the Box-Mueller method to generate a normal random number
#
proc ::simulation::random::prng_Normal {mean stdev} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list MEAN $mean STDEV $stdev] \
    {
        variable pi
        set rad [expr {sqrt(-log(rand()))}]
        set phi [expr {2.0*$pi*rand()}]
        set r   [expr {$rad*cos($phi)}]
        return [expr {MEAN + STDEV*$r}]
    }]

    return $name
}


# prng_Pareto --
#     Create a PRNG with a Pareto distribution
#
# Arguments:
#     min       Minimum value for the distribution
#     steep     Steepness of the descent
#
# Result:
#     Name of a procedure that returns a Pareto-distributed number
#
proc ::simulation::random::prng_Pareto {min steep} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count

    set rsteep [expr {1.0/$steep}]
    proc $name {} [string map [list MIN $min RSTEEP $rsteep] \
    {
        return [expr {MIN * pow(1.0-rand(),RSTEEP)}]
    }]

    return $name
}


# prng_Gumbel --
#     Create a PRNG with a Gumbel distribution
#
# Arguments:
#     min       Minimum value for the distribution
#     f         Factor to scale the value
#
# Result:
#     Name of a procedure that returns a Gumbel-distributed number
#
# Note:
#     The chance P(v) = exp( -exp( f*(v-min) ) )
#
proc ::simulation::random::prng_Gumbel {min f} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count

    proc $name {} [string map [list MIN $min F $f] \
    {
        return [expr {MIN + log( -log(1.0-rand()) ) / F}]
    }]

    return $name
}


# prng_chiSquared --
#     Create a PRNG with a chi-squared distribution
#
# Arguments:
#     df        Degrees of freedom
#
# Result:
#     Name of a procedure that returns a chi-squared distributed number
#     with mean 0 and standard deviation 1
#
proc ::simulation::random::prng_chiSquared {df} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list DF $df] \
    {
        variable pi
        set y 0.0
        for { set i 0 } { $i < DF } { incr i } {
            set rad [expr {sqrt(-log(rand()))}]
            set phi [expr {2.0*$pi*rand()}]
            set r   [expr {$rad*cos($phi)}]
            set y   [expr {$y+$r*$r}]
        }
        return [expr {($y-DF)/sqrt(2.0*DF)}]
    }]

    return $name
}


# prng_Disk --
#     Create a PRNG with a uniform distribution of points on a disk
#
# Arguments:
#     rad       Radius of the disk
#
# Result:
#     Name of a procedure that returns the x- and y-coordinates of
#     such a random point
#
proc ::simulation::random::prng_Disk {rad} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list RAD $rad] \
    {
        variable pi
        set rad [expr {RAD*sqrt(rand())}]
        set phi [expr {2.0*$pi*rand()}]
        set x   [expr {$rad*cos($phi)}]
        set y   [expr {$rad*sin($phi)}]
        return [list $x $y]
    }]

    return $name
}


# prng_Ball --
#     Create a PRNG with a uniform distribution of points within a ball
#
# Arguments:
#     rad       Radius of the ball
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#
proc ::simulation::random::prng_Ball {rad} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list RAD $rad] \
    {
        variable pi
        set rad   [expr {RAD*pow(rand(),0.333333333333)}]
        set phi   [expr {2.0*$pi*rand()}]
        set theta [expr {acos(2.0*rand()-1.0)}]
        set x     [expr {$rad*cos($phi)*cos($theta)}]
        set y     [expr {$rad*sin($phi)*cos($theta)}]
        set z     [expr {$rad*sin($theta)}]
        return [list $x $y $z]
    }]

    return $name
}


# prng_Sphere --
#     Create a PRNG with a uniform distribution of points on the surface
#     of a sphere
#
# Arguments:
#     rad       Radius of the sphere
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#
proc ::simulation::random::prng_Sphere {rad} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count
    proc $name {} [string map [list RAD $rad] \
    {
        variable pi
        set phi   [expr {2.0*$pi*rand()}]
        set theta [expr {acos(2.0*rand()-1.0)}]
        set x     [expr {RAD*cos($phi)*cos($theta)}]
        set y     [expr {RAD*sin($phi)*cos($theta)}]
        set z     [expr {RAD*sin($theta)}]
        return [list $x $y $z]
    }]

    return $name
}


# prng_Rectangle --
#     Create a PRNG with a uniform distribution of points in a rectangle
#
# Arguments:
#     length    Length of the rectangle (x-direction)
#     width     Width of the rectangle (y-direction)
#
# Result:
#     Name of a procedure that returns the x- and y-coordinates of
#     such a random point
#
proc ::simulation::random::prng_Rectangle {length width} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count

    proc $name {} [string map [list LENGTH $length WIDTH $width] \
     {
         set x [expr {LENGTH*rand()}]
         set y [expr {WIDTH*rand()}]
         return [list $x $y]
    }]

    return $name
}


# prng_Block --
#     Create a PRNG with a uniform distribution of points in a block
#
# Arguments:
#     length    Length of the block (x-direction)
#     width     Width of the block (y-direction)
#     depth     Depth of the block (y-direction)
#
# Result:
#     Name of a procedure that returns the x-, y- and z-coordinates of
#     such a random point
#
proc ::simulation::random::prng_Block {length width depth} {
    variable count

    incr count

    set name ::simulation::random::PRNG_$count

    proc $name {} [string map [list LENGTH $length WIDTH $width DEPTH $depth] \
     {
         set x [expr {LENGTH*rand()}]
         set y [expr {WIDTH*rand()}]
         set z [expr {DEPTH*rand()}]
         return [list $x $y $z]
    }]

    return $name
}

# Announce the package
#
package provide simulation::random 0.3


# main --
#     Test code
#
if { 0 } {
set bin [::simulation::random::prng_Bernoulli 0.2]

set ones  0
set zeros 0
for { set i 0} {$i < 100000} {incr i} {
    if { [$bin] } {
        incr ones
    } else {
        incr zeros
    }
}

puts "Bernoulli: $ones - $zeros"

set discrete [::simulation::random::prng_Discrete 10]

for { set i 0} {$i < 100000} {incr i} {
    set v [$discrete]

    if { [info exists count($v)] } {
        incr count($v)
    } else {
        set count($v) 1
    }
}

puts "Discrete:"
parray count

set rect [::simulation::random::prng_Rectangle 10 3]

puts "Rectangle:"
for { set i 0} {$i < 10} {incr i} {
    puts [$rect]
}

set normal [::simulation::random::prng_Normal 0 1]

puts "Normal:"
for { set i 0} {$i < 10} {incr i} {
    puts [$normal]
}

#
# Timing: how fast is the normal random number generator?
#
# Surprising speed: 15 million numbers per minute!
#
puts "Normal random number generator:"
puts "[time {set value [$normal]} 30000]"
set result [lindex [time {set value [$normal]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"
puts "Creating a long list: [time {lappend value [$normal]} 30000]"
puts "[lrange $value 0 20] - [llength $value] numbers in total"
set value {}
set result [lindex [time {lappend value [$normal]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"

puts "Points in a rectangle:"
puts "[time {set value [$rect]} 30000]"
set result [lindex [time {set value [$rect]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"

#
# A more formal test
#
package require math
unset count
set samples 100000

set lambda 10.0
set poisson [::simulation::random::prng_Poisson $lambda]
for { set i 0 } { $i < $samples } { incr i } {
    set number [$poisson]
    if { [info exists count($number)] } {
        incr count($number)
    } else {
        set count($number) 1
    }
}
parray count
for { set i 0 } { $i < 30 } { incr i } {
    set expected [expr {int($samples * pow($lambda,$i) * exp(-$lambda) / [::math::factorial $i])}]
    set exp_error [expr {sqrt($expected)}]
    if { [info exists count($i)] } {
        if { $expected-$exp_error < $count($i) &&
             $expected+$exp_error > $count($i) } {
            set okay "okay"
        } else {
            set okay "difference too large"
        }
        puts "$i $expected $count($i) - [expr {$expected/double($count($i))}] - $okay"
    } else {
        puts "$i $expected none"
    }
}
}

#
# Test hypothesis concerning rectangle
#
if { 0 } {
set r2 [::simulation::random::prng_Rectangle2 10 1]

set count_down  0
set count_up    0
set count_left  0
set count_right 0
for { set i 0 } { $i < 1000000 } { incr i } {

    foreach {x y} [$r2] {
        if { $x < 2.0 } { incr count_left  }
        if { $x > 8.0 } { incr count_right }
        if { $y < 0.2 } { incr count_down  }
        if { $y > 0.8 } { incr count_up    }
    }
}
puts "Left-right:\t$count_left\t$count_right"
puts "Up-down:   \t$count_up\t$count_down"
}