/usr/share/tcltk/tcllib1.14/struct/graphops.tcl is in tcllib 1.14-dfsg-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703 3704 3705 3706 3707 3708 3709 3710 3711 3712 3713 3714 3715 3716 3717 3718 3719 3720 3721 3722 3723 3724 3725 3726 3727 3728 3729 3730 3731 3732 3733 3734 3735 3736 3737 3738 3739 3740 3741 3742 3743 3744 3745 3746 3747 3748 3749 3750 3751 3752 3753 3754 3755 3756 3757 3758 3759 3760 3761 3762 3763 3764 3765 3766 3767 3768 3769 3770 3771 3772 3773 3774 3775 3776 3777 3778 3779 3780 3781 3782 3783 3784 3785 3786 3787 | # graphops.tcl --
#
# Operations on and algorithms for graph data structures.
#
# Copyright (c) 2008 Alejandro Paz <vidriloco@gmail.com>, algorithm implementation
# Copyright (c) 2008 Andreas Kupries, integration with Tcllib's struct::graph
#
# See the file "license.terms" for information on usage and redistribution
# of this file, and for a DISCLAIMER OF ALL WARRANTIES.
#
# RCS: @(#) $Id: graphops.tcl,v 1.19 2009/09/24 19:30:10 andreas_kupries Exp $
# ### ### ### ######### ######### #########
## Requisites
package require Tcl 8.5
package require struct::disjointset ; # Used by kruskal
package require struct::prioqueue ; # Used by kruskal, prim
package require struct::queue ; # Used by isBipartite?, connectedComponent(Of)
package require struct::stack ; # Used by tarjan
package require struct::graph ; # isBridge, isCutVertex
package require struct::tree ; # Used by BFS
# ### ### ### ######### ######### #########
##
namespace eval ::struct::graph::op {}
# ### ### ### ######### ######### #########
##
# This command constructs an adjacency matrix representation of the
# graph argument.
# Reference: http://en.wikipedia.org/wiki/Adjacency_matrix
#
# Note: The reference defines the matrix in such a way that some of
# the limitations of the code here are not present. I.e. the
# definition at wikipedia deals properly with arc directionality
# and parallelism.
#
# TODO: Rework the code so that the result is in line with the reference.
# Add features to handle weights as well.
proc ::struct::graph::op::toAdjacencyMatrix {g} {
set nodeList [lsort -dict [$g nodes]]
# Note the lsort. This is used to impose some order on the matrix,
# for comparability of results. Otherwise different versions of
# Tcl and struct::graph (critcl) may generate different, yet
# equivalent matrices, dependent on things like the order a hash
# search is done, or nodes have been added to the graph, or ...
# Fill an array for index tracking later. Note how we start from
# index 1. This allows us avoid multiple expr+1 later on when
# iterating over the nodes and converting the names to matrix
# indices. See (*).
set i 1
foreach n $nodeList {
set nodeDict($n) $i
incr i
}
set matrix {}
lappend matrix [linsert $nodeList 0 {}]
# Setting up a template row with all of it's elements set to zero.
set baseRow 0
foreach n $nodeList {
lappend baseRow 0
}
foreach node $nodeList {
# The first element in every row is the name of its
# corresponding node. Using lreplace to overwrite the initial
# data in the template we get a copy apart from the template,
# which we can then modify further.
set currentRow [lreplace $baseRow 0 0 $node]
# Iterate over the neighbours, also known as 'adjacent'
# rows. The exact set of neighbours depends on the mode.
foreach neighbour [$g nodes -adj $node] {
# Set value for neighbour on this node list
set at $nodeDict($neighbour)
# (*) Here we avoid +1 due to starting from index 1 in the
# initialization of nodeDict.
set currentRow [lreplace $currentRow $at $at 1]
}
lappend matrix $currentRow
}
# The resulting matrix is a list of lists, size (n+1)^2 where n =
# number of nodes. First row and column (index 0) are node
# names. The other entries are boolean flags. True when an arc is
# present, False otherwise. The matrix represents an
# un-directional form of the graph with parallel arcs collapsed.
return $matrix
}
#Adjacency List
#-------------------------------------------------------------------------------------
#Procedure creates for graph G, it's representation as Adjacency List.
#
#In comparison to Adjacency Matrix it doesn't force using array with quite big
#size - V^2, where V is a number of vertices ( instead, memory we need is about O(E) ).
#It's especially important when concerning rare graphs ( graphs with amount of vertices
#far bigger than amount of edges ). In practise, it turns out that generally,
#Adjacency List is more effective. Moreover, going through the set of edges take
#less time ( O(E) instead of O(E^2) ) and adding new edges is rapid.
#On the other hand, checking if particular edge exists in graph G takes longer
#( checking if edge {v1,v2} belongs to E(G) in proportion to min{deg(v1,v2)} ).
#Deleting an edge is also longer - in proportion to max{ deg(v1), deg(v2) }.
#
#Input:
# graph G ( directed or undirected ). Default is undirected.
#
#Output:
# Adjacency List for graph G, represented by dictionary containing lists of adjacent nodes
#for each node in G (key).
#
#Options:
# -weights - adds to returning dictionary arc weights for each connection between nodes, so
#each node returned by list as adjacent has additional parameter - weight of arc between him and
#current node.
# -directed - sets graph G to be interpreted as directed graph.
#
#Reference:
#http://en.wikipedia.org/wiki/Adjacency_list
#
proc ::struct::graph::op::toAdjacencyList {G args} {
set arcTraversal "undirected"
set weightsOn 0
#options for procedure
foreach option $args {
switch -exact -- $option {
-directed {
set arcTraversal "directed"
}
-weights {
#checking if all edges have their weights set
VerifyWeightsAreOk $G
set weightsOn 1
}
default {
return -code error "Bad option \"$option\". Expected -directed or -weights"
}
}
}
set V [lsort -dict [$G nodes]]
#mainloop
switch -exact -- $arcTraversal {
undirected {
#setting up the Adjacency List with nodes
foreach v [lsort -dict [$G nodes]] {
dict set AdjacencyList $v {}
}
#appending the edges adjacent to nodes
foreach e [$G arcs] {
set v [$G arc source $e]
set u [$G arc target $e]
if { !$weightsOn } {
dict lappend AdjacencyList $v $u
dict lappend AdjacencyList $u $v
} else {
dict lappend AdjacencyList $v [list $u [$G arc getweight $e]]
dict lappend AdjacencyList $u [list $v [$G arc getweight $e]]
}
}
#deleting duplicated edges
foreach x [dict keys $AdjacencyList] {
dict set AdjacencyList $x [lsort -unique [dict get $AdjacencyList $x]]
}
}
directed {
foreach v $V {
set E [$G arcs -out $v]
set adjNodes {}
foreach e $E {
if { !$weightsOn } {
lappend adjNodes [$G arc target $e]
} else {
lappend adjNodes [list [$G arc target $e] [$G arc getweight $e]]
}
}
dict set AdjacencyList $v $adjNodes
}
}
default {
return -code error "Error while executing procedure"
}
}
return $AdjacencyList
}
#Bellman's Ford Algorithm
#-------------------------------------------------------------------------------------
#Searching for shortest paths between chosen node and
#all other nodes in graph G. Based on relaxation method. In comparison to Dijkstra
#it doesn't assume that all weights on edges are positive. However, this generality
#costs us time complexity - O(V*E), where V is number of vertices and E is number
#of edges.
#
#Input:
#Directed graph G, weighted on edges and not containing
#any cycles with negative sum of weights ( the presence of such cycles means
#there is no shortest path, since the total weight becomes lower each time the
#cycle is traversed ). Possible negative weights on edges.
#
#Output:
#dictionary d[u] - distances from start node to each other node in graph G.
#
#Reference: http://en.wikipedia.org/wiki/Bellman-Ford_algorithm
#
proc ::struct::graph::op::BellmanFord { G startnode } {
#checking if all edges have their weights set
VerifyWeightsAreOk $G
#checking if the startnode exists in given graph G
if {![$G node exists $startnode]} {
return -code error "node \"$startnode\" does not exist in graph \"$G\""
}
#sets of nodes and edges for graph G
set V [$G nodes]
set E [$G arcs]
#initialization
foreach i $V {
dict set distances $i Inf
}
dict set distances $startnode 0
#main loop (relaxation)
for { set i 1 } { $i <= ([dict size $distances]-1) } { incr i } {
foreach j $E {
set u [$G arc source $j] ;# start node of edge j
set v [$G arc target $j] ;# end node of edge j
if { [ dict get $distances $v ] > [ dict get $distances $u ] + [ $G arc getweight $j ]} {
dict set distances $v [ expr {[dict get $distances $u] + [$G arc getweight $j]} ]
}
}
}
#checking if there exists cycle with negative sum of weights
foreach i $E {
set u [$G arc source $i] ;# start node of edge i
set v [$G arc target $i] ;# end node of edge i
if { [dict get $distances $v] > [ dict get $distances $u ] + [$G arc getweight $i] } {
return -code error "Error. Given graph \"$G\" contains cycle with negative sum of weights."
}
}
return $distances
}
#Johnson's Algorithm
#-------------------------------------------------------------------------------------
#Searching paths between all pairs of vertices in graph. For rare graphs
#asymptotically quicker than Floyd-Warshall's algorithm. Johnson's algorithm
#uses Bellman-Ford's and Dijkstra procedures.
#
#Input:
#Directed graph G, weighted on edges and not containing
#any cycles with negative sum of weights ( the presence of such cycles means
#there is no shortest path, since the total weight becomes lower each time the
#cycle is traversed ). Possible negative weights on edges.
#Possible options:
# -filter ( returns only existing distances, cuts all Inf values for
# non-existing connections between pairs of nodes )
#
#Output:
# Dictionary containing distances between all pairs of vertices
#
#Reference: http://en.wikipedia.org/wiki/Johnson_algorithm
#
proc ::struct::graph::op::Johnsons { G args } {
#options for procedure
set displaymode 0
foreach option $args {
switch -exact -- $option {
-filter {
set displaymode 1
}
default {
return -code error "Bad option \"$option\". Expected -filter"
}
}
}
#checking if all edges have their weights set
VerifyWeightsAreOk $G
#Transformation of graph G - adding one more node connected with
#each existing node with an edge, which weight is 0
set V [$G nodes]
set s [$G node insert]
foreach i $V {
if { $i ne $s } {
$G arc insert $s $i
}
}
$G arc setunweighted
#set potential values with Bellman-Ford's
set h [BellmanFord $G $s]
#transformed graph no needed longer - deleting added node and edges
$G node delete $s
#setting new weights for edges in graph G
foreach i [$G arcs] {
set u [$G arc source $i]
set v [$G arc target $i]
lappend weights [$G arc getweight $i]
$G arc setweight $i [ expr { [$G arc getweight $i] + [dict get $h $u] - [dict get $h $v] } ]
}
#finding distances between all pair of nodes with Dijkstra started from each node
foreach i [$G nodes] {
set dijkstra [dijkstra $G $i -arcmode directed -outputformat distances]
foreach j [$G nodes] {
if { $i ne $j } {
if { $displaymode eq 1 } {
if { [dict get $dijkstra $j] ne "Inf" } {
dict set values [list $i $j] [ expr {[ dict get $dijkstra $j] - [dict get $h $i] + [dict get $h $j]} ]
}
} else {
dict set values [list $i $j] [ expr {[ dict get $dijkstra $j] - [dict get $h $i] + [dict get $h $j]} ]
}
}
}
}
#setting back edge weights for graph G
set k 0
foreach i [$G arcs] {
$G arc setweight $i [ lindex $weights $k ]
incr k
}
return $values
}
#Floyd-Warshall's Algorithm
#-------------------------------------------------------------------------------------
#Searching shortest paths between all pairs of edges in weighted graphs.
#Time complexity: O(V^3) - where V is number of vertices.
#Memory complexity: O(V^2)
#Input: directed weighted graph G
#Output: dictionary containing shortest distances to each node from each node
#
#Algorithm finds solutions dynamically. It compares all possible paths through the graph
#between each pair of vertices. Graph shouldn't possess any cycle with negative
#sum of weights ( the presence of such cycles means there is no shortest path,
#since the total weight becomes lower each time the cycle is traversed ).
#On the other hand algorithm can be used to find those cycles - if any shortest distance
#found by algorithm for any nodes v and u (when v is the same node as u) is negative,
#that node surely belong to at least one negative cycle.
#
#Reference: http://en.wikipedia.org/wiki/Floyd-Warshall_algorithm
#
proc ::struct::graph::op::FloydWarshall { G } {
VerifyWeightsAreOk $G
foreach v1 [$G nodes] {
foreach v2 [$G nodes] {
dict set values [list $v1 $v2] Inf
}
dict set values [list $v1 $v1] 0
}
foreach e [$G arcs] {
set v1 [$G arc source $e]
set v2 [$G arc target $e]
dict set values [list $v1 $v2] [$G arc getweight $e]
}
foreach u [$G nodes] {
foreach v1 [$G nodes] {
foreach v2 [$G nodes] {
set x [dict get $values [list $v1 $u]]
set y [dict get $values [list $u $v2]]
set d [ expr {$x + $y}]
if { [dict get $values [list $v1 $v2]] > $d } {
dict set values [list $v1 $v2] $d
}
}
}
}
#finding negative cycles
foreach v [$G nodes] {
if { [dict get $values [list $v $v]] < 0 } {
return -code error "Error. Given graph \"$G\" contains cycle with negative sum of weights."
}
}
return $values
}
#Metric Travelling Salesman Problem (TSP) - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Travelling salesman problem is a very popular problem in graph theory, where
#we are trying to find minimal Hamilton cycle in weighted complete graph. In other words:
#given a list of cities (nodes) and their pairwise distances (edges), the task is to find
#a shortest possible tour that visits each city exactly once.
#TSP problem is NP-Complete, so there is no efficient algorithm to solve it. Greedy methods
#are getting extremely slow, with the increase in the set of nodes.
#
#For this algorithm we consider a case when for given graph G, the triangle inequality is
#satisfied. So for example, for any three nodes A, B and C the distance between A and C must
#be at most the distance from A to B plus the distance from B to C. What's important
#most of the considered cases in TSP problem will satisfy this condition.
#
#Input: undirected, weighted graph G
#Output: approximated solution of minimum Hamilton Cycle - closed path visiting all nodes,
#each exactly one time.
#
#Reference: http://en.wikipedia.org/wiki/Travelling_salesman_problem
#
proc ::struct::graph::op::MetricTravellingSalesman { G } {
#checking if graph is connected
if { ![isConnected? $G] } {
return -code error "Error. Given graph \"$G\" is not a connected graph."
}
#checking if all weights are set
VerifyWeightsAreOk $G
# Extend graph to make it complete.
# NOTE: The graph is modified in place.
createCompleteGraph $G originalEdges
#create minimum spanning tree for graph G
set T [prim $G]
#TGraph - spanning tree of graph G
#filling TGraph with edges and nodes
set TGraph [createTGraph $G $T 0]
#finding Hamilton cycle
set result [findHamiltonCycle $TGraph $originalEdges $G]
$TGraph destroy
# Note: Fleury, which is the algorithm used to find our the cycle
# (inside of isEulerian?) is inherently directionless, i.e. it
# doesn't care about arc direction. This does not matter if our
# input is a symmetric graph, i.e. u->v and v->u have the same
# weight for all nodes u, v in G, u != v. But for an asymmetric
# graph as our input we really have to check the two possible
# directions of the returned tour for the one with the smaller
# weight. See test case MetricTravellingSalesman-1.1 for an
# exmaple.
set w {}
foreach a [$G arcs] {
set u [$G arc source $a]
set v [$G arc target $a]
set uv [list $u $v]
# uv = <$G arc nodes $arc>
dict set w $uv [$G arc getweight $a]
}
foreach k [dict keys $w] {
lassign $k u v
set vu [list $v $u]
if {[dict exists $w $vu]} continue
dict set w $vu [dict get $w $k]
}
set reversed [lreverse $result]
if {[TourWeight $w $result] > [TourWeight $w $reversed]} {
return $reversed
}
return $result
}
proc ::struct::graph::op::TourWeight {w tour} {
set total 0
foreach \
u [lrange $tour 0 end-1] \
v [lrange $tour 1 end] {
set uv [list $u $v]
set total [expr {
$total +
[dict get $w $uv]
}]
}
return $total
}
#Christofides Algorithm - for Metric Travelling Salesman Problem (TSP)
#-------------------------------------------------------------------------------------
#Travelling salesman problem is a very popular problem in graph theory, where
#we are trying to find minimal Hamilton cycle in weighted complete graph. In other words:
#given a list of cities (nodes) and their pairwise distances (edges), the task is to find
#a shortest possible tour that visits each city exactly once.
#TSP problem is NP-Complete, so there is no efficient algorithm to solve it. Greedy methods
#are getting extremely slow, with the increase in the set of nodes.
#
#For this algorithm we consider a case when for given graph G, the triangle inequality is
#satisfied. So for example, for any three nodes A, B and C the distance between A and C must
#be at most the distance from A to B plus the distance from B to C. What's important
#most of the considered cases in TSP problem will satisfy this condition.
#
#Christofides is a 3/2 approximation algorithm. For a graph given at input, it returns
#found Hamilton cycle (list of nodes).
#
#Reference: http://en.wikipedia.org/wiki/Christofides_algorithm
#
proc ::struct::graph::op::Christofides { G } {
#checking if graph is connected
if { ![isConnected? $G] } {
return -code error "Error. Given graph \"$G\" is not a connected graph."
}
#checking if all weights are set
VerifyWeightsAreOk $G
createCompleteGraph $G originalEdges
#create minimum spanning tree for graph G
set T [prim $G]
#setting graph algorithm is working on - spanning tree of graph G
set TGraph [createTGraph $G $T 1]
set oddTGraph [struct::graph]
foreach v [$TGraph nodes] {
if { [$TGraph node degree $v] % 2 == 1 } {
$oddTGraph node insert $v
}
}
#create complete graph
foreach v [$oddTGraph nodes] {
foreach u [$oddTGraph nodes] {
if { ($u ne $v) && ![$oddTGraph arc exists [list $u $v]] } {
$oddTGraph arc insert $v $u [list $v $u]
$oddTGraph arc setweight [list $v $u] [distance $G $v $u]
}
}
}
####
# MAX MATCHING HERE!!!
####
set M [GreedyMaxMatching $oddTGraph]
foreach e [$oddTGraph arcs] {
if { ![struct::set contains $M $e] } {
$oddTGraph arc delete $e
}
}
#operation: M + T
foreach e [$oddTGraph arcs] {
set u [$oddTGraph arc source $e]
set v [$oddTGraph arc target $e]
set uv [list $u $v]
# Check if the arc in max-matching is parallel or not, to make
# sure that we always insert an anti-parallel arc.
if {[$TGraph arc exists $uv]} {
set vu [list $v $u]
$TGraph arc insert $v $u $vu
$TGraph arc setweight $vu [$oddTGraph arc getweight $e]
} else {
$TGraph arc insert $u $v $uv
$TGraph arc setweight $uv [$oddTGraph arc getweight $e]
}
}
#finding Hamilton Cycle
set result [findHamiltonCycle $TGraph $originalEdges $G]
$oddTGraph destroy
$TGraph destroy
return $result
}
#Greedy Max Matching procedure, which finds maximal ( not maximum ) matching
#for given graph G. It adds edges to solution, beginning from edges with the
#lowest cost.
proc ::struct::graph::op::GreedyMaxMatching {G} {
set maxMatch {}
foreach e [sortEdges $G] {
set v [$G arc source $e]
set u [$G arc target $e]
set neighbours [$G arcs -adj $v $u]
set noAdjacentArcs 1
lremove neighbours $e
foreach a $neighbours {
if { $a in $maxMatch } {
set noAdjacentArcs 0
break
}
}
if { $noAdjacentArcs } {
lappend maxMatch $e
}
}
return $maxMatch
}
#Subprocedure which for given graph G, returns the set of edges
#sorted with their costs.
proc ::struct::graph::op::sortEdges {G} {
set weights [$G arc weights]
# NOTE: Look at possible rewrite, simplification.
set sortedEdges {}
foreach val [lsort [dict values $weights]] {
foreach x [dict keys $weights] {
if { [dict get $weights $x] == $val } {
set weights [dict remove $weights $x]
lappend sortedEdges $x ;#[list $val $x]
}
}
}
return $sortedEdges
}
#Subprocedure, which for given graph G, returns the dictionary
#containing edges sorted by weights (sortMode -> weights) or
#nodes sorted by degree (sortMode -> degrees).
proc ::struct::graph::op::sortGraph {G sortMode} {
switch -exact -- $sortMode {
weights {
set weights [$G arc weights]
foreach val [lsort [dict values $weights]] {
foreach x [dict keys $weights] {
if { [dict get $weights $x] == $val } {
set weights [dict remove $weights $x]
dict set sortedVals $x $val
}
}
}
}
degrees {
foreach v [$G nodes] {
dict set degrees $v [$G node degree $v]
}
foreach x [lsort -integer -decreasing [dict values $degrees]] {
foreach y [dict keys $degrees] {
if { [dict get $degrees $y] == $x } {
set degrees [dict remove $degrees $y]
dict set sortedVals $y $x
}
}
}
}
default {
return -code error "Unknown sort mode \"$sortMode\", expected weights, or degrees"
}
}
return $sortedVals
}
#Finds Hamilton cycle in given graph G
#Procedure used by Metric TSP Algorithms:
#Christofides and Metric TSP 2-approximation algorithm
proc ::struct::graph::op::findHamiltonCycle {G originalEdges originalGraph} {
isEulerian? $G tourvar tourstart
# Note: The start node is not necessarily the source node of the
# first arc in the tour. The Fleury in isEulerian? may have walked
# the arcs against! their direction. See also the note in our
# caller (MetricTravellingSalesman).
# Instead of reconstructing the start node by intersecting the
# node-set for first and last arc, we are taking the easy and get
# it directly from isEulerian?, as that command knows which node
# it had chosen for this.
lappend result $tourstart
lappend tourvar [lindex $tourvar 0]
set v $tourstart
foreach i $tourvar {
set u [$G node opposite $v $i]
if { $u ni $result } {
set va [lindex $result end]
set vb $u
if { ([list $va $vb] in $originalEdges) || ([list $vb $va] in $originalEdges) } {
lappend result $u
} else {
set path [dict get [dijkstra $G $va] $vb]
#reversing the path
set path [lreverse $path]
#cutting the start element
set path [lrange $path 1 end]
#adding the path and the target element
lappend result {*}$path
lappend result $vb
}
}
set v $u
}
set path [dict get [dijkstra $originalGraph [lindex $result 0]] [lindex $result end]]
set path [lreverse $path]
set path [lrange $path 1 end]
if { [llength $path] } {
lappend result {*}$path
}
lappend result $tourstart
return $result
}
#Subprocedure for TSP problems.
#
#Creating graph from sets of given nodes and edges.
#In option doubledArcs we decide, if we want edges to be
#duplicated or not:
#0 - duplicated (Metric TSP 2-approximation algorithm)
#1 - single (Christofides Algorithm)
#
#Note that it assumes that graph's edges are properly weighted. That
#condition is checked before in procedures that use createTGraph, but for
#other uses it should be taken into consideration.
#
proc ::struct::graph::op::createTGraph {G Edges doubledArcs} {
#checking if given set of edges is proper (all edges are in graph G)
foreach e $Edges {
if { ![$G arc exists $e] } {
return -code error "Edge \"$e\" doesn't exist in graph \"$G\". Set the proper set of edges."
}
}
set TGraph [struct::graph]
#fill TGraph with nodes
foreach v [$G nodes] {
$TGraph node insert
}
#fill TGraph with arcs
foreach e $Edges {
set v [$G arc source $e]
set u [$G arc target $e]
if { ![$TGraph arc exists [list $u $v]] } {
$TGraph arc insert $u $v [list $u $v]
$TGraph arc setweight [list $u $v] [$G arc getweight $e]
}
if { !$doubledArcs } {
if { ![$TGraph arc exists [list $v $u]] } {
$TGraph arc insert $v $u [list $v $u]
$TGraph arc setweight [list $v $u] [$G arc getweight $e]
}
}
}
return $TGraph
}
#Subprocedure for some algorithms, e.g. TSP algorithms.
#
#It returns graph filled with arcs missing to say that graph is complete.
#Also it sets variable originalEdges with edges, which existed in given
#graph G at beginning, before extending the set of edges.
#
proc ::struct::graph::op::createCompleteGraph {G originalEdges} {
upvar $originalEdges st
set st {}
foreach e [$G arcs] {
set v [$G arc source $e]
set u [$G arc target $e]
lappend st [list $v $u]
}
foreach v [$G nodes] {
foreach u [$G nodes] {
if { ($u != $v) && ([list $v $u] ni $st) && ([list $u $v] ni $st) && ![$G arc exists [list $u $v]] } {
$G arc insert $v $u [list $v $u]
$G arc setweight [list $v $u] Inf
}
}
}
return $G
}
#Maximum Cut - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Maximum cut problem is a problem finding a cut not smaller than any other cut. In
#other words, we divide set of nodes for graph G into such 2 sets of nodes U and V,
#that the amount of edges connecting U and V is as high as possible.
#
#Algorithm is a 2-approximation, so for ALG ( solution returned by Algorithm) and
#OPT ( optimal solution), such inequality is true: OPT <= 2 * ALG.
#
#Input:
#Graph G
#U - variable storing first set of nodes (cut) given by solution
#V - variable storing second set of nodes (cut) given by solution
#
#Output:
#Algorithm returns number of edges between found two sets of nodes.
#
#Reference: http://en.wikipedia.org/wiki/Maxcut
#
proc ::struct::graph::op::MaxCut {G U V} {
upvar $U _U
upvar $V _V
set _U {}
set _V {}
set counter 0
foreach {u v} [lsort -dict [$G nodes]] {
lappend _U $u
if {$v eq ""} continue
lappend _V $v
}
set val 1
set ALG [countEdges $G $_U $_V]
while {$val>0} {
set val [cut $G _U _V $ALG]
if { $val > $ALG } {
set ALG $val
}
}
return $ALG
}
#procedure replaces nodes between sets and checks if that change is profitable
proc ::struct::graph::op::cut {G Uvar Vvar param} {
upvar $Uvar U
upvar $Vvar V
set _V {}
set _U {}
set value 0
set maxValue $param
set _U $U
set _V $V
foreach v [$G nodes] {
if { $v ni $_U } {
lappend _U $v
lremove _V $v
set value [countEdges $G $_U $_V]
} else {
lappend _V $v
lremove _U $v
set value [countEdges $G $_U $_V]
}
if { $value > $maxValue } {
set U $_U
set V $_V
set maxValue $value
} else {
set _V $V
set _U $U
}
}
set value $maxValue
if { $value > $param } {
return $value
} else {
return 0
}
}
#Removing element from the list - auxiliary procedure
proc ::struct::graph::op::lremove {listVariable value} {
upvar 1 $listVariable var
set idx [lsearch -exact $var $value]
set var [lreplace $var $idx $idx]
}
#procedure counts edges that link two sets of nodes
proc ::struct::graph::op::countEdges {G U V} {
set value 0
foreach u $U {
foreach e [$G arcs -out $u] {
set v [$G arc target $e]
if {$v ni $V} continue
incr value
}
}
foreach v $V {
foreach e [$G arcs -out $v] {
set u [$G arc target $e]
if {$u ni $U} continue
incr value
}
}
return $value
}
#K-Center Problem - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Input:
#Undirected complete graph G, which satisfies triangle inequality.
#k - positive integer
#
#Definition:
#For any set S ( which is subset of V ) and node v, let the connect(v,S) be the
#cost of cheapest edge connecting v with any node in S. The goal is to find
#such S, that |S| = k and max_v{connect(v,S)} is possibly small.
#
#In other words, we can use it i.e. for finding best locations in the city ( nodes
#of input graph ) for placing k buildings, such that those buildings will be as close
#as possible to all other locations in town.
#
#Output:
#set of nodes - k center for graph G
#
proc ::struct::graph::op::UnweightedKCenter {G k} {
#checking if all weights for edges in graph G are set well
VerifyWeightsAreOk $G
#checking if proper value of k is given at input
if { $k <= 0 } {
return -code error "The \"k\" value must be an positive integer."
}
set j [ expr {$k+1} ]
#variable for holding the graph G(i) in each iteration
set Gi [struct::graph]
#two squared graph G
set GiSQ [struct::graph]
#sorted set of edges for graph G
set arcs [sortEdges $G]
#initializing both graph variables
foreach v [$G nodes] {
$Gi node insert $v
$GiSQ node insert $v
}
#index i for each iteration
#we seek for final solution, as long as the max independent
#set Mi (found in particular iterations), such that |Mi| <= k, is found.
for {set index 0} {$j > $k} {incr index} {
#source node of an edge we add in current iteration
set u [$G arc source [lindex $arcs $index]]
#target node of an edge we add in current iteration
set v [$G arc target [lindex $arcs $index]]
#adding edge Ei to graph G(i)
$Gi arc insert $u $v [list $u $v]
#extending G(i-1)**2 to G(i)**2 using G(i)
set GiSQ [extendTwoSquaredGraph $GiSQ $Gi $u $v]
#finding maximal independent set for G(i)**2
set Mi [GreedyMaxIndependentSet $GiSQ]
#number of nodes in maximal independent set that was found
set j [llength $Mi]
}
$Gi destroy
$GiSQ destroy
return $Mi
}
#Weighted K-Center - 3 approximation algorithm
#-------------------------------------------------------------------------------------
#
#The variation of unweighted k-center problem. Besides the fact graph is edge-weighted,
#there are also weights on vertices of input graph G. We've got also restriction
#W. The goal is to choose such set of nodes S ( which is a subset of V ), that it's
#total weight is not greater than W and also function: max_v { min_u { cost(u,v) }}
#has the smallest possible worth ( v is a node in V and u is a node in S ).
#
#Note:
#For more information about K-Center problem check Unweighted K-Center algorithm
#description.
proc ::struct::graph::op::WeightedKCenter {G nodeWeights W} {
#checking if all weights for edges in graph G are set well
VerifyWeightsAreOk $G
#checking if proper value of k is given at input
if { $W <= 0 } {
return -code error "The \"W\" value must be an positive integer."
}
#initilization
set j [ expr {$W+1} ]
#graphs G(i) and G(i)**2
set Gi [struct::graph]
set GiSQ [struct::graph]
#the set of arcs for graph G sorted with their weights (increasing)
set arcs [sortEdges $G]
#initialization of graphs G(i) and G(i)**2
foreach v [$G nodes] {
$Gi node insert $v
$GiSQ node insert $v
}
#the main loop - iteration over all G(i)'s and G(i)**2's,
#extended with each iteration till the solution is found
foreach arc $arcs {
#initilization of the set of nodes, which are cheapest neighbours
#for particular nodes in maximal independent set
set Si {}
set u [$G arc source $arc]
set v [$G arc target $arc]
#extending graph G(i)
$Gi arc insert $u $v [list $u $v]
#extending graph G(i)**2 from G(i-1)**2 using G(i)
set GiSQ [extendTwoSquaredGraph $GiSQ $Gi $u $v]
#finding maximal independent set (Mi) for graph G(i)**2 found in the
#previous step. Mi is found using greedy algorithm that also considers
#weights on vertices.
set Mi [GreedyWeightedMaxIndependentSet $GiSQ $nodeWeights]
#for each node u in Maximal Independent set found in previous step,
#we search for its cheapest ( considering costs at vertices ) neighbour.
#Note that node u is considered as it is a neighbour for itself.
foreach u $Mi {
set minWeightOfSi Inf
#the neighbours of u
set neighbours [$Gi nodes -adj $u]
set smallestNeighbour 0
#u is a neighbour for itself
lappend neighbours $u
#finding neighbour with minimal cost
foreach w [lsort -index 1 $nodeWeights] {
lassign $w node weight
if {[struct::set contains $neighbours $node]} {
set minWeightOfSi $weight
set smallestNeighbour $node
break
}
}
lappend Si [list $smallestNeighbour $minWeightOfSi]
}
set totalSiWeight 0
set possibleSolution {}
foreach s $Si {
#counting the total weight of the set of nodes - Si
set totalSiWeight [ expr { $totalSiWeight + [lindex $s 1] } ]
#it's final solution, if weight found in previous step is
#not greater than W
lappend possibleSolution [lindex $s 0]
}
#checking if final solution is found
if { $totalSiWeight <= $W } {
$Gi destroy
$GiSQ destroy
return $possibleSolution
}
}
$Gi destroy
$GiSQ destroy
#no solution found - error returned
return -code error "No k-center found for restriction W = $W"
}
#Maximal Independent Set - 2 approximation greedy algorithm
#-------------------------------------------------------------------------------------
#
#A maximal independent set is an independent set such that adding any other node
#to the set forces the set to contain an edge.
#
#Note:
#Don't confuse it with maximum independent set, which is a largest independent set
#for a given graph G.
#
#Reference: http://en.wikipedia.org/wiki/Maximal_independent_set
proc ::struct::graph::op::GreedyMaxIndependentSet {G} {
set result {}
set nodes [$G nodes]
foreach v $nodes {
if { [struct::set contains $nodes $v] } {
lappend result $v
foreach neighbour [$G nodes -adj $v] {
struct::set exclude nodes $neighbour
}
}
}
return $result
}
#Weighted Maximal Independent Set - 2 approximation greedy algorithm
#-------------------------------------------------------------------------------------
#
#Weighted variation of Maximal Independent Set. It takes as an input argument
#not only graph G but also set of weights for all vertices in graph G.
#
#Note:
#Read also Maximal Independent Set description for more info.
#
#Reference: http://en.wikipedia.org/wiki/Maximal_independent_set
proc ::struct::graph::op::GreedyWeightedMaxIndependentSet {G nodeWeights} {
set result {}
set nodes {}
foreach v [lsort -index 1 $nodeWeights] {
lappend nodes [lindex $v 0]
}
foreach v $nodes {
if { [struct::set contains $nodes $v] } {
lappend result $v
set neighbours [$G nodes -adj $v]
foreach neighbour [$G nodes -adj $v] {
struct::set exclude nodes $neighbour
}
}
}
return $result
}
#subprocedure creating from graph G two squared graph
#G^2 - graph in which edge between nodes u and v exists,
#if and only if, when distance (in edges, not weights)
#between those nodes is not greater than 2 and u != v.
proc ::struct::graph::op::createSquaredGraph {G} {
set H [struct::graph]
foreach v [$G nodes] {
$H node insert $v
}
foreach v [$G nodes] {
foreach u [$G nodes -adj $v] {
if { ($v != $u) && ![$H arc exists [list $v $u]] && ![$H arc exists [list $u $v]] } {
$H arc insert $u $v [list $u $v]
}
foreach z [$G nodes -adj $u] {
if { ($v != $z) && ![$H arc exists [list $v $z]] && ![$H arc exists [list $z $v]] } {
$H arc insert $v $z [list $v $z]
}
}
}
}
return $H
}
#subprocedure for Metric K-Center problem
#
#Input:
#previousGsq - graph G(i-1)**2
#currentGi - graph G(i)
#u and v - source and target of an edge added in this iteration
#
#Output:
#Graph G(i)**2 used by next steps of K-Center algorithm
proc ::struct::graph::op::extendTwoSquaredGraph {previousGsq currentGi u v} {
#adding new edge
if { ![$previousGsq arc exists [list $v $u]] && ![$previousGsq arc exists [list $u $v]]} {
$previousGsq arc insert $u $v [list $u $v]
}
#adding new edges to solution graph:
#here edges, where source is a $u node and targets are neighbours of node $u except for $v
foreach x [$currentGi nodes -adj $u] {
if { ( $x != $v) && ![$previousGsq arc exists [list $v $x]] && ![$previousGsq arc exists [list $x $v]] } {
$previousGsq arc insert $v $x [list $v $x]
}
}
#here edges, where source is a $v node and targets are neighbours of node $v except for $u
foreach x [$currentGi nodes -adj $v] {
if { ( $x != $u ) && ![$previousGsq arc exists [list $u $x]] && ![$previousGsq arc exists [list $x $u]] } {
$previousGsq arc insert $u $x [list $u $x]
}
}
return $previousGsq
}
#Vertices Cover - 2 approximation algorithm
#-------------------------------------------------------------------------------------
#Vertices cover is a set o vertices such that each edge of the graph is incident to
#at least one vertex of the set. This 2-approximation algorithm searches for minimum
#vertices cover, which is a classical optimization problem in computer science and
#is a typical example of an NP-hard optimization problem that has an approximation
#algorithm.
#
#Reference: http://en.wikipedia.org/wiki/Vertex_cover_problem
#
proc ::struct::graph::op::VerticesCover {G} {
#variable containing final solution
set vc {}
#variable containing sorted (with degree) set of arcs for graph G
set arcs {}
#setting the dictionary with degrees for each node
foreach v [$G nodes] {
dict set degrees $v [$G node degree $v]
}
#creating a list containing the sum of degrees for source and
#target nodes for each edge in graph G
foreach e [$G arcs] {
set v [$G arc source $e]
set u [$G arc target $e]
lappend values [list [expr {[dict get $degrees $v]+[dict get $degrees $u]}] $e]
}
#sorting the list of source and target degrees
set values [lsort -integer -decreasing -index 0 $values]
#setting the set of edges in a right sequence
foreach e $values {
lappend arcs [lindex $e 1]
}
#for each node in graph G, we add it to the final solution and
#erase all arcs adjacent to it, so they cannot be
#added to solution in next iterations
foreach e $arcs {
if { [struct::set contains $arcs $e] } {
set v [$G arc source $e]
set u [$G arc target $e]
lappend vc $v $u
foreach n [$G arcs -adj $v $u] {
struct::set exclude arcs $n
}
}
}
return $vc
}
#Ford's Fulkerson algorithm - computing maximum flow in a flow network
#-------------------------------------------------------------------------------------
#
#The general idea of algorithm is finding augumenting paths in graph G, as long
#as they exist, and for each path updating the edge's weights along that path,
#with maximum possible throughput. The final (maximum) flow is found
#when there is no other augumenting path from source to sink.
#
#Input:
#graph G - weighted and directed graph. Weights at edges are considered as
#maximum throughputs that can be carried by that link (edge).
#s - the node that is a source for graph G
#t - the node that is a sink for graph G
#
#Output:
#Procedure returns the dictionary contaning throughputs for all edges. For
#each key ( the edge between nodes u and v in the for of list u v ) there is
#a value that is a throughput for that key. Edges where throughput values
#are equal to 0 are not returned ( it is like there was no link in the flow network
#between nodes connected by such edge).
#
#Reference: http://en.wikipedia.org/wiki/Ford-Fulkerson_algorithm
proc ::struct::graph::op::FordFulkerson {G s t} {
#checking if nodes s and t are in graph G
if { !([$G node exists $s] && [$G node exists $t]) } {
return -code error "Nodes \"$s\" and \"$t\" should be contained in graph's G set of nodes"
}
#checking if all attributes for input network are set well ( costs and throughputs )
foreach e [$G arcs] {
if { ![$G arc keyexists $e throughput] } {
return -code error "The input network doesn't have all attributes set correctly... Please, check again attributes: \"throughput\" for input graph."
}
}
#initilization
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
dict set f [list $u $v] 0
dict set f [list $v $u] 0
}
#setting the residual graph for the first iteration
set residualG [createResidualGraph $G $f]
#deleting the arcs that are 0-weighted
foreach e [$residualG arcs] {
if { [$residualG arc set $e throughput] == 0 } {
$residualG arc delete $e
}
}
#the main loop - works till the path between source and the sink can be found
while {1} {
set paths [ShortestsPathsByBFS $residualG $s paths]
if { ($paths == {}) || (![dict exists $paths $t]) } break
set path [dict get $paths $t]
#setting the path from source to sink
#adding sink to path
lappend path $t
#finding the throughput of path p - the smallest value of c(f) among
#edges that are contained in the path
set maxThroughput Inf
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
set pathEdgeFlow [$residualG arc set [list $u $v] throughput]
if { $maxThroughput > $pathEdgeFlow } {
set maxThroughput $pathEdgeFlow
}
}
#increase of throughput using the path p, with value equal to maxThroughput
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
#if maximum throughput that was found for the path p (maxThroughput) is bigger than current throughput
#at the edge not contained in the path p (for current pair of nodes u and v), then we add to the edge
#which is contained into path p the maxThroughput value decreased by the value of throughput at
#the second edge (not contained in path). That second edge's throughtput value is set to 0.
set f_uv [dict get $f [list $u $v]]
set f_vu [dict get $f [list $v $u]]
if { $maxThroughput >= $f_vu } {
dict set f [list $u $v] [ expr { $f_uv + $maxThroughput - $f_vu } ]
dict set f [list $v $u] 0
} else {
#if maxThroughput is not greater than current throughput at the edge not contained in path p (here - v->u),
#we add a difference between those values to edge contained in the path p (here u->v) and substract that
#difference from edge not contained in the path p.
set difference [ expr { $f_vu - $maxThroughput } ]
dict set f [list $u $v] [ expr { $f_uv + $difference } ]
dict set f [list $v $u] $maxThroughput
}
}
#when the current throughput for the graph is updated, we generate new residual graph
#for new values of throughput
$residualG destroy
set residualG [createResidualGraph $G $f]
foreach e [$residualG arcs] {
if { [$residualG arc set $e throughput] == 0 } {
$residualG arc delete $e
}
}
}
$residualG destroy
#removing 0-weighted edges from solution
foreach e [dict keys $f] {
if { [dict get $f $e] == 0 } {
set f [dict remove $f $e]
}
}
return $f
}
#subprocedure for FordFulkerson's algorithm, which creates
#for input graph G and given throughput f residual graph
#for further operations to find maximum flow in flow network
proc ::struct::graph::op::createResidualGraph {G f} {
#initialization
set residualG [struct::graph]
foreach v [$G nodes] {
$residualG node insert $v
}
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
dict set GF [list $u $v] [$G arc set $e throughput]
}
foreach e [dict keys $GF] {
lassign $e u v
set c_uv [dict get $GF $e]
set flow_uv [dict get $f $e]
set flow_vu [dict get $f [list $v $u]]
if { ![$residualG arc exists $e] } {
$residualG arc insert $u $v $e
}
if { ![$residualG arc exists [list $v $u]] } {
$residualG arc insert $v $u [list $v $u]
}
#new value of c_f(u,v) for residual Graph is a max flow value for this edge
#minus current flow on that edge
if { ![$residualG arc keyexists $e throughput] } {
if { [dict exists $GF [list $v $u]] } {
$residualG arc set [list $u $v] throughput [ expr { $c_uv - $flow_uv + $flow_vu } ]
} else {
$residualG arc set $e throughput [ expr { $c_uv - $flow_uv } ]
}
}
if { [dict exists $GF [list $v $u]] } {
#when double arcs in graph G (u->v , v->u)
#so, x/y i w/z y-x+w
set c_vu [dict get $GF [list $v $u]]
if { ![$residualG arc keyexists [list $v $u] throughput] } {
$residualG arc set [list $v $u] throughput [ expr { $c_vu - $flow_vu + $flow_uv} ]
}
} else {
$residualG arc set [list $v $u] throughput $flow_uv
}
}
#setting all weights at edges to 1 for proper usage of shortest paths finding procedures
$residualG arc setunweighted 1
return $residualG
}
#Subprocedure for Busacker Gowen algorithm
#
#Input:
#graph G - flow network. Graph G has two attributes for each edge:
#cost and throughput. Each arc must have it's attribute value assigned.
#dictionary f - some flow for network G. Keys represent edges and values
#are flows at those edges
#path - set of nodes for which we transform the network
#
#Subprocedure checks 6 vital conditions and for them updates the network
#(let values with * be updates values for network). So, let edge (u,v) be
#the non-zero flow for network G, c(u,v) throughput of edge (u,v) and
#d(u,v) non-negative cost of edge (u,v):
#1. c*(v,u) = f(u,v) --- adding apparent arc
#2. d*(v,u) = -d(u,v)
#3. c*(u,v) = c(u,v) - f(u,v) --- if f(v,u) = 0 and c(u,v) > f(u,v)
#4. d*(u,v) = d(u,v) --- if f(v,u) = 0 and c(u,v) > f(u,v)
#5. c*(u,v) = 0 --- if f(v,u) = 0 and c(u,v) = f(u,v)
#6. d*(u,v) = Inf --- if f(v,u) = 0 and c(u,v) = f(u,v)
proc ::struct::graph::op::createAugmentingNetwork {G f path} {
set Gf [struct::graph]
#setting the Gf graph
foreach v [$G nodes] {
$Gf node insert $v
}
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
$Gf arc insert $u $v [list $u $v]
$Gf arc set [list $u $v] throughput [$G arc set $e throughput]
$Gf arc set [list $u $v] cost [$G arc set $e cost]
}
#we set new values for each edge contained in the path from input
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
set f_uv [dict get $f [list $u $v]]
set f_vu [dict get $f [list $v $u]]
set c_uv [$G arc get [list $u $v] throughput]
set d_uv [$G arc get [list $u $v] cost]
#adding apparent arcs
if { ![$Gf arc exists [list $v $u]] } {
$Gf arc insert $v $u [list $v $u]
#1.
$Gf arc set [list $v $u] throughput $f_uv
#2.
$Gf arc set [list $v $u] cost [ expr { -1 * $d_uv } ]
} else {
#1.
$Gf arc set [list $v $u] throughput $f_uv
#2.
$Gf arc set [list $v $u] cost [ expr { -1 * $d_uv } ]
$Gf arc set [list $u $v] cost Inf
$Gf arc set [list $u $v] throughput 0
}
if { ($f_vu == 0 ) && ( $c_uv > $f_uv ) } {
#3.
$Gf arc set [list $u $v] throughput [ expr { $c_uv - $f_uv } ]
#4.
$Gf arc set [list $u $v] cost $d_uv
}
if { ($f_vu == 0 ) && ( $c_uv == $f_uv) } {
#5.
$Gf arc set [list $u $v] throughput 0
#6.
$Gf arc set [list $u $v] cost Inf
}
}
return $Gf
}
#Busacker Gowen's algorithm - computing minimum cost maximum flow in a flow network
#-------------------------------------------------------------------------------------
#
#The goal is to find a flow, whose max value can be d, from source node to
#sink node in given flow network. That network except throughputs at edges has
#also defined a non-negative cost on each edge - cost of using that edge when
#directing flow with that edge ( it can illustrate e.g. fuel usage, time or
#any other measure dependent on usages ).
#
#Input:
#graph G - flow network, weights at edges are costs of using particular edge
#desiredFlow - max value of the flow for that network
#dictionary c - throughputs for all edges
#node s - the source node for graph G
#node t - the sink node for graph G
#
#Output:
#f - dictionary containing values of used throughputs for each edge ( key )
#found by algorithm.
#
#Reference: http://en.wikipedia.org/wiki/Minimum_cost_flow_problem
#
proc ::struct::graph::op::BusackerGowen {G desiredFlow s t} {
#checking if nodes s and t are in graph G
if { !([$G node exists $s] && [$G node exists $t]) } {
return -code error "Nodes \"$s\" and \"$t\" should be contained in graph's G set of nodes"
}
if { $desiredFlow <= 0 } {
return -code error "The \"desiredFlow\" value must be an positive integer."
}
#checking if all attributes for input network are set well ( costs and throughputs )
foreach e [$G arcs] {
if { !([$G arc keyexists $e throughput] && [$G arc keyexists $e cost]) } {
return -code error "The input network doesn't have all attributes set correctly... Please, check again attributes: \"throughput\" and \"cost\" for input graph."
}
}
set Gf [struct::graph]
#initialization of Augmenting Network
foreach v [$G nodes] {
$Gf node insert $v
}
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
$Gf arc insert $u $v [list $u $v]
$Gf arc set [list $u $v] throughput [$G arc set $e throughput]
$Gf arc set [list $u $v] cost [$G arc set $e cost]
}
#initialization of f
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
dict set f [list $u $v] 0
dict set f [list $v $u] 0
}
set currentFlow 0
#main loop - it ends when we reach desired flow value or there is no path in Gf
#leading from source node s to sink t
while { $currentFlow < $desiredFlow } {
#preparing correct values for pathfinding
foreach edge [$Gf arcs] {
$Gf arc setweight $edge [$Gf arc get $edge cost]
}
#setting the path 'p' from 's' to 't'
set paths [ShortestsPathsByBFS $Gf $s paths]
#if there are no more paths, the search has ended
if { ($paths == {}) || (![dict exists $paths $t]) } break
set path [dict get $paths $t]
lappend path $t
#counting max throughput that is availiable to send
#using path 'p'
set maxThroughput Inf
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
set uv_throughput [$Gf arc set [list $u $v] throughput]
if { $maxThroughput > $uv_throughput } {
set maxThroughput $uv_throughput
}
}
#if max throughput that was found will cause exceeding the desired
#flow, send as much as it's possible
if { ( $currentFlow + $maxThroughput ) <= $desiredFlow } {
set fAdd $maxThroughput
set currentFlow [ expr { $currentFlow + $fAdd } ]
} else {
set fAdd [ expr { $desiredFlow - $currentFlow } ]
set currentFlow $desiredFlow
}
#update the throuputs on edges
foreach v [lrange $path 0 end-1] u [lrange $path 1 end] {
if { [dict get $f [list $u $v]] >= $fAdd } {
dict set f [list $u $v] [ expr { [dict get $f [list $u $v]] - $fAdd } ]
}
if { ( [dict get $f [list $u $v]] < $fAdd ) && ( [dict get $f [list $u $v]] > 0 ) } {
dict set f [list $v $u] [ expr { $fAdd - [dict get $f [list $u $v]] } ]
dict set f [list $u $v] 0
}
if { [dict get $f [list $u $v]] == 0 } {
dict set f [list $v $u] [ expr { [dict get $f [list $v $u]] + $fAdd } ]
}
}
#create new Augemnting Network
set Gfnew [createAugmentingNetwork $Gf $f $path]
$Gf destroy
set Gf $Gfnew
}
set f [dict filter $f script {flow flowvalue} {expr {$flowvalue != 0}}]
$Gf destroy
return $f
}
#
proc ::struct::graph::op::ShortestsPathsByBFS {G s outputFormat} {
switch -exact -- $outputFormat {
distances {
set outputMode distances
}
paths {
set outputMode paths
}
default {
return -code error "Unknown output format \"$outputFormat\", expected distances, or paths."
}
}
set queue [list $s]
set result {}
#initialization of marked nodes, distances and predecessors
foreach v [$G nodes] {
dict set marked $v 0
dict set distances $v Inf
dict set pred $v -1
}
#the s node is initially marked and has 0 distance to itself
dict set marked $s 1
dict set distances $s 0
#the main loop
while { [llength $queue] != 0 } {
#removing top element from the queue
set v [lindex $queue 0]
lremove queue $v
#for each arc that begins in v
foreach arc [$G arcs -out $v] {
set u [$G arc target $arc]
set newlabel [ expr { [dict get $distances $v] + [$G arc getweight $arc] } ]
if { $newlabel < [dict get $distances $u] } {
dict set distances $u $newlabel
dict set pred $u $v
#case when current node wasn't placed in a queue yet -
#we set u at the end of the queue
if { [dict get $marked $u] == 0 } {
lappend queue $u
dict set marked $u 1
} else {
#case when current node u was in queue before but it is not in it now -
#we set u at the beginning of the queue
if { [lsearch $queue $u] < 0 } {
set queue [linsert $queue 0 $u]
}
}
}
}
}
#if the outputformat is paths, we travel back to find shorests paths
#to return sets of nodes for each node, which are their paths between
#s and particular node
dict set paths nopaths 1
if { $outputMode eq "paths" } {
foreach node [$G nodes] {
set path {}
set lastNode $node
while { $lastNode != -1 } {
set currentNode [dict get $pred $lastNode]
if { $currentNode != -1 } {
lappend path $currentNode
}
set lastNode $currentNode
}
set path [lreverse $path]
if { [llength $path] != 0 } {
dict set paths $node $path
dict unset paths nopaths
}
}
if { ![dict exists $paths nopaths] } {
return $paths
} else {
return {}
}
#returning dictionary containing distance from start node to each other node (key)
} else {
return $distances
}
}
#
proc ::struct::graph::op::BFS {G s outputFormat} {
set queue [list $s]
switch -exact -- $outputFormat {
graph {
set outputMode graph
}
tree {
set outputMode tree
}
default {
return -code error "Unknown output format \"$outputFormat\", expected graph, or tree."
}
}
if { $outputMode eq "graph" } {
#graph initializing
set BFSGraph [struct::graph]
foreach v [$G nodes] {
$BFSGraph node insert $v
}
} else {
#tree initializing
set BFSTree [struct::tree]
$BFSTree set root name $s
$BFSTree rename root $s
}
#initilization of marked nodes
foreach v [$G nodes] {
dict set marked $v 0
}
#start node is marked from the beginning
dict set marked $s 1
#the main loop
while { [llength $queue] != 0 } {
#removing top element from the queue
set v [lindex $queue 0]
lremove queue $v
foreach x [$G nodes -adj $v] {
if { ![dict get $marked $x] } {
dict set marked $x 1
lappend queue $x
if { $outputMode eq "graph" } {
$BFSGraph arc insert $v $x [list $v $x]
} else {
$BFSTree insert $v end $x
}
}
}
}
if { $outputMode eq "graph" } {
return $BFSGraph
} else {
return $BFSTree
}
}
#Minimum Diameter Spanning Tree - MDST
#-------------------------------------------------------------------------------------
#
#The goal is to find for input graph G, the spanning tree that
#has the minimum diameter worth.
#
#General idea of algorithm is to run BFS over all vertices in graph
#G. If the diameter "d" of the tree is odd, then we are sure that tree
#given by BFS is minimum (considering diameter value). When, diameter "d"
#is even, then optimal tree can have minimum diameter equal to "d" or
#"d-1".
#
#In that case, what algorithm does is rebuilding the tree given by BFS, by
#adding a vertice between root node and root's child node (nodes), such that
#subtree created with child node as root node is the greatest one (has the
#greatests height). In the next step for such rebuilded tree, we run again BFS
#with new node as root node. If the height of the tree didn't changed, we have found
#a better solution.
proc ::struct::graph::op::MinimumDiameterSpanningTree {G} {
set min_diameter Inf
set best_Tree [struct::graph]
foreach v [$G nodes] {
#BFS Tree
set T [BFS $G $v tree]
#BFS Graph
set TGraph [BFS $G $v graph]
#Setting all arcs to 1 for diameter procedure
$TGraph arc setunweighted 1
#setting values for current Tree
set diam [diameter $TGraph]
set subtreeHeight [ expr { $diam / 2 - 1} ]
##############################################
#case when diameter found for tree found by BFS is even:
#it's possible to decrease the diameter by one.
if { ( $diam % 2 ) == 0 } {
#for each child u that current root node v has, we search
#for the greatest subtree(subtrees) with the root in child u.
#
foreach u [$TGraph nodes -adj $v] {
set u_depth 1 ;#[$T depth $u]
set d_depth 0
set descendants [$T descendants $u]
foreach d $descendants {
if { $d_depth < [$T depth $d] } {
set d_depth [$T depth $d]
}
}
#depth of the current subtree
set depth [ expr { $d_depth - $u_depth } ]
#proceed if found subtree is the greatest one
if { $depth >= $subtreeHeight } {
#temporary Graph for holding potential better values
set tempGraph [struct::graph]
foreach node [$TGraph nodes] {
$tempGraph node insert $node
}
#zmienic nazwy zmiennych zeby sie nie mylily
foreach arc [$TGraph arcs] {
set _u [$TGraph arc source $arc]
set _v [$TGraph arc target $arc]
$tempGraph arc insert $_u $_v [list $_u $_v]
}
if { [$tempGraph arc exists [list $u $v]] } {
$tempGraph arc delete [list $u $v]
} else {
$tempGraph arc delete [list $v $u]
}
#for nodes u and v, we add a node between them
#to again start BFS with root in new node to check
#if it's possible to decrease the diameter in solution
set node [$tempGraph node insert]
$tempGraph arc insert $node $v [list $node $v]
$tempGraph arc insert $node $u [list $node $u]
set newtempGraph [BFS $tempGraph $node graph]
$tempGraph destroy
set tempGraph $newtempGraph
$tempGraph node delete $node
$tempGraph arc insert $u $v [list $u $v]
$tempGraph arc setunweighted 1
set tempDiam [diameter $tempGraph]
#if better tree is found (that any that were already found)
#replace it
if { $min_diameter > $tempDiam } {
set $min_diameter [diameter $tempGraph ]
$best_Tree destroy
set best_Tree $tempGraph
} else {
$tempGraph destroy
}
}
}
}
################################################################
set currentTreeDiameter $diam
if { $min_diameter > $currentTreeDiameter } {
set min_diameter $currentTreeDiameter
$best_Tree destroy
set best_Tree $TGraph
} else {
$TGraph destroy
}
$T destroy
}
return $best_Tree
}
#Minimum Degree Spanning Tree
#-------------------------------------------------------------------------------------
#
#In graph theory, minimum degree spanning tree (or degree-constrained spanning tree)
#is a spanning tree where the maximum vertex degree is as small as possible (or is
#limited to a certain constant k). The minimum degree spanning tree problem is to
#determine whether a particular graph has such a spanning tree for a particular k.
#
#Algorithm for input undirected graph G finds its spanning tree with the smallest
#possible degree. Algorithm is a 2-approximation, so it doesn't assure that optimal
#solution will be found.
#
#Reference: http://en.wikipedia.org/wiki/Degree-constrained_spanning_tree
proc ::struct::graph::op::MinimumDegreeSpanningTree {G} {
#initialization of spanning tree for G
set MST [struct::graph]
foreach v [$G nodes] {
$MST node insert $v
}
#forcing all arcs to be 1-weighted
foreach e [$G arcs] {
$G arc setweight $e 1
}
foreach e [kruskal $G] {
set u [$G arc source $e]
set v [$G arc target $e]
$MST arc insert $u $v [list $u $v]
}
#main loop
foreach e [$G arcs] {
set u [$G arc source $e]
set v [$G arc target $e]
#if nodes u and v are neighbours, proceed to next iteration
if { ![$MST arc exists [list $u $v]] && ![$MST arc exists [list $v $u]] } {
$MST arc setunweighted 1
#setting the path between nodes u and v in Spanning Tree MST
set path [dict get [dijkstra $MST $u] $v]
lappend path $v
#search for the node in the path, such that its degree is greater than degree of any of nodes
#u or v increased by one
foreach node $path {
if { [$MST node degree $node] > ([Max [$MST node degree $u] [$MST node degree $v]] + 1) } {
#if such node is found add the arc between nodes u and v
$MST arc insert $u $v [list $u $v]
#then to hold MST being a spanning tree, delete any arc that is in the path
#that is adjacent to found node
foreach n [$MST nodes -adj $node] {
if { $n in $path } {
if { [$MST arc exists [list $node $n]] } {
$MST arc delete [list $node $n]
} else {
$MST arc delete [list $n $node]
}
break
}
}
# Node found, stop processing the path
break
}
}
}
}
return $MST
}
#Dinic algorithm for finding maximum flow in flow network
#-------------------------------------------------------------------------------------
#
#Reference: http://en.wikipedia.org/wiki/Dinic's_algorithm
#
proc ::struct::graph::op::MaximumFlowByDinic {G s t blockingFlowAlg} {
if { !($blockingFlowAlg eq "dinic" || $blockingFlowAlg eq "mkm") } {
return -code error "Uncorrect name of blocking flow algorithm. Choose \"mkm\" for Malhotra, Kumar and Maheshwari algorithm and \"dinic\" for Dinic algorithm."
}
foreach arc [$G arcs] {
set u [$G arc source $arc]
set v [$G arc target $arc]
dict set f [list $u $v] 0
dict set f [list $v $u] 0
}
while {1} {
set residualG [createResidualGraph $G $f]
if { $blockingFlowAlg == "mkm" } {
set blockingFlow [BlockingFlowByMKM $residualG $s $t]
} else {
set blockingFlow [BlockingFlowByDinic $residualG $s $t]
}
$residualG destroy
if { $blockingFlow == {} } break
foreach key [dict keys $blockingFlow] {
dict set f $key [ expr { [dict get $f $key] + [dict get $blockingFlow $key] } ]
}
}
set f [dict filter $f script {flow flowvalue} {expr {$flowvalue != 0}}]
return $f
}
#Dinic algorithm for finding blocking flow
#-------------------------------------------------------------------------------------
#
#Algorithm for given network G with source s and sink t, finds a blocking
#flow, which can be used to obtain a maximum flow for that network G.
#
#Some steps that algorithm takes:
#1. constructing the level graph from network G
#2. until there are edges in level graph:
# 3. find the path between s and t nodes in level graph
# 4. for each edge in path update current throughputs at those edges and...
# 5. ...deleting nodes from which there are no residual edges
#6. return the dictionary containing the blocking flow
proc ::struct::graph::op::BlockingFlowByDinic {G s t} {
#initializing blocking flow dictionary
foreach edge [$G arcs] {
set u [$G arc source $edge]
set v [$G arc target $edge]
dict set b [list $u $v] 0
}
#1.
set LevelGraph [createLevelGraph $G $s]
#2. the main loop
while { [llength [$LevelGraph arcs]] > 0 } {
if { ![$LevelGraph node exists $s] || ![$LevelGraph node exists $t] } break
#3.
set paths [ShortestsPathsByBFS $LevelGraph $s paths]
if { $paths == {} } break
if { ![dict exists $paths $t] } break
set path [dict get $paths $t]
lappend path $t
#setting the max throughput to go with the path found one step before
set maxThroughput Inf
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
set uv_throughput [$LevelGraph arc get [list $u $v] throughput]
if { $maxThroughput > $uv_throughput } {
set maxThroughput $uv_throughput
}
}
#4. updating throughputs and blocking flow
foreach u [lrange $path 0 end-1] v [lrange $path 1 end] {
set uv_throughput [$LevelGraph arc get [list $u $v] throughput]
#decreasing the throughputs contained in the path by max flow value
$LevelGraph arc set [list $u $v] throughput [ expr { $uv_throughput - $maxThroughput } ]
#updating blocking flows
dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $maxThroughput } ]
#dict set b [list $v $u] [ expr { -1 * [dict get $b [list $u $v]] } ]
#5. deleting the arcs, whose throughput is completely used
if { [$LevelGraph arc get [list $u $v] throughput] == 0 } {
$LevelGraph arc delete [list $u $v]
}
#deleting the node, if it hasn't any outgoing arcs
if { ($u != $s) && ( ![llength [$LevelGraph nodes -out $u]] || ![llength [$LevelGraph nodes -in $u]] ) } {
$LevelGraph node delete $u
}
}
}
set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]
$LevelGraph destroy
#6.
return $b
}
#Malhotra, Kumar and Maheshwari Algorithm for finding blocking flow
#-------------------------------------------------------------------------------------
#
#Algorithm for given network G with source s and sink t, finds a blocking
#flow, which can be used to obtain a maximum flow for that network G.
#
#For given node v, Let c(v) be the min{ a, b }, where a is the sum of all incoming
#throughputs and b is the sum of all outcoming throughputs from the node v.
#
#Some steps that algorithm takes:
#1. constructing the level graph from network G
#2. until there are edges in level graph:
# 3. finding the node with the minimum c(v)
# 4. sending c(v) units of throughput by incoming arcs of v
# 5. sending c(v) units of throughput by outcoming arcs of v
# 6. 4 and 5 steps can cause excess or deficiency of throughputs at nodes, so we
# send exceeds forward choosing arcs greedily and...
# 7. ...the same with deficiencies but we send those backward.
# 8. delete the v node from level graph
# 9. upgrade the c values for all nodes
#
#10. if no other edges left in level graph, return b - found blocking flow
#
proc ::struct::graph::op::BlockingFlowByMKM {G s t} {
#initializing blocking flow dictionary
foreach edge [$G arcs] {
set u [$G arc source $edge]
set v [$G arc target $edge]
dict set b [list $u $v] 0
}
#1. setting the level graph
set LevelGraph [createLevelGraph $G $s]
#setting the in/out throughputs for each node
set c [countThroughputsAtNodes $LevelGraph $s $t]
#2. the main loop
while { [llength [$LevelGraph nodes]] > 2 } {
#if there is no path between s and t nodes, end the procedure and
#return current blocking flow
set distances [ShortestsPathsByBFS $LevelGraph $s distances]
if { [dict get $distances $t] == "Inf" } {
$LevelGraph destroy
set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]
return $b
}
#3. finding the node with minimum value of c(v)
set min_cv Inf
dict for {node cv} $c {
if { $min_cv > $cv } {
set min_cv $cv
set minCv_node $node
}
}
#4. sending c(v) by all incoming arcs of node with minimum c(v)
set _min_cv $min_cv
foreach arc [$LevelGraph arcs -in $minCv_node] {
set t_arc [$LevelGraph arc get $arc throughput]
set u [$LevelGraph arc source $arc]
set v [$LevelGraph arc target $arc]
set b_uv [dict get $b [list $u $v]]
if { $t_arc >= $min_cv } {
$LevelGraph arc set $arc throughput [ expr { $t_arc - $min_cv } ]
dict set b [list $u $v] [ expr { $b_uv + $min_cv } ]
break
} else {
set difference [ expr { $min_cv - $t_arc } ]
set min_cv $difference
dict set b [list $u $v] [ expr { $b_uv + $difference } ]
$LevelGraph arc set $arc throughput 0
}
}
#5. sending c(v) by all outcoming arcs of node with minimum c(v)
foreach arc [$LevelGraph arcs -out $minCv_node] {
set t_arc [$LevelGraph arc get $arc throughput]
set u [$LevelGraph arc source $arc]
set v [$LevelGraph arc target $arc]
set b_uv [dict get $b [list $u $v]]
if { $t_arc >= $min_cv } {
$LevelGraph arc set $arc throughput [ expr { $t_arc - $_min_cv } ]
dict set b [list $u $v] [ expr { $b_uv + $_min_cv } ]
break
} else {
set difference [ expr { $_min_cv - $t_arc } ]
set _min_cv $difference
dict set b [list $u $v] [ expr { $b_uv + $difference } ]
$LevelGraph arc set $arc throughput 0
}
}
#find exceeds and if any, send them forward or backwards
set distances [ShortestsPathsByBFS $LevelGraph $s distances]
#6.
for {set i [ expr {[dict get $distances $minCv_node] + 1}] } { $i < [llength [$G nodes]] } { incr i } {
foreach w [$LevelGraph nodes] {
if { [dict get $distances $w] == $i } {
set excess [findExcess $LevelGraph $w $b]
if { $excess > 0 } {
set b [sendForward $LevelGraph $w $b $excess]
}
}
}
}
#7.
for { set i [ expr { [dict get $distances $minCv_node] - 1} ] } { $i > 0 } { incr i -1 } {
foreach w [$LevelGraph nodes] {
if { [dict get $distances $w] == $i } {
set excess [findExcess $LevelGraph $w $b]
if { $excess < 0 } {
set b [sendBack $LevelGraph $w $b [ expr { (-1) * $excess } ]]
}
}
}
}
#8. delete current node from the network
$LevelGraph node delete $minCv_node
#9. correctingg the in/out throughputs for each node after
#deleting one of the nodes in network
set c [countThroughputsAtNodes $LevelGraph $s $t]
#if node has no availiable outcoming or incoming throughput
#delete that node from the graph
dict for {key val} $c {
if { $val == 0 } {
$LevelGraph node delete $key
dict unset c $key
}
}
}
set b [dict filter $b script {flow flowvalue} {expr {$flowvalue != 0}}]
$LevelGraph destroy
#10.
return $b
}
#Subprocedure for algorithms that find blocking-flows.
#It's creating a level graph from the residual network.
proc ::struct::graph::op::createLevelGraph {Gf s} {
set LevelGraph [struct::graph]
$Gf arc setunweighted 1
#deleting arcs with 0 throughputs for proper pathfinding
foreach arc [$Gf arcs] {
if { [$Gf arc get $arc throughput] == 0 } {
$Gf arc delete $arc
}
}
set distances [ShortestsPathsByBFS $Gf $s distances]
foreach v [$Gf nodes] {
$LevelGraph node insert $v
$LevelGraph node set $v distance [dict get $distances $v]
}
foreach e [$Gf arcs] {
set u [$Gf arc source $e]
set v [$Gf arc target $e]
if { ([$LevelGraph node get $u distance] + 1) == [$LevelGraph node get $v distance]} {
$LevelGraph arc insert $u $v [list $u $v]
$LevelGraph arc set [list $u $v] throughput [$Gf arc get $e throughput]
}
}
$LevelGraph arc setunweighted 1
return $LevelGraph
}
#Subprocedure for blocking flow finding by MKM algorithm
#
#It computes for graph G and each of his nodes the throughput value -
#for node v: from the sum of availiable throughputs from incoming arcs and
#the sum of availiable throughputs from outcoming arcs chooses lesser and sets
#as the throughput of the node.
#
#Throughputs of nodes are returned in the dictionary.
#
proc ::struct::graph::op::countThroughputsAtNodes {G s t} {
set c {}
foreach v [$G nodes] {
if { ($v eq $t) || ($v eq $s) } continue
set outcoming [$G arcs -out $v]
set incoming [$G arcs -in $v]
set outsum 0
set insum 0
foreach o $outcoming i $incoming {
if { [llength $o] > 0 } {
set outsum [ expr { $outsum + [$G arc get $o throughput] } ]
}
if { [llength $i] > 0 } {
set insum [ expr { $insum + [$G arc get $i throughput] } ]
}
set value [Min $outsum $insum]
}
dict set c $v $value
}
return $c
}
#Subprocedure for blocking-flow finding algorithm by MKM
#
#If for a given input node, outcoming flow is bigger than incoming, then that deficiency
#has to be send back by that subprocedure.
proc ::struct::graph::op::sendBack {G node b value} {
foreach arc [$G arcs -in $node] {
set u [$G arc source $arc]
set v [$G arc target $arc]
if { $value > [$G arc get $arc throughput] } {
set value [ expr { $value - [$G arc get $arc throughput] } ]
dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + [$G arc get $arc throughput] } ]
$G arc set $arc throughput 0
} else {
$G arc set $arc throughput [ expr { [$G arc get $arc throughput] - $value } ]
dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $value } ]
set value 0
break
}
}
return $b
}
#Subprocedure for blocking-flow finding algorithm by MKM
#
#If for a given input node, incoming flow is bigger than outcoming, then that exceed
#has to be send forward by that sub procedure.
proc ::struct::graph::op::sendForward {G node b value} {
foreach arc [$G arcs -out $node] {
set u [$G arc source $arc]
set v [$G arc target $arc]
if { $value > [$G arc get $arc throughput] } {
set value [ expr { $value - [$G arc get $arc throughput] } ]
dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + [$G arc get $arc throughput] } ]
$G arc set $arc throughput 0
} else {
$G arc set $arc throughput [ expr { [$G arc get $arc throughput] - $value } ]
dict set b [list $u $v] [ expr { [dict get $b [list $u $v]] + $value } ]
set value 0
break
}
}
return $b
}
#Subprocedure for blocking-flow finding algorithm by MKM
#
#It checks for graph G if node given at input has a exceed
#or deficiency of throughput.
#
#For exceed the positive value of exceed is returned, for deficiency
#procedure returns negative value. If the incoming throughput
#is the same as outcoming, procedure returns 0.
#
proc ::struct::graph::op::findExcess {G node b} {
set incoming 0
set outcoming 0
foreach key [dict keys $b] {
lassign $key u v
if { $u eq $node } {
set outcoming [ expr { $outcoming + [dict get $b $key] } ]
}
if { $v eq $node } {
set incoming [ expr { $incoming + [dict get $b $key] } ]
}
}
return [ expr { $incoming - $outcoming } ]
}
#Travelling Salesman Problem - Heuristic of local searching
#2 - approximation Algorithm
#-------------------------------------------------------------------------------------
#
proc ::struct::graph::op::TSPLocalSearching {G C} {
foreach arc $C {
if { ![$G arc exists $arc] } {
return -code error "Given cycle has arcs not included in graph G."
}
}
#initialization
set CGraph [struct::graph]
set GCopy [struct::graph]
set w 0
foreach node [$G nodes] {
$CGraph node insert $node
$GCopy node insert $node
}
foreach arc [$G arcs] {
set u [$G arc source $arc]
set v [$G arc target $arc]
$GCopy arc insert $u $v [list $u $v]
$GCopy arc set [list $u $v] weight [$G arc get $arc weight]
}
foreach arc $C {
set u [$G arc source $arc]
set v [$G arc target $arc]
set arcWeight [$G arc get $arc weight]
$CGraph arc insert $u $v [list $u $v]
$CGraph arc set [list $u $v] weight $arcWeight
set w [ expr { $w + $arcWeight } ]
}
set reductionDone 1
while { $reductionDone } {
set queue {}
set reductionDone 0
#double foreach loop goes through all pairs of arcs
foreach i [$CGraph arcs] {
#source and target nodes of first arc
set iu [$CGraph arc source $i]
set iv [$CGraph arc target $i]
#second arc
foreach j [$CGraph arcs] {
#if pair of arcs already was considered, continue with next pair of arcs
if { [list $j $i] ni $queue } {
#add current arc to queue to mark that it was used
lappend queue [list $i $j]
set ju [$CGraph arc source $j]
set jv [$CGraph arc target $j]
#we consider only arcs that are not adjacent
if { !($iu eq $ju) && !($iu eq $jv) && !($iv eq $ju) && !($iv eq $jv) } {
#set the current cycle
set CPrim [copyGraph $CGraph]
#transform the current cycle:
#1.
$CPrim arc delete $i
$CPrim arc delete $j
set param 0
#adding new edges instead of erased ones
if { !([$CPrim arc exists [list $iu $ju]] || [$CPrim arc exists [list $iv $jv]] || [$CPrim arc exists [list $ju $iu]] || [$CPrim arc exists [list $jv $iv]] ) } {
$CPrim arc insert $iu $ju [list $iu $ju]
$CPrim arc insert $iv $jv [list $iv $jv]
if { [$GCopy arc exists [list $iu $ju]] } {
$CPrim arc set [list $iu $ju] weight [$GCopy arc get [list $iu $ju] weight]
} else {
$CPrim arc set [list $iu $ju] weight [$GCopy arc get [list $ju $iu] weight]
}
if { [$GCopy arc exists [list $iv $jv]] } {
$CPrim arc set [list $iv $jv] weight [$GCopy arc get [list $iv $jv] weight]
} else {
$CPrim arc set [list $iv $jv] weight [$GCopy arc get [list $jv $iv] weight]
}
} else {
set param 1
}
$CPrim arc setunweighted 1
#check if it's still a cycle or if any arcs were added instead those erased
if { !([struct::graph::op::distance $CPrim $iu $ju] > 0 ) || $param } {
#deleting new edges if they were added before in current iteration
if { !$param } {
$CPrim arc delete [list $iu $ju]
}
if { !$param } {
$CPrim arc delete [list $iv $jv]
}
#adding new ones that will assure the graph is still a cycle
$CPrim arc insert $iu $jv [list $iu $jv]
$CPrim arc insert $iv $ju [list $iv $ju]
if { [$GCopy arc exists [list $iu $jv]] } {
$CPrim arc set [list $iu $jv] weight [$GCopy arc get [list $iu $jv] weight]
} else {
$CPrim arc set [list $iu $jv] weight [$GCopy arc get [list $jv $iu] weight]
}
if { [$GCopy arc exists [list $iv $ju]] } {
$CPrim arc set [list $iv $ju] weight [$GCopy arc get [list $iv $ju] weight]
} else {
$CPrim arc set [list $iv $ju] weight [$GCopy arc get [list $ju $iv] weight]
}
}
#count current value of cycle
set cycleWeight [countCycleWeight $CPrim]
#if we found cycle with lesser sum of weights, we set is as a result and
#marked that reduction was successful
if { $w > $cycleWeight } {
set w $cycleWeight
set reductionDone 1
set C [$CPrim arcs]
}
$CPrim destroy
}
}
}
}
#setting the new current cycle if the reduction was successful
if { $reductionDone } {
foreach arc [$CGraph arcs] {
$CGraph arc delete $arc
}
for {set i 0} { $i < [llength $C] } { incr i } {
lset C $i [lsort [lindex $C $i]]
}
foreach arc [$GCopy arcs] {
if { [lsort $arc] in $C } {
set u [$GCopy arc source $arc]
set v [$GCopy arc target $arc]
$CGraph arc insert $u $v [list $u $v]
$CGraph arc set $arc weight [$GCopy arc get $arc weight]
}
}
}
}
$GCopy destroy
$CGraph destroy
return $C
}
proc ::struct::graph::op::copyGraph {G} {
set newGraph [struct::graph]
foreach node [$G nodes] {
$newGraph node insert $node
}
foreach arc [$G arcs] {
set u [$G arc source $arc]
set v [$G arc target $arc]
$newGraph arc insert $u $v $arc
$newGraph arc set $arc weight [$G arc get $arc weight]
}
return $newGraph
}
proc ::struct::graph::op::countCycleWeight {G} {
set result 0
foreach arc [$G arcs] {
set result [ expr { $result + [$G arc get $arc weight] } ]
}
return $result
}
# ### ### ### ######### ######### #########
##
# This command finds a minimum spanning tree/forest (MST) of the graph
# argument, using the algorithm developed by Joseph Kruskal. The
# result is a set (as list) containing the names of the arcs in the
# MST. The set of nodes of the MST is implied by set of arcs, and thus
# not given explicitly. The algorithm does not consider arc
# directions. Note that unconnected nodes are left out of the result.
# Reference: http://en.wikipedia.org/wiki/Kruskal%27s_algorithm
proc ::struct::graph::op::kruskal {g} {
# Check graph argument for proper configuration.
VerifyWeightsAreOk $g
# Transient helper data structures. A priority queue for the arcs
# under consideration, using their weights as priority, and a
# disjoint-set to keep track of the forest of partial minimum
# spanning trees we are working with.
set consider [::struct::prioqueue -dictionary consider]
set forest [::struct::disjointset forest]
# Start with all nodes in the graph each in their partition.
foreach n [$g nodes] {
$forest add-partition $n
}
# Then fill the queue with all arcs, using their weight to
# prioritize. The weight is the cost of the arc. The lesser the
# better.
foreach {arc weight} [$g arc weights] {
$consider put $arc $weight
}
# And now we can construct the tree. This is done greedily. In
# each round we add the arc with the smallest weight to the
# minimum spanning tree, except if doing so would violate the tree
# condition.
set result {}
while {[$consider size]} {
set minarc [$consider get]
set origin [$g arc source $minarc]
set destin [$g arc target $minarc]
# Ignore the arc if both ends are in the same partition. Using
# it would add a cycle to the result, i.e. it would not be a
# tree anymore.
if {[$forest equal $origin $destin]} continue
# Take the arc for the result, and merge the trees both ends
# are in into a single tree.
lappend result $minarc
$forest merge $origin $destin
}
# We are done. Get rid of the transient helper structures and
# return our result.
$forest destroy
$consider destroy
return $result
}
# ### ### ### ######### ######### #########
##
# This command finds a minimum spanning tree/forest (MST) of the graph
# argument, using the algorithm developed by Prim. The result is a
# set (as list) containing the names of the arcs in the MST. The set
# of nodes of the MST is implied by set of arcs, and thus not given
# explicitly. The algorithm does not consider arc directions.
# Reference: http://en.wikipedia.org/wiki/Prim%27s_algorithm
proc ::struct::graph::op::prim {g} {
VerifyWeightsAreOk $g
# Fill an array with all nodes, to track which nodes have been
# visited at least once. When the inner loop runs out of nodes and
# we still have some left over we restart using one of the
# leftover as new starting point. In this manner we get the MST of
# the whole graph minus unconnected nodes, instead of only the MST
# for the component the initial starting node is in.
array set unvisited {}
foreach n [$g nodes] { set unvisited($n) . }
# Transient helper data structure. A priority queue for the nodes
# and arcs under consideration for inclusion into the MST. Each
# element of the queue is a list containing node name, a flag bit,
# and arc name, in this order. The associated priority is the
# weight of the arc. The flag bit is set for the initial queue
# entry only, containing a fake (empty) arc, to trigger special
# handling.
set consider [::struct::prioqueue -dictionary consider]
# More data structures, the result arrays.
array set weightmap {} ; # maps nodes to min arc weight seen so
# far. This is the threshold other arcs
# on this node will have to beat to be
# added to the MST.
array set arcmap {} ; # maps arcs to nothing, these are the
# arcs in the MST.
while {[array size unvisited]} {
# Choose a 'random' node as the starting point for the inner
# loop, prim's algorithm, and put it on the queue for
# consideration. Then we iterate until we have considered all
# nodes in the its component.
set startnode [lindex [array names unvisited] 0]
$consider put [list $startnode 1 {}] 0
while {[$consider size] > 0} {
# Pull the next minimum weight to look for. This is the
# priority of the next item we can get from the queue. And the
# associated node/decision/arc data.
set arcweight [$consider peekpriority 1]
foreach {v arcundefined arc} [$consider get] break
#8.5: lassign [$consider get] v arcundefined arc
# Two cases to consider: The node v is already part of the
# MST, or not. If yes we check if the new arcweight is better
# than what we have stored already, and update accordingly.
if {[info exists weightmap($v)]} {
set currentweight $weightmap($v)
if {$arcweight < $currentweight} {
# The new weight is better, update to use it as
# the new threshold. Note that this fill not touch
# any other arcs found for this node, as these are
# still minimal.
set weightmap($v) $arcweight
set arcmap($arc) .
}
} else {
# Node not yet present. Save weight and arc. The
# latter if and only the arc is actually defined. For
# the first, initial queue entry, it is not. Then we
# add all the arcs adjacent to the current node to the
# queue to consider them in the next rounds.
set weightmap($v) $arcweight
if {!$arcundefined} {
set arcmap($arc) .
}
foreach adjacentarc [$g arcs -adj $v] {
set weight [$g arc getweight $adjacentarc]
set neighbour [$g node opposite $v $adjacentarc]
$consider put [list $neighbour 0 $adjacentarc] $weight
}
}
# Mark the node as visited, belonging to the current
# component. Future iterations will ignore it.
unset -nocomplain unvisited($v)
}
}
# We are done. Get rid of the transient helper structure and
# return our result.
$consider destroy
return [array names arcmap]
}
# ### ### ### ######### ######### #########
##
# This command checks whether the graph argument is bi-partite or not,
# and returns the result as a boolean value, true for a bi-partite
# graph, and false otherwise. A variable can be provided to store the
# bi-partition into.
#
# Reference: http://en.wikipedia.org/wiki/Bipartite_graph
proc ::struct::graph::op::isBipartite? {g {bipartitionvar {}}} {
# Handle the special cases of empty graphs, or one without arcs
# quickly. Both are bi-partite.
if {$bipartitionvar ne ""} {
upvar 1 $bipartitionvar bipartitions
}
if {![llength [$g nodes]]} {
set bipartitions {{} {}}
return 1
} elseif {![llength [$g arcs]]} {
if {$bipartitionvar ne ""} {
set bipartitions [list [$g nodes] {}]
}
return 1
}
# Transient helper data structure, a queue of the nodes waiting
# for processing.
set pending [struct::queue pending]
set nodes [$g nodes]
# Another structure, a map from node names to their 'color',
# indicating which of the two partitions a node belngs to. All
# nodes start out as undefined (0). Traversing the arcs we
# set and flip them as needed (1,2).
array set color {}
foreach node $nodes {
set color($node) 0
}
# Iterating over all nodes we use their connections to traverse
# the components and assign colors. We abort when encountering
# paradox, as that means that the graph is not bi-partite.
foreach node $nodes {
# Ignore nodes already in the second partition.
if {$color($node)} continue
# Flip the color, then travel the component and check for
# conflicts with the neighbours.
set color($node) 1
$pending put $node
while {[$pending size]} {
set current [$pending get]
foreach neighbour [$g nodes -adj $current] {
if {!$color($neighbour)} {
# Exchange the color between current and previous
# nodes, and remember the neighbour for further
# processing.
set color($neighbour) [expr {3 - $color($current)}]
$pending put $neighbour
} elseif {$color($neighbour) == $color($current)} {
# Color conflict between adjacent nodes, should be
# different. This graph is not bi-partite. Kill
# the data structure and abort.
$pending destroy
return 0
}
}
}
}
# The graph is bi-partite. Kill the transient data structure, and
# move the partitions into the provided variable, if there is any.
$pending destroy
if {$bipartitionvar ne ""} {
# Build bipartition, then set the data into the variable
# passed as argument to this command.
set X {}
set Y {}
foreach {node partition} [array get color] {
if {$partition == 1} {
lappend X $node
} else {
lappend Y $node
}
}
set bipartitions [list $X $Y]
}
return 1
}
# ### ### ### ######### ######### #########
##
# This command computes a maximal matching, if it exists, for the
# graph argument G and its bi-partition as specified through the node
# sets X and Y. As is implied, this method requires that the graph is
# bi-partite. Use the command 'isBipartite?' to check for this
# property, and to obtain the bi-partition.
if 0 {
proc ::struct::graph::op::maxMatching {g X Y} {
return -code error "not implemented yet"
}}
# ### ### ### ######### ######### #########
##
# This command computes the strongly connected components (SCCs) of
# the graph argument G. The result is a list of node-sets, each set
# containing the nodes of one SCC of G. In any SCC there is a directed
# path between any two nodes U, V from U to V. If all SCCs contain
# only a single node the graph is acyclic.
proc ::struct::graph::op::tarjan {g} {
set all [$g nodes]
# Quick bailout for simple special cases, i.e. graphs without
# nodes or arcs.
if {![llength $all]} {
# No nodes => no SCCs
return {}
} elseif {![llength [$g arcs]]} {
# Have nodes, but no arcs => each node is its own SCC.
set r {} ; foreach a $all { lappend r [list $a] }
return $r
}
# Transient data structures. Stack of nodes to consider, the
# result, and various state arrays. TarjanSub upvar's all them
# into its scope.
set pending [::struct::stack pending]
set result {}
array set index {}
array set lowlink {}
array set instack {}
# Invoke the main search system while we have unvisited
# nodes. TarjanSub will remove all visited nodes from 'all',
# ensuring termination.
while {[llength $all]} {
TarjanSub [lindex $all 0] 0
}
# Release the transient structures and return result.
$pending destroy
return $result
}
proc ::struct::graph::op::TarjanSub {start counter} {
# Import the tracer state from our caller.
upvar 1 g g index index lowlink lowlink instack instack result result pending pending all all
struct::set subtract all $start
set component {}
set index($start) $counter
set lowlink($start) $counter
incr counter
$pending push $start
set instack($start) 1
foreach outarc [$g arcs -out $start] {
set neighbour [$g arc target $outarc]
if {![info exists index($neighbour)]} {
# depth-first-search of reachable nodes from the neighbour
# node. Original from the chosen startnode.
TarjanSub $neighbour $counter
set lowlink($start) [Min $lowlink($start) $lowlink($neighbour)]
} elseif {[info exists instack($neighbour)]} {
set lowlink($start) [Min $lowlink($start) $lowlink($neighbour)]
}
}
# Check if the 'start' node on this recursion level is the root
# node of a SCC, and collect the component if yes.
if {$lowlink($start) == $index($start)} {
while {1} {
set v [$pending pop]
unset instack($v)
lappend component $v
if {$v eq $start} break
}
lappend result $component
}
return
}
# ### ### ### ######### ######### #########
##
# This command computes the connected components (CCs) of the graph
# argument G. The result is a list of node-sets, each set containing
# the nodes of one CC of G. In any CC there is UN-directed path
# between any two nodes U, V.
proc ::struct::graph::op::connectedComponents {g} {
set all [$g nodes]
# Quick bailout for simple special cases, i.e. graphs without
# nodes or arcs.
if {![llength $all]} {
# No nodes => no CCs
return {}
} elseif {![llength [$g arcs]]} {
# Have nodes, but no arcs => each node is its own CC.
set r {} ; foreach a $all { lappend r [list $a] }
return $r
}
# Invoke the main search system while we have unvisited
# nodes.
set result {}
while {[llength $all]} {
set component [ComponentOf $g [lindex $all 0]]
lappend result $component
# all = all - component
struct::set subtract all $component
}
return $result
}
# A derivative command which computes the connected component (CC) of
# the graph argument G containing the node N. The result is a node-set
# containing the nodes of the CC of N in G.
proc ::struct::graph::op::connectedComponentOf {g n} {
# Quick bailout for simple special cases
if {![$g node exists $n]} {
return -code error "node \"$n\" does not exist in graph \"$g\""
} elseif {![llength [$g arcs -adj $n]]} {
# The chosen node has no neighbours, so is its own CC.
return [list $n]
}
# Invoke the main search system for the chosen node.
return [ComponentOf $g $n]
}
# Internal helper for finding connected components.
proc ::struct::graph::op::ComponentOf {g start} {
set pending [::struct::queue pending]
$pending put $start
array set visited {}
set visited($start) .
while {[$pending size]} {
set current [$pending get 1]
foreach neighbour [$g nodes -adj $current] {
if {[info exists visited($neighbour)]} continue
$pending put $neighbour
set visited($neighbour) 1
}
}
$pending destroy
return [array names visited]
}
# ### ### ### ######### ######### #########
##
# This command determines if the specified arc A in the graph G is a
# bridge, i.e. if its removal will split the connected component its
# end nodes belong to, into two. The result is a boolean value. Uses
# the 'ComponentOf' helper command.
proc ::struct::graph::op::isBridge? {g arc} {
if {![$g arc exists $arc]} {
return -code error "arc \"$arc\" does not exist in graph \"$g\""
}
# Note: We could avoid the need for a copy of the graph if we were
# willing to modify G (*). As we are not willing using a copy is
# the easiest way to allow us a trivial modification. For the
# future consider the creation of a graph class which represents
# virtual graphs over a source, generated by deleting nodes and/or
# arcs. without actually modifying the source.
#
# (Ad *): Create a new unnamed helper node X. Move the arc
# destination to X. Recompute the component and ignore
# X. Then move the arc target back to its original node
# and remove X again.
set src [$g arc source $arc]
set compBefore [ComponentOf $g $src]
if {[llength $compBefore] == 1} {
# Special case, the arc is a loop on an otherwise unconnected
# node. The component will not split, this is not a bridge.
return 0
}
set copy [struct::graph BridgeCopy = $g]
$copy arc delete $arc
set compAfter [ComponentOf $copy $src]
$copy destroy
return [expr {[llength $compBefore] != [llength $compAfter]}]
}
# This command determines if the specified node N in the graph G is a
# cut vertex, i.e. if its removal will split the connected component
# it belongs to into two. The result is a boolean value. Uses the
# 'ComponentOf' helper command.
proc ::struct::graph::op::isCutVertex? {g n} {
if {![$g node exists $n]} {
return -code error "node \"$n\" does not exist in graph \"$g\""
}
# Note: We could avoid the need for a copy of the graph if we were
# willing to modify G (*). As we are not willing using a copy is
# the easiest way to allow us a trivial modification. For the
# future consider the creation of a graph class which represents
# virtual graphs over a source, generated by deleting nodes and/or
# arcs. without actually modifying the source.
#
# (Ad *): Create two new unnamed helper nodes X and Y. Move the
# icoming and outgoing arcs to these helpers. Recompute
# the component and ignore the helpers. Then move the arcs
# back to their original nodes and remove the helpers
# again.
set compBefore [ComponentOf $g $n]
if {[llength $compBefore] == 1} {
# Special case. The node is unconnected. Its removal will
# cause no changes. Therefore not a cutvertex.
return 0
}
# We remove the node from the original component, so that we can
# select a new start node without fear of hitting on the
# cut-vertex candidate. Also makes the comparison later easier
# (straight ==).
struct::set subtract compBefore $n
set copy [struct::graph CutVertexCopy = $g]
$copy node delete $n
set compAfter [ComponentOf $copy [lindex $compBefore 0]]
$copy destroy
return [expr {[llength $compBefore] != [llength $compAfter]}]
}
# This command determines if the graph G is connected.
proc ::struct::graph::op::isConnected? {g} {
return [expr { [llength [connectedComponents $g]] == 1 }]
}
# ### ### ### ######### ######### #########
##
# This command determines if the specified graph G has an eulerian
# cycle (aka euler tour, <=> g is eulerian) or not. If yes, it can
# return the cycle through the named variable, as a list of arcs
# traversed.
#
# Note that for a graph to be eulerian all nodes have to have an even
# degree, and the graph has to be connected. And if more than two
# nodes have an odd degree the graph is not even semi-eulerian (cannot
# even have an euler path).
proc ::struct::graph::op::isEulerian? {g {eulervar {}} {tourstart {}}} {
set nodes [$g nodes]
if {![llength $nodes] || ![llength [$g arcs]]} {
# Quick bailout for special cases. No nodes, or no arcs imply
# that no euler cycle is present.
return 0
}
# Check the condition regarding even degree nodes, then
# connected-ness.
foreach n $nodes {
if {([$g node degree $n] % 2) == 0} continue
# Odd degree node found, not eulerian.
return 0
}
if {![isConnected? $g]} {
return 0
}
# At this point the graph is connected, with all nodes of even
# degree. As per Carl Hierholzer the graph has to have an euler
# tour. If the user doesn't request it we do not waste the time to
# actually compute one.
if {$tourstart ne ""} {
upvar 1 $tourstart start
}
# We start the tour at an arbitrary node.
set start [lindex $nodes 0]
if {$eulervar eq ""} {
return 1
}
upvar 1 $eulervar tour
Fleury $g $start tour
return 1
}
# This command determines if the specified graph G has an eulerian
# path (<=> g is semi-eulerian) or not. If yes, it can return the
# path through the named variable, as a list of arcs traversed.
#
# (*) Aka euler tour.
#
# Note that for a graph to be semi-eulerian at most two nodes are
# allowed to have an odd degree, all others have to be of even degree,
# and the graph has to be connected.
proc ::struct::graph::op::isSemiEulerian? {g {eulervar {}}} {
set nodes [$g nodes]
if {![llength $nodes] || ![llength [$g arcs]]} {
# Quick bailout for special cases. No nodes, or no arcs imply
# that no euler path is present.
return 0
}
# Check the condition regarding oddd/even degree nodes, then
# connected-ness.
set odd 0
foreach n $nodes {
if {([$g node degree $n] % 2) == 0} continue
incr odd
set lastodd $n
}
if {($odd > 2) || ![isConnected? $g]} {
return 0
}
# At this point the graph is connected, with the node degrees
# supporting existence of an euler path. If the user doesn't
# request it we do not waste the time to actually compute one.
if {$eulervar eq ""} {
return 1
}
upvar 1 $eulervar path
# We start at either an odd-degree node, or any node, if there are
# no odd-degree ones. In the last case we are actually
# constructing an euler tour, i.e. a closed path.
if {$odd} {
set start $lastodd
} else {
set start [lindex $nodes 0]
}
Fleury $g $start path
return 1
}
proc ::struct::graph::op::Fleury {g start eulervar} {
upvar 1 $eulervar path
# We start at the chosen node.
set copy [struct::graph FleuryCopy = $g]
set path {}
# Edges are chosen per Fleury's algorithm. That is easy,
# especially as we already have a command to determine whether an
# arc is a bridge or not.
set arcs [$copy arcs]
while {![struct::set empty $arcs]} {
set adjacent [$copy arcs -adj $start]
if {[llength $adjacent] == 1} {
# No choice in what arc to traverse.
set arc [lindex $adjacent 0]
} else {
# Choose first non-bridge arcs. The euler conditions force
# that at least two such are present.
set has 0
foreach arc $adjacent {
if {[isBridge? $copy $arc]} {
continue
}
set has 1
break
}
if {!$has} {
$copy destroy
return -code error {Internal error}
}
}
set start [$copy node opposite $start $arc]
$copy arc delete $arc
struct::set exclude arcs $arc
lappend path $arc
}
$copy destroy
return
}
# ### ### ### ######### ######### #########
##
# This command uses dijkstra's algorithm to find all shortest paths in
# the graph G starting at node N. The operation can be configured to
# traverse arcs directed and undirected, and the format of the result.
proc ::struct::graph::op::dijkstra {g node args} {
# Default traversal is undirected.
# Default output format is tree.
set arcTraversal undirected
set resultFormat tree
# Process options to override the defaults, if any.
foreach {option param} $args {
switch -exact -- $option {
-arcmode {
switch -exact -- $param {
directed -
undirected {
set arcTraversal $param
}
default {
return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
}
}
}
-outputformat {
switch -exact -- $param {
tree -
distances {
set resultFormat $param
}
default {
return -code error "Bad value for -outputformat, expected one of \"distances\" or \"tree\""
}
}
}
default {
return -code error "Bad option \"$option\", expected one of \"-arcmode\" or \"-outputformat\""
}
}
}
# We expect that all arcs of g are given a weight.
VerifyWeightsAreOk $g
# And the start node has to belong to the graph too, of course.
if {![$g node exists $node]} {
return -code error "node \"$node\" does not exist in graph \"$g\""
}
# TODO: Quick bailout for special cases (no arcs).
# Transient and other data structures for the core algorithm.
set pending [::struct::prioqueue -dictionary DijkstraQueue]
array set distance {} ; # array: node -> distance to 'n'
array set previous {} ; # array: node -> parent in shortest path to 'n'.
array set visited {} ; # array: node -> bool, true when node processed
# Initialize the data structures.
foreach n [$g nodes] {
set distance($n) Inf
set previous($n) undefined
set visited($n) 0
}
# Compute the distances ...
$pending put $node 0
set distance($node) 0
set previous($node) none
while {[$pending size]} {
set current [$pending get]
set visited($current) 1
# Traversal to neighbours according to the chosen mode.
if {$arcTraversal eq "undirected"} {
set arcNeighbours [$g arcs -adj $current]
} else {
set arcNeighbours [$g arcs -out $current]
}
# Compute distances, record newly discovered nodes, minimize
# distances for nodes reachable through multiple paths.
foreach arcNeighbour $arcNeighbours {
set cost [$g arc getweight $arcNeighbour]
set neighbour [$g node opposite $current $arcNeighbour]
set delta [expr {$distance($current) + $cost}]
if {
($distance($neighbour) eq "Inf") ||
($delta < $distance($neighbour))
} {
# First path, or better path to the node folund,
# update our records.
set distance($neighbour) $delta
set previous($neighbour) $current
if {!$visited($neighbour)} {
$pending put $neighbour $delta
}
}
}
}
$pending destroy
# Now generate the result based on the chosen format.
if {$resultFormat eq "distances"} {
return [array get distance]
} else {
array set listofprevious {}
foreach n [$g nodes] {
set current $n
while {1} {
if {$current eq "undefined"} break
if {$current eq $node} {
lappend listofprevious($n) $current
break
}
if {$current ne $n} {
lappend listofprevious($n) $current
}
set current $previous($current)
}
}
return [array get listofprevious]
}
}
# This convenience command is a wrapper around dijkstra's algorithm to
# find the (un)directed distance between two nodes in the graph G.
proc ::struct::graph::op::distance {g origin destination args} {
if {![$g node exists $origin]} {
return -code error "node \"$origin\" does not exist in graph \"$g\""
}
if {![$g node exists $destination]} {
return -code error "node \"$destination\" does not exist in graph \"$g\""
}
set arcTraversal undirected
# Process options to override the defaults, if any.
foreach {option param} $args {
switch -exact -- $option {
-arcmode {
switch -exact -- $param {
directed -
undirected {
set arcTraversal $param
}
default {
return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
}
}
}
default {
return -code error "Bad option \"$option\", expected \"-arcmode\""
}
}
}
# Quick bailout for special case: the distance from a node to
# itself is zero
if {$origin eq $destination} {
return 0
}
# Compute all distances, then pick and return the one we are
# interested in.
array set distance [dijkstra $g $origin -outputformat distances -arcmode $arcTraversal]
return $distance($destination)
}
# This convenience command is a wrapper around dijkstra's algorithm to
# find the (un)directed eccentricity of the node N in the graph G. The
# eccentricity is the maximal distance to any other node in the graph.
proc ::struct::graph::op::eccentricity {g node args} {
if {![$g node exists $node]} {
return -code error "node \"$node\" does not exist in graph \"$g\""
}
set arcTraversal undirected
# Process options to override the defaults, if any.
foreach {option param} $args {
switch -exact -- $option {
-arcmode {
switch -exact -- $param {
directed -
undirected {
set arcTraversal $param
}
default {
return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
}
}
}
default {
return -code error "Bad option \"$option\", expected \"-arcmode\""
}
}
}
# Compute all distances, then pick out the max
set ecc 0
foreach {n distance} [dijkstra $g $node -outputformat distances -arcmode $arcTraversal] {
if {$distance eq "Inf"} { return Inf }
if {$distance > $ecc} { set ecc $distance }
}
return $ecc
}
# This convenience command is a wrapper around eccentricity to find
# the (un)directed radius of the graph G. The radius is the minimal
# eccentricity over all nodes in the graph.
proc ::struct::graph::op::radius {g args} {
return [lindex [RD $g $args] 0]
}
# This convenience command is a wrapper around eccentricity to find
# the (un)directed diameter of the graph G. The diameter is the
# maximal eccentricity over all nodes in the graph.
proc ::struct::graph::op::diameter {g args} {
return [lindex [RD $g $args] 1]
}
proc ::struct::graph::op::RD {g options} {
set arcTraversal undirected
# Process options to override the defaults, if any.
foreach {option param} $options {
switch -exact -- $option {
-arcmode {
switch -exact -- $param {
directed -
undirected {
set arcTraversal $param
}
default {
return -code error "Bad value for -arcmode, expected one of \"directed\" or \"undirected\""
}
}
}
default {
return -code error "Bad option \"$option\", expected \"-arcmode\""
}
}
}
set radius Inf
set diameter 0
foreach n [$g nodes] {
set e [eccentricity $g $n -arcmode $arcTraversal]
#puts "$n ==> ($e)"
if {($e eq "Inf") || ($e > $diameter)} {
set diameter $e
}
if {($radius eq "Inf") || ($e < $radius)} {
set radius $e
}
}
return [list $radius $diameter]
}
#
## place holder for operations to come
#
# ### ### ### ######### ######### #########
## Internal helpers
proc ::struct::graph::op::Min {first second} {
if {$first > $second} {
return $second
} else {
return $first
}
}
proc ::struct::graph::op::Max {first second} {
if {$first < $second} {
return $second
} else {
return $first
}
}
# This method verifies that every arc on the graph has a weight
# assigned to it. This is required for some algorithms.
proc ::struct::graph::op::VerifyWeightsAreOk {g} {
if {![llength [$g arc getunweighted]]} return
return -code error "Operation invalid for graph with unweighted arcs."
}
# ### ### ### ######### ######### #########
## Ready
namespace eval ::struct::graph::op {
#namespace export ...
}
package provide struct::graph::op 0.11.3
|