/usr/share/tcltk/tcllib1.14/simulation/random.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 | # random.tcl --
# Create procedures that return various types of pseudo-random
# number generators (PRNGs)
#
# Copyright (c) 2007 by Arjen Markus <arjenmarkus@users.sourceforge.net>
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# TODO:
# - Beta
# - Weighted discrete
# - Poisson
# - Cauchy
# - Binomial
#
# Note:
# Several formulae and algorithms come from "Monte Carlo Simulation"
# by C. Mooney (Sage Publications, 1997)
#
# RCS: @(#) $Id: random.tcl,v 1.4 2011/06/17 06:40:14 arjenmarkus Exp $
#------------------------------------------------------------------------------
package require Tcl 8.4
# ::simulation::random --
# Create the namespace
#
namespace eval ::simulation::random {
variable count 0
variable pi [expr {4.0*atan(1.0)}]
}
# prng_Bernoulli --
# Create a PRNG with a Bernoulli distribution
#
# Arguments:
# p Probability that the outcome will be 1
#
# Result:
# Name of a procedure that returns a Bernoulli-distributed random number
#
proc ::simulation::random::prng_Bernoulli {p} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list P $p] {return [expr {rand()<P? 1 : 0}]}]
return $name
}
# prng_Uniform --
# Create a PRNG with a uniform distribution in a given range
#
# Arguments:
# min Minimum value
# max Maximum value
#
# Result:
# Name of a procedure that returns a uniformly distributed
# random number
#
proc ::simulation::random::prng_Uniform {min max} {
variable count
incr count
set name ::simulation::random::PRNG_$count
set range [expr {$max-$min}]
proc $name {} [string map [list MIN $min RANGE $range] {return [expr {MIN+RANGE*rand()}]}]
return $name
}
# prng_Exponential --
# Create a PRNG with an exponential distribution with given mean
#
# Arguments:
# min Minimum value
# mean Mean value
#
# Result:
# Name of a procedure that returns an exponentially distributed
# random number
#
proc ::simulation::random::prng_Exponential {min mean} {
variable count
incr count
set name ::simulation::random::PRNG_$count
set b [expr {$mean-$min}]
proc $name {} [string map [list MIN $min B $b] {return [expr {MIN-B*log(rand())}]}]
return $name
}
# prng_Discrete --
# Create a PRNG with a uniform but discrete distribution
#
# Arguments:
# n Outcome is an integer between 0 and n-1
#
# Result:
# Name of a procedure that returns such a random number
#
proc ::simulation::random::prng_Discrete {n} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list N $n] {return [expr {int(N*rand())}]}]
return $name
}
# prng_Poisson --
# Create a PRNG with a Poisson distribution
#
# Arguments:
# lambda The one parameter of the Poisson distribution
#
# Result:
# Name of a procedure that returns such a random number
#
proc ::simulation::random::prng_Poisson {lambda} {
variable count
incr count
set name ::simulation::random::PRNG_$count
set explambda [expr {exp(-$lambda)}]
proc $name {} [string map [list INIT $explambda LAMBDA $lambda] {
set r [expr {rand()}]
set number 0
set sum INIT
set rfact INIT
while { $r > $sum } {
set rfact [expr {$rfact * LAMBDA /($number+1.0)}]
set sum [expr {$sum + $rfact}]
incr number
}
return $number
}]
return $name
}
# prng_Normal --
# Create a PRNG with a normal distribution
#
# Arguments:
# mean Mean of the distribution
# stdev Standard deviation of the distribution
#
# Result:
# Name of a procedure that returns such a random number
#
# Note:
# Use the Box-Mueller method to generate a normal random number
#
proc ::simulation::random::prng_Normal {mean stdev} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list MEAN $mean STDEV $stdev] \
{
variable pi
set rad [expr {sqrt(-log(rand()))}]
set phi [expr {2.0*$pi*rand()}]
set r [expr {$rad*cos($phi)}]
return [expr {MEAN + STDEV*$r}]
}]
return $name
}
# prng_Pareto --
# Create a PRNG with a Pareto distribution
#
# Arguments:
# min Minimum value for the distribution
# steep Steepness of the descent
#
# Result:
# Name of a procedure that returns a Pareto-distributed number
#
proc ::simulation::random::prng_Pareto {min steep} {
variable count
incr count
set name ::simulation::random::PRNG_$count
set rsteep [expr {1.0/$steep}]
proc $name {} [string map [list MIN $min RSTEEP $rsteep] \
{
return [expr {MIN * pow(1.0-rand(),RSTEEP)}]
}]
return $name
}
# prng_Gumbel --
# Create a PRNG with a Gumbel distribution
#
# Arguments:
# min Minimum value for the distribution
# f Factor to scale the value
#
# Result:
# Name of a procedure that returns a Gumbel-distributed number
#
# Note:
# The chance P(v) = exp( -exp( f*(v-min) ) )
#
proc ::simulation::random::prng_Gumbel {min f} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list MIN $min F $f] \
{
return [expr {MIN + log( -log(1.0-rand()) ) / F}]
}]
return $name
}
# prng_chiSquared --
# Create a PRNG with a chi-squared distribution
#
# Arguments:
# df Degrees of freedom
#
# Result:
# Name of a procedure that returns a chi-squared distributed number
# with mean 0 and standard deviation 1
#
proc ::simulation::random::prng_chiSquared {df} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list DF $df] \
{
variable pi
set y 0.0
for { set i 0 } { $i < DF } { incr i } {
set rad [expr {sqrt(-log(rand()))}]
set phi [expr {2.0*$pi*rand()}]
set r [expr {$rad*cos($phi)}]
set y [expr {$y+$r*$r}]
}
return [expr {($y-DF)/sqrt(2.0*DF)}]
}]
return $name
}
# prng_Disk --
# Create a PRNG with a uniform distribution of points on a disk
#
# Arguments:
# rad Radius of the disk
#
# Result:
# Name of a procedure that returns the x- and y-coordinates of
# such a random point
#
proc ::simulation::random::prng_Disk {rad} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list RAD $rad] \
{
variable pi
set rad [expr {RAD*sqrt(rand())}]
set phi [expr {2.0*$pi*rand()}]
set x [expr {$rad*cos($phi)}]
set y [expr {$rad*sin($phi)}]
return [list $x $y]
}]
return $name
}
# prng_Ball --
# Create a PRNG with a uniform distribution of points within a ball
#
# Arguments:
# rad Radius of the ball
#
# Result:
# Name of a procedure that returns the x-, y- and z-coordinates of
# such a random point
#
proc ::simulation::random::prng_Ball {rad} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list RAD $rad] \
{
variable pi
set rad [expr {RAD*pow(rand(),0.333333333333)}]
set phi [expr {2.0*$pi*rand()}]
set theta [expr {acos(2.0*rand()-1.0)}]
set x [expr {$rad*cos($phi)*cos($theta)}]
set y [expr {$rad*sin($phi)*cos($theta)}]
set z [expr {$rad*sin($theta)}]
return [list $x $y $z]
}]
return $name
}
# prng_Sphere --
# Create a PRNG with a uniform distribution of points on the surface
# of a sphere
#
# Arguments:
# rad Radius of the sphere
#
# Result:
# Name of a procedure that returns the x-, y- and z-coordinates of
# such a random point
#
proc ::simulation::random::prng_Sphere {rad} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list RAD $rad] \
{
variable pi
set phi [expr {2.0*$pi*rand()}]
set theta [expr {acos(2.0*rand()-1.0)}]
set x [expr {RAD*cos($phi)*cos($theta)}]
set y [expr {RAD*sin($phi)*cos($theta)}]
set z [expr {RAD*sin($theta)}]
return [list $x $y $z]
}]
return $name
}
# prng_Rectangle --
# Create a PRNG with a uniform distribution of points in a rectangle
#
# Arguments:
# length Length of the rectangle (x-direction)
# width Width of the rectangle (y-direction)
#
# Result:
# Name of a procedure that returns the x- and y-coordinates of
# such a random point
#
proc ::simulation::random::prng_Rectangle {length width} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list LENGTH $length WIDTH $width] \
{
set x [expr {LENGTH*rand()}]
set y [expr {WIDTH*rand()}]
return [list $x $y]
}]
return $name
}
# prng_Block --
# Create a PRNG with a uniform distribution of points in a block
#
# Arguments:
# length Length of the block (x-direction)
# width Width of the block (y-direction)
# depth Depth of the block (y-direction)
#
# Result:
# Name of a procedure that returns the x-, y- and z-coordinates of
# such a random point
#
proc ::simulation::random::prng_Block {length width depth} {
variable count
incr count
set name ::simulation::random::PRNG_$count
proc $name {} [string map [list LENGTH $length WIDTH $width DEPTH $depth] \
{
set x [expr {LENGTH*rand()}]
set y [expr {WIDTH*rand()}]
set z [expr {DEPTH*rand()}]
return [list $x $y $z]
}]
return $name
}
# Announce the package
#
package provide simulation::random 0.3
# main --
# Test code
#
if { 0 } {
set bin [::simulation::random::prng_Bernoulli 0.2]
set ones 0
set zeros 0
for { set i 0} {$i < 100000} {incr i} {
if { [$bin] } {
incr ones
} else {
incr zeros
}
}
puts "Bernoulli: $ones - $zeros"
set discrete [::simulation::random::prng_Discrete 10]
for { set i 0} {$i < 100000} {incr i} {
set v [$discrete]
if { [info exists count($v)] } {
incr count($v)
} else {
set count($v) 1
}
}
puts "Discrete:"
parray count
set rect [::simulation::random::prng_Rectangle 10 3]
puts "Rectangle:"
for { set i 0} {$i < 10} {incr i} {
puts [$rect]
}
set normal [::simulation::random::prng_Normal 0 1]
puts "Normal:"
for { set i 0} {$i < 10} {incr i} {
puts [$normal]
}
#
# Timing: how fast is the normal random number generator?
#
# Surprising speed: 15 million numbers per minute!
#
puts "Normal random number generator:"
puts "[time {set value [$normal]} 30000]"
set result [lindex [time {set value [$normal]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"
puts "Creating a long list: [time {lappend value [$normal]} 30000]"
puts "[lrange $value 0 20] - [llength $value] numbers in total"
set value {}
set result [lindex [time {lappend value [$normal]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"
puts "Points in a rectangle:"
puts "[time {set value [$rect]} 30000]"
set result [lindex [time {set value [$rect]} 30000] 0]
puts "[expr {60.0e6/$result}] numbers per minute"
#
# A more formal test
#
package require math
unset count
set samples 100000
set lambda 10.0
set poisson [::simulation::random::prng_Poisson $lambda]
for { set i 0 } { $i < $samples } { incr i } {
set number [$poisson]
if { [info exists count($number)] } {
incr count($number)
} else {
set count($number) 1
}
}
parray count
for { set i 0 } { $i < 30 } { incr i } {
set expected [expr {int($samples * pow($lambda,$i) * exp(-$lambda) / [::math::factorial $i])}]
set exp_error [expr {sqrt($expected)}]
if { [info exists count($i)] } {
if { $expected-$exp_error < $count($i) &&
$expected+$exp_error > $count($i) } {
set okay "okay"
} else {
set okay "difference too large"
}
puts "$i $expected $count($i) - [expr {$expected/double($count($i))}] - $okay"
} else {
puts "$i $expected none"
}
}
}
#
# Test hypothesis concerning rectangle
#
if { 0 } {
set r2 [::simulation::random::prng_Rectangle2 10 1]
set count_down 0
set count_up 0
set count_left 0
set count_right 0
for { set i 0 } { $i < 1000000 } { incr i } {
foreach {x y} [$r2] {
if { $x < 2.0 } { incr count_left }
if { $x > 8.0 } { incr count_right }
if { $y < 0.2 } { incr count_down }
if { $y > 0.8 } { incr count_up }
}
}
puts "Left-right:\t$count_left\t$count_right"
puts "Up-down: \t$count_up\t$count_down"
}
|